
Overview and Demonstration of Linking
Models with the Community Surface
Dynamics Modeling System

By: Eric Hutton & Scott Peckham

CSDMS - Community Surface Dynamics
Modeling System

(pronounced ˈsɪstәms)

Image by Flickr user Dezz

I am going to describe the steps a model takes to
become a component, and finish with a demo

who

why

how

what

demo

CSDMS uses two powerful tools for component-
based modeling

CCA provides:
•  Language interoperability
•  RPC support
•  Project management tool
•  GUI to connect components

OpenMI provides:
•  An interface standard
•  Data-passing tools

From an underemployed model to CSDMS
component

Models are able to better communicate with one
another if they have an interface

The babel compiler allows models of different
languages to communicate with each other

There are lots of models that do the same thing.
Try them all and choose the best for your task.

Components can be assembled to perform unique
tasks

Our community can be divided into three main
groups

How you use CSDMS depends on who you are…

Model developers can use the CCA tools, or not

Model developers
Use CCA tools to build new components
Use model libraries in a framework-less environment

CSDMS provides model users with a place to
download, run, and connect models

Model users
Download preexisting models from our repository
Connect components with GUI to build new models
(remotely or locally)

CSDMS will gladly accept and host your model no
matter what it looks like

If you would like your model to be part of the CSDMS
model library:

Become a member of CSDMS

Choose an open source license

Package it up and send it to one of us at CSDMS

The CSDMS model library provides a single
location to find models

After you submit your model to the CSDMS library, we
will:

Create a wiki page for your model

Make your model available via FTP

Create a subversion repository for your model

List it alongside all of the other CSDMS
models

There are a number of requirements if you want
your model to become a component

1.  Is written in a Babel-supported language
2.  Compiles with a CSDMS-supported compiler
3.  Has an IRF interface
4.  Has annotations of all input and output items
5.  Uses standard file formats for i/o

In addition to the previous requirements we ask that
your code:

We also ask that your model package contains:

1.  Testing procedures and data
2.  Basic documentation or a user’s guide

You do not need to be an expert in CCA or OpenMI
to contribute code

We have some non-requirements for code
contributors:

1.  You don’t need to know how to use CCA’s
babel tool

2.  You don’t need to know how to use CCA’s
bocca tool

3.  You don’t need to know the details of the
OpenMI interface

GC2D: grows and shrinks glaciers

FLEX2D: Flexure assumes that Earth’s crust is rigid
and so deflections are non-local

Earth’s crust

Load
(of a glacier, say)

Uplift
Subsidence

SUBSIDE: Airy subsidence deflects Earth’s crust
directly below the applied load

Load
(of a glacier, say)

Earth’s crust

No deflection

Deflection

The driver is the new model that orchestrates the
component models

The driver is unusual because it can be written without
its component models

•  Sure, it won’t function; it can be written though
•  The writer of the driver model doesn’t need to

know about the component models
•  This demonstrates the Inversion of Control design

pattern

Linking a glacial model with a subsidence model

Airy subsidence shows deflections directly
beneath load

As the flexure parameter is increased, subsidence
is more distributed

As the flexure parameter is increased, subsidence
is more distributed

As the flexure parameter is increased, subsidence
is more distributed

For realistic flexure parameters, the glaciers appear
as a point load

Linking a delta model with a subsidence model

Without subsidence, the delta progrades about 7km

With Airy subsidence, the delta progrades less.
About 5km

With flexural subsidence, the delta progrades as if
there were no subsidence at all

It is perfectly ok to couple models without a
framework at all.

This is what I did when I coupled HydroTrend and
Andrew’s coastal model (deltas):

Both models are written in C

Both models have an easy-to-use interface

I maybe would not have done it this way if:

Models were written in another language

I was a Python programmer

I wanted to use CCA functionality (RPC, modularity)

The main loop of the DeltaTrend model is simple.

For i over each day of the simulation:	

hydro_run_until(ht, i);	

qb = hydro_get_bedload_flux(ht);	

deltas_set_sediment_flux(cem, qb);	

deltas_run_until(cem, i);	

This is pretty much what the code would look like if I had
used the CCA tools.

In conclusion,

CSDMS employs a component-based modeling approach

Authors contribute models with an IRF interface and in a
babel-supported language

CSDMS staff assists with converting models to
components

Users assemble components to create new models

In conclusion, our hero was able to connect his
model with others to create a fantastic new model

Questions?

