Regional and Global Ramifications of Boundary Current Upwelling

Enrique Curchitser

Department of Environmental Sciences Rutgers University

Justin Small, Brian Kaufman, Bill Large NCAR

Kate Hedstrom

Aichael Alexander NOAA-ESRL

Outline

- Background and motivation
- Methods: A global climate model with a multi-scale ocean
- Implementations:
 - The California Current System
 - The Benguela Current
- Summary remarks

Why do we want to "downscale"?

• Regional impacts:

- Improved predictions of changes in statistics of regional climate, especially extreme events, are required to assess impacts and adaptation
- Need to improve representation of weather and climate link

• Climate model biases:

• Working hypothesis is that the internal dynamics of the system are more accurately represented at higher resolution

• Ecosystems:

• What resolution is needed beyond physics-only considerations?

Why do we need regional models? Temporal and spatial scales of ocean phenomena

Climate model biases (Model minus Observations of mean SST)

"Models still show significant errors ... The ultimate source of most is that many important small-scale processes are not represented explicitly in models ..."

Randal et al., 2007.

Ecosystems: Sardine and Anchovy Temporal and Spatial Variability

Time series of sardine (red) and anchovy (blue) landings since the 1920's. Data from Schwartzlose et al. (1999).

Our approach: Tightly coupled climate-to-fishers model

Aside: Approaches to address the bias problem

- Higher resolution in the atmosphere--better upwelling favorable winds (Gent et al., 2010)
- Improvements to boundary layer physics (Park and Bretherton, 2009)
- Improved resolution and physics in ocean--better upwelling (Curchitser et al. 2011; Curchitser et al. In prep., Small et al., 2015)

Methods: NCAR-CESM

Methods: Embedding a high-resolution ocean (ROMS) within NCAR-CESM

Numerical experiments (typical)

- Baseline: 150 year run of CESM1, branched from 1870 control run.
- Composite: 150 year run of CESM1-ROMS, same initial conditions.
- Ocean:
 - POP ~1-degree, 40 Z-levels
 - ROMS 7 km, 50 stretched sigma levels
- Atmosphere: CAM-5 1°, 0.5°
- Land: CLM 3
- Sea ice: CICE
- Analysis: 140 years of monthly means.
- Statistics: T-test for means, F-test for variability

California Current: Local SST response

California Current: Surface fluxes

Global response: Surface air temperature

The Benguela Current System

THE BENGUELA UPWELLING SYSTEM: QUANTIFYING THE SENSITIVITY TO RESOLUTION AND COASTAL WIND REPRESENTATION IN A GLOBAL CLIMATE MODEL R. Justin Small', Enrique Curchitser², Katherine Hedstrom²,

The Benguela Current System

baseline, JJA

The Benguela Current System

The Benguela Current System: Shifted winds experiment

NRCM-1°

Temperature cross sections

Benguela: Comparing to observations

The Benguela Current System: Remote effects – Restoring Experiments

Back to the California Current: Biogeochemical considerations

Global Biogeochemical Cycles

RESEARCH ARTICLE

Air-sea CO₂ fluxes in the California Current: Impacts of model resolution and coastal topography

Jerome Fiechter¹, Enrique N. Curchitser², Christopher A. Edwards³, Fei Chai⁴, Nicole L. Goebel³, and Francisco P. Chavez⁵

 Outgassing intensification linked to coastal topographic features
Near-shore outgassing balanced by diffuence absorption
Carbon fluxes most sensitive to horizontal resolution for 35-47M

¹Institute of Marine Sciences, University of California, Santa Cruz, California, USA.²Institute of Marine and Coastal Sciences, State University of N. J. Bugers, New Brunswick, New Jersey, USA, ³Ocean Sciences Department, University of California, Santa Cruz, California, USA, ⁴School of Marine SciencesUniversity of Maine, Orono, Maine, USA, ⁵Monterey Bay Aquarum Research Institute, Moss Landing, California, USA

CO2 outgassing limit

CO2 equilibrium limit

Final remarks

- · Upwelling is a coupled phenomena with multiple scales interacting
 - Air-sea feedbacks modulate the response
 - · Clouds and coastal atmospheric conditions are important
 - Feedbacks can extend well beyond upwelling region
- Dynamics of upwelling are different in the various regions (and within a region)
- · Ocean dynamics are important and resolution is not the only "fix"
- Nesting permits isolating impacts of a given region
- Ongoing work: Western boundary currents, ensemble projections
- Don't wait for global high-resolution!