Are Relay Ramps Pathways for Turbidity Currents?

A study combining analog sandbox experiments and numerical flow calculations

Wiebke Athmer¹, Remco Groenenberg¹, Rick Donselaar¹, Stefan Luthi¹ (¹:Delft) Dimitrios Sokoutis², Ernst Willingshofer² (²:Amsterdam)

(http://www.fault-analysis-group.ucd.ie/gallery/relay.html)

19 June 2009 Workshop on turbidity currents and RGC, Santa Barbara

vrije Universiteit amsterdam

Delft University of Technology

Outline

- background
 - relay ramps?
 - role in sediment routing?
- relevance/aim
- approach/method
 - sandbox modeling
 - numerical modeling
- results
- conclusions/wrap-up

19 June 2009

ISES (D

TUDelft

2

Relay Ramps?

- common feature at continental margins, associated with extensional tectonics
- transfer zones consisting of reoriented bedding between two synthetic normal faults that overlap in map view
- develop in normal fault zones through propagation of en-echelon faults
- dimensions of up to tens of kilometers in width, length
- transient features!

Athmer et al., 2008

3

Anatomy of a Relay Ramp

Athmer et al., submitted

ISES (Dutch Research Centre for Integrated Solid Earth Science)

Formation stages

formation: different stages, with different morphology

stages A, B: relay ramps unfaulted continuous path upthrown to downthrown block

stage C: continued extension, overlapping fault link, ramp becomes breached

5

19 June 2009

ISES (Dutch Research Centre for Integrated Solid Earth Science)

Gawthorpe and Collela, 2000

Field-Scale Examples

Canyonlands Grabens, Utah

Arches NP, Utah

6

image by Bruce Trudgill: http://geology.mines.edu/faculty/btrudgil/trudgill25.jpg

image by Michael Strugale: http://www.flickr.com/photos/strugale/2933812701

Role in Sediment Routing

large-scale relay-ramps:

- influence transport of sediments towards basins
- large-scale: several kilometers width, 10s of kilometers length
- documented examples from subaerial settings
 - East African Rift (Soreghan et al., 1999)
 - Suez Rift (Gupta et al., 1999; Young et al., 2002)
 - Gulf of Corinth, Greece (Gawthorpe and Hurst, 1993)

(http://www.fault-analysis-group.ucd.ie/gallery/relay.html)

Submarine Setting?...

relay-ramps in **submarine setting** (lakes, oceans):

- role in sediment routing less clear
- no convincing evidence yet published
- current status: speculative
 - "RRs may act as conduits for river-sourced submarine gravity flows in the Danish North Sea" (Bruhn and Vagle, 2005)
 - "flow constraining by channelization and tilting of RRs might help direct flows down the ramp" (Soreghan et al., 1999)

8

Relevance/Aim

deep-marine turbidite systems:

major exploration targets on many passive continental margins (e.g. offshore Norway, West Africa, Brazil)

role of RRs in sediment routing of great relevance to predict location of reservoirs

AIM: investigate the influence of relay ramps on

1. pathways of turbidity currents from shelf to basin

2. distribution of deep-marine sediments in/around rifted-basin margins

Approach

combination of Analog and Numerical modeling:

A. sandbox modeling : realistic rift basin bathymetries (incl. RR)N. process-based model : turbidity-current flow & sedimentation

19 June 2009

10

ISES (Dutch Research Centre for Integrated Solid Earth Science)

Sandbox Modeling

19 June 2009

11

Numerical Model

FanBuilder : simulates evolution of fan stratigraphy in 3D : each flow & sedimentation modeled separately classification : **process-based** (2-DH model Parker and co-workers) : hydrodynamics, sediment transport : erosion, deposition, water entrainment : flow velocity, concentration & height, sediment input volume, recurrence interval, **bathymetry** : thickness, grain size output : geometry of deposits (shape, size) : erosive contacts validation : laboratory data (Groenenberg et al., 2007, 2009)

19 June 2009

12

Configuration sketch

Groenenberg, 2007

13

19 June 2009

ISES (Dutch Research Centre for Integrated Solid Earth Science)

FanBuilder

Numerical Experiments

variables: - ramp geometry

- inflow angle
- on-ramp confinement

Experiment (Figure 3)	Obliquity α (°)	Relay ramp geometry			
		Overlap (cm)	Width (cm)	Incline (°)	Tilt (°)
А	20	3.95	1.33	2.9	2.6
В	30	2.05	0.71	5.2	4.4
С	45 (1)	4.52	1.67	3.5	1.4
D	45 (2)	5.47	1.82	6.0	1.7
D (modified)	45 (3)	5.47	1.82	5.1	-1.5

(4%)

ramp geometry inflow angle	width, incline, tiltangle of incidence between streamwise flow direction at entrance and ramp incline
confinement	: no confinement vs. channel-like
flow properties	: defined at entrance

: 40m
: 5 ms⁻¹
: 1092 kgm ⁻³
: 125 µm (fs)

Results: Perpendicular Inflow

TUDelft

vrije Universiteit

Results Oblique Inflow (1)

Results: Ramp Geometry

*larger width, incline, smaller tilt "facilitate" down-ramp flow

Results: Oblique Inflow & Confinement

19 June 2009

19

ISES (Dutch Research Centre for Integrated Solid Earth Science)

Results: Oblique Inflow & Landward-Tilt

- massive spill-over down the fault directly into basin for all basinward-tilted ramp experiments
 *basinward tilt common feature of all but largest-scale RRs
- on-ramp confinement results in funneling down the ramp
- flow has great difficulty in turning in the direction of ramp incline reacts "sluggish" to gradient change in upper reaches of ramp

Wrap-up

other important considerations:

- location of sediment source (shelf edge, delta) morphology of RR such that their incline is perpendicular to shelf-edge
- RRs transient features, open-stage morphology is transient, requires that timing of sediment supply is synchronous with open-stage phase

Are relay ramps pathways for turbidity currents?

Answer: Questionable...

