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Antarctica and Greenland bedrock is in large part below
sea level

Bedrock < 0 (m)
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Prone to "Marine Instability".
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® Sources of uncertainties
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Catastrophic collapse of ice shelves
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Larsen B Ice Shelf, Jan 31st — > March-7th 2002. 3,250 km? of ice
220 m thick disintegrated (size of US state of Rhode Island). Larsen B
was stable for up to 12,000 years. Poor understanding of mechanisms
leading to collapse (formation of melt-water ponds that weaken the
shelf by creating tabular slabs of ice).
iSSM JPL
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Ice/Ocean Interactions
Temperature 350 m - day 732

Distance [km]
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Schodlok et al, 2012:

e Warm Circumpolar Deep Water (CDW) pathways onto Pine Island
Bay.

¢ Impact on melt-rates at the grounding line and grounding-line
ISSM dynamics. JPL
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Grounding line retreat

Pine Island Glacier: grounding line migration and ice flow acceleration after 1996

400 l
i
200 |

|
i
|
|
-200 i
I
i
I
|

£ a0
5
k3 ime:
3 -600 Time: 1.8 yr
@
-800
-1000
CJice
[
1200 | B ecrock
—-— grounding line.
B St -
Qoo 50 0

(K] <IID]I>]H] [ =] +]

Larour et al, proceedings FRISP 2012

IS JPL

11/36 - Larour et al.- CSDMS 2014 -May 21, 2014



csbMsS 2014 JPL/UCI

Ice/Atmosphere Interactions

o Extreme precipitation
events along the East
Antarctic Coast

¢ Significant regional
accumulation.

o
cm/yr

o Compensates for some
of the recent global ice
mass losses in West
Antarctica

-2

-4

GRACE mass trends from 2004 to 2011 in
cm/yr. Boening et al, 2012.

ISSh JPL
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Unknown geometry

Norwegian/British/Swedish o !:n_&mnn 1500 2000 u;n 3000 km.
NASA Mission "Operation IceBridge" collecting airborne observations
on an unprecedented scale.

o Altimetry
Bedrock
Bathymetry

Snow-firn layer

position of margins and calving fronts in the past 150 years, past
iSSM 20,000 years JPL
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Unknown boundary conditions at the base

¢ Unknown basal stress at the base: inferred from InSAR surface
velocities and adjoint-based inversions.

o Poorly resolved geothermal heat flux.
ISSM JPL
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@ State of the ice: how do we reconstruct (Altimetry)?

ISsM JPL
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Surface elevation dataset from ICESat (2003-2009)

« North Eastern Greenland Ice
Sheet (NEGIS), fast-flowing
ice stream.

o Time series of ice-sheet
elevation from ICESat
2003-2009 (Schenk and
Csatho, 2012)
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Surface elevation time series for NEGIS

e Large inter-annual and
intra-seasonal variability

e Increased variability near the
coastline.

e Increased loss in 2005 from
propagation of dynamic
thinning upstream.

¢ Alternation of thinning and
thickening from SMB
anomalies (according to dh/dt
record)

o Surface altimetry converted to
ice equivalent thicknesses
using firn densification model
(ISSM is an incompressible
ice flow model)
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Surface elevation time-series along 79 North flowline

b
/

o Complex patterns of surface 1 T /
elevations changes, especially U
over floating tongue of 79 o
North

» Weak signal inland, magnified
near the coastline which is in
an extended ablation zone. o

o Abrupt temporal transitions
which are difficult to
aSSImI'ate ‘ear: 2003 Day: 1178
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Forward Model

o Stress balance (2D SSA, MacAyeal, 1989)

0 ou ov 0 ou ov s
— (4Hp— +2Hi— — (Hai— + Hi— ) = pgH— 1
2% ( Pox T ‘uay>+6y ( Hay * “8)() PO 5% T T M
0 v ou 1o} ou ov os
— (4HE— +2Hp— — (Hi— + Ha— ) = pgH— 2
dy ( Moy + Max) * ax ( Moy + “ax) 9 8y+Tby @
e Mass transport:
H .
%—tJrV-/-N:SMB—Mb (3)
e Rheology:
B
p=— @)
2E,"
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ISsM JPL
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ISSM: Ice Sheet System Model. Open source framework

o Jet Propulsion Laboratory/University of California at Irvine collaboration
* Transient thermo-mechanical ice-flow model.

o Funded by NASA (Modeling Analysis and Prediction as well as
Cryosphere Programs), JPL (Research and Technology Development
Program) and NSF (Office of Polar Programs, EAGER)

o Extensive capabilities:

» Transient thermo-mechanical ice-flow

» Higher-order and full-Stokes modeling, multi-scale, multi-model

» Inverse methods (adjoint-based) and data assimilation (automatic
differentiation)

Uncertainty Quantification (SNL's DAKOTA framework)

Static adaptation of mesh

Fracture modeling (rifts, faults on ice shelves) + damage propagation
Hydrology at the ice/bed interface

GIA (Glacio-Isostatic Adjustmnet)

o Public domain (http://issm.ess.uci.edu/svn/issm/issm/trunk)
o Support (Skype Channel, email list)

o Core team of developers (5 Scientists + growing community of users
across the world)

o Yearly Workshop. Bergen, Norway, 2-4 June 2014 (registration still open at
ISEM http://issm.jpl.nasa.gov/issmworkshops/) JPL
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Best-fit to observed surface elevations

0.7
a
0.6
® Cost function:
oS =T (s(t) — s(t)obs)” t)obs)
dxdydt

—_ SQ T / /t Y
£ 04 (6)
: where Q is the spatial domain, and [0,T] the time
T o3 : : domain over which surface elevation data is
- available.

0.2 ® Time series zero-level calibrated for 2006

(minimum misfit), super-imposed on existing
04 Howatt 2007 DEM.
2004 gdoe 2008 2010
Time (yr)
ISsM JPL
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Automatic differentiation of ISSM using ADOLC

ADOLC (Automatic Differentiation by OverLoading in C++) facilitates
the evaluation of first and higher derivatives of vector functions that are
defined by computer programs written in C or C++. ISSM was modified
to link against ADOLC:

o ADOL-C uses the operator overloading concept to compute in
forward and reverse mode of automatic differentiation:
o derivatives of any order
» one-sided derivatives in non-smooth cases (e.g. temperature near
the pressure melting point)
* ISSM was modified to:
» use the adouble type for all double operations
» specify independent variables (for which gradients are computed)

and dependent variables (diagnostics such as ice volume or misfit to
observations)

« call drivers (Jacobian, Gradient) at the end of the forward runs
Goals:

o Compute gradients of non self-adjoint problem such as a transient
ice-flow model

o Compute sensitivities of an ice-flow model free of truncation errors
iSSM JPLuL
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Inversion algorithm using automatic differentiation

ADOLC
Gradients
dJ/da
dJ/dsmB
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Model Setup

e Bedrock from Mass
Conservation (Morlighem
et al, 2013)

e SMB time series from
1850 to present-time
based upon regression
between PMM5
accumulation output and
ice core measurements

(Box et al, 2013)
o Basal friction « inverted

using adjoint-based model
inversion of INSAR surface o
velocities, Rignot 2012 i
e Model is transiently
relaxed for 5000 years.
e Inversion is carried out on
friction and SMB.
ISsM
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Sensitivity of cost-function J to surface mass balance
(SMB)

e Based on partitioning height change between dynamic and SMB, Csatho
et al (in review), we expect sensitivity to be high at the beginning in 2003
(thinning-thickening variations)

o Large sensitivity over the entire coastline, constant biases inland.
iSsM o High sensitivity to SMB in recovering surging glacier: difficult to interpret. JPL
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Sensitivity of cost-function J to basal friction «

e High sensitivity to dynamic thinning or ungrounding near the grounded
line.

e Sensitivity maps well against ice-flow dynamics
o Increased sensitivity in 2005 to dynamic thinning with propagation inland

ISSH JPL

25/36- Larour et al.- CSDMS 2014 -May 21, 2014



PL/UCI

Inversion results
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Corrections to SMB and Drag

Aa(mis)?) A Mg (miyr)

4 1
2
o o
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Year: 2003 Day: 30 -

o SMB corrections essentially near the coastline, below the ELA. Variations
are large, even in areas of low SMB.

o Drag corrections not able to reduce misfit everywhere (increase inland),
focused mainly near the trunks of both 79 North and Storstrammen
Glacier and near the grounding line.

¢ Inland, constant biases are corrected for.
ISSM e Complex interplay between friction and SMB.
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Corrections to SMB from LIA to present-day

Y
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o Similar approach to correcting SMB to match surface DEM in 2006.

o Large corrections which fall outside the range of error margins — > need
for larger time-series during spin-up of the model.

ISsM JPL
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@ Projections: how do we quantify uncertainties (ex: Atmosphere)?

ISsM JPL
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DMS 20

Greenland Transient Model. Schlegel et al, 2013 (JGR)

Configuring a modern Transient simulation driven by historical climate conditions
ISSM Greenland model

Time Series: Ice Sheet Change in Mass

MESH
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Model:
ISSM 2D MacAyeal Shelfy-Stream Approximation momentum equations

Forcing:
Regional climate model reanalysis correlated with observations [station/
ice core data] (Jason Box, Byrd Polar Research Center)

ISSM JPL
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Surface climate uncertainties
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Greenland Ice sheet estimated standard error in surface
mass balance used as standard deviation in DAKOTA
sampling (m/yr water equivalent). The sampled domain
includes one of the few ice streams in Greenland, the
Northeast Greenland Ice Stream, outlined in gray.

ISsM
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Given these errors, we

use ISSM uncertainty

quantification tools to
determine how the
model responds over
decades to:

- random errors in
surface forcing withir
the specified range
(SAMPLING)

- small errors in
surface forcing from
different areas
(SENSITIVITY)

JPL



Dakota/ISSM Uncertainty Quantification Framework
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Distribution Frequencies of Mass Flux
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Scaled sensitivities

Scaled sensitivities
(SS, unitless) of mass
flux through gates 1-8
due to 0.1%
perturbation in
surface mass balance
over 22 year period
(1989-2010).

o
SS; = ~
2
5 i=1
where

; = sensitivity of
domain partition i

ISSM JPL
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Radius of influence

Radius of influence

Gate n° -1 -2 -3 -5 -10
1 44.7 66.6 110.0 172.9 233.6
2 74.2 89.2 105.0 155.4 292.4
3 36.2 44.3 81.2 149.4 223.2
4 15.7 35.7 49.5 104.0 199.6
5 40.9 57.0 90.6 151.1 251.5
6 58.6 91.7 114.5 173.0 246.7
7 39.1 59.6 125.6 180.5 257.5
8 52.1 70.2 102.5 180.4 260.2
Mean 40.1 56.9 86.2 140.2 217.2

The maximum radius of influence (km) for a range of
importance factors (order of magnitude, log10).

The radius of influence is the maximum distance
between each flux gate and all locations that have
scaled sensitivities less than a specified value.

32 JPL
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@ Conclusions and Perspectives

ISsM JPL
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Conclusions

¢ Ice flow models such as ISSM are now at a stage where
sensitivities and error margins can be explored, and where NASA
data can be efficiently integrated into such uncertainty estimates.
« Some of the challenges that remain include among others:

» better constraints on the geometry of ice sheets (IceBridge, IceSat-2,
Grace Follow-On...)

» coupling with ocean and atmosphere

» constraining of geothermal heat flux rates in Antarctica and
Greenland

» parameterization of basal friction and basal hydrology using
observed surface velocities

 Itis now possible to compute sensitivities and gradients of
higher-order ice flow models using automatic differentiation.

o Preliminary studies show the feasability of assimilating altimetry
records to temporally invert for ice state variables such as friction
and SMB

» Ranges of errors can be quantified for short-term mass-balance
projections.

iSSM JPL
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Perspectives

o Data assimilation of long hindcast reconstructions of Greenland
and Antarctica.
¢ Uncertainty Quantification of Antarctica and Greenland
projections
» Extensive parameter space (ice viscosity, basal friction, surface mass
balance, bedrock and surface altimetry, etc ...)
» Large scale, high resolution
» Multiple time scales (20, 50, 200 and 500 year projections)
» Post-Doc Position at JPL, starting October 2014 to cover Antarctica.
e Increase our understanding of atmospheric constraints, in
particular impact of albedo feedback, surface temperature and
density, firn densification, etc ... — > Post-Doc position,
http://postdocs.jpl.nasa.gov (look for Snowpack/Larour)

ISSM JPL
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