The Technology Behind the
Community Surface Dynamics
Modeling System (CSDMS)

Scott D. Peckham
Chief Software Architect for CSDMS
October 10, 2008

csdms.colorado.edu

CSDMS Education and

Knowledge Transfer (EKT) @
¢ — — Working Group Meeting,
CSDMS

Boulder, CO

Community Surface Dynamics Modeling System

o

p S o e

Why is it Difficult to Link Models?

. Written in different languages (conversion is time-consuming, error-

prone and snapshots do not keep up with developer’'s updates).

The person doing the linking may not be the author of either model and
the code is often not well-documented or easy to understand.

Models may have different dimensionality (1D, 2D or 3D)

Models may use different grid types (rectangles, triangles, polygons)
Each model has its own time loop or "clock".

The numerical scheme may be either explicit or implicit.

The type of coupling required poses its own challenges. Some common

types of model coupling are: (a) Layered = A vertical stack of grids (e.g.
distributed hydrologic model), (b) Nested = Usually a high-res model embedded
within (and driven by) a lower-res model. (e.g. regional winds/waves driving
coastal currents, or a 3D channel flow model within a landscape model), (c)
Boundary-coupled = Model coupling across a natural (possibly moving)

boundary, such as a coastline.
CSDMS

Community Surface Dynamics Modeling System

Functional Specs for the CSDMS

Support for multiple operating systems
(especially Linux, Mac OS X and Windows)
Support for parallel computation (multi-proc., via MPI standard)

Language interoperability to support code contributions written in
C & Fortran as well as more modern object-oriented languages
(e.g. Java, C++, Python) (CCA is language neutral)

Support for both legacy code (non-protocol) and more structured
code submissions (“procedural” and object-oriented)

Should be interoperable with other coupling frameworks
Support for both structured and unstructured grids
Platform-independent GUIs and graphics where useful
Large collection of open-source tools

CSDMS

Community Surface Dynamics Modeling System

Scientific “Coupling Frameworks”

ESMF (Earth System Modeling Framework)
www.esmf.ucar.edu, maplcode.org/maplwiki
PRISM (Program for Integrated Earth System Modeling)

www.prism.enes.org (uses OASIS4)
OpenMI (Open Modeling Interface)

www.openmi.org (an interface standard vs. framework)
CCA (Common Component Architecture)

www.cca-forum.org,

www.lInl.gov/ICASC/components/babel.html
Others: GoldSim (www.goldsim.com) commercial

FMS (www.gfdl.noaa.gov/~fms) GFDL

Non-scientific ones include CORBA, .NET, COM, JavaBeans,
Enterprise Java Beans (see Appendix slide for links)

CCA

Common Component
Architecture

Overview of CCA

Widely used at DOE labs (e.g. LLNL, ANL, Sandia) for
a wide variety of projects (e.g. fusion, combustion)

Language neutral;, Components can be written in C, C++,
Fortran 77/90/95/03, Java, or Python; supported via a
compiler called Babel, using SIDL / XML metadata

Interoperable with ESMF, PRISM, MCT, etc.

Has a rapid application development tool called BOCCA

Similar to CORBA & COM, but science application support

Can be used for single or multiple-processor systems,
distributed or parallel, MPI, high-performance (HPC)

Structured, unstructured & adaptive grids

Has stable DOE / SciDAC (www.scidac.gov) funding

Key CCA Concepts & Terms

Architecture = A software component technology standard (e.g. CORBA,
CCA, COM, JavaBeans. synonym: “component model”)

Framework = Environment that holds CCA components as they are
connected to form applications and then executed. Provides a small set
of standard services, available to all components. May also provide a
language interoperability tool (e.g. Babel). The framework can be
tailored to the type of high-performance computing, e.g. Ccaffeine for
parallel and XCAT for distributed. Others are SCIRun2 and Decaf.

Components = Units of software functionality (black boxes) that can be
connected together to form applications within a framework.
Components expose well-defined interfaces to other components.

Interface = As defined in Java, similar to an abstract class. A specific
collection of class member functions or methods, with data types
specified for all arguments and return values but no implementation.

Ports = CCA’s term for component interfaces, either uses or provides.

Example: Basic “"IRF” Interface

A component is often implemented as a class with a set of member functions or
methods that provide a caller with complete control over the component’s capabilities.
One benefit of this is that the caller can use its own time loop or clock instead of the
one the model uses in stand-alone mode. This makes it easier to combine the
capabilities of multiple models in a larger model.

Initialize() = Open & read input files, initialize variables, open output files.

Run_Step() or Execute() = Run a single “step”, which may be a time step or an
iteration step (e.g. root-finding step or relaxation step).

Get_Values() = What, When, Where and How. Return a specified variable at a
specified time. Can also specify which grid cells and data operation.

Finalize() or Cleanup() = Close all files, print messages, free memory.

Test() = Perform one or more tests, from sanity check to comparison with an analytic
solution.

Run_Model() = Run the entire model in “stand-alone” mode, using information from an
input file.

Example: OpenMI Interface

. org.OpenMI.Standard interface specification v.1.4.0

wintedaces
1Quantty December 2007 © The OpenMI Association URL: www.openmi.org
+ apropertys ID() : sting . e
+ propentys Descaption) : stang messaging definitions
+ apropertys ValueType() : ValueType
+ wpropertys Dimension() : Dimensiol %l B
+corporys Unig kit e «enumerations
What s o IListener EventType
data e iaaces + OnEvent(Event :lEvent) : void
+ GetAcceptedEventTypeCounti) : int + Waming: int=0
deﬂnitions 1Unit + 6 T Typedex :int) : EventType + Informative: Int=
+ apropertys 1D() : string . Za ueOmOrRx"ge‘ n;—z
+ apropertys Descaption() : sting e . gress. Int =
+ apropertys ConversionFactorToSK) : double "’E"m " . L;Tecslmvvc;gvesl m; =4
+ apropertys OffSetToSK) : double + DataChanged: int =
T + TametBeforeGetValuesCall: int =6
+ SourceAfterGetvaluesCall: Int =7
+ wproperys Description() : strn;
Values ainterfaces «enumerations «interace» - p f Se,,,;,),, i v t + SourceBeforeGetValuesRetum: Inf
IValueSet ValueType by perty JonTime(: P + TametafterGetValuesRetum: int
+ apropentys Count() : int . D on :Dim) : bool + GetAttribute(key :sting) : object 2 el ol
+ kValid(elementindex :int) : bool o T . Quantity : double 2 LIS s
+ Vector int=2
ZP 4 specification what will be exchanged and how
xintedacen «interfaces D“;;‘:""‘::’;’.“"Q
IScalarSet IVectorSet snterfacas
+ GetScalarfelementhdex :int) : double | |+ GetVectorjelementindex :int) : Mector + Length: int=0 Jink
+ Mass int=1 + wpropenys 1Y) : sting . .
—— DM + <bropartys Doscdption attng component interfaces for generic
+ ElecticCurrent: int=3 + npropentys SoureConponent() : iLinkableConponent
Wector b s thrparys Tapeic : Lnkan : component access
Wh + apropertys XComponent() : double + AmountOfSubgance: int=5 + nproperys TargetQuantity() : Quantity
en + wproperys YComponent() : double + Luminousintensty: int=86 + perty :
l - P (!) : double + Cumency: Int=7 + pertys S 5 S alnterfaces
+ NUM_BASE_DIMENSIONS: int + wproperys Source Quantity() : IQuantity IPublisher
+ apropertys DataOperationsCount() : Int
+ GetDataOperation(dataOperationidex :int) : IDataOperation + Subscribeflistener :Listener, eventType :EventType) : vold
R aces T + UnSubscribeiistener :Listener, eventType :EventType) : void
[TimeSpan MimeStamp + SendEvent(Event :Event) : void
+ GetPublishedEventTypeCount() : int
+ propenys Start): MmeStamp | |+ «propenys ModifiedJutianDay() : double X . + GetPublishedEventType providedEventTypehdex :int) : EventType
+__nproperys End() : TimeStamp op[|ona| extensions
Where tinterfaces «xenumerations «intedaces ainterfaces
IElementSet ISpatialReference (DiscreteTimes
+ wpropertys D : sting . D) sting . —— o obligatory interface
Y (L) : maa«i. ": + GetDiscrete T NQuantity, int
. Point: int X
P 0 o + GetDiscrete Time(KQuantit Set, discrete Timendex :int) : Mime
+ npmpenys ElementType() : ElementType + XYLine: Int=2 — ! 4
+ wpmperys ElementCount() : int + XYPolyLine: int=3
+ nproperys Version() : int + XYPolygon: int =4 ainterfaces
+ GetElementhdex(elementid :sting) : int + XYZPolnt: Int=S Bl ILinkable Component
+ GetElementDelementindex :int) : sting + XYZLine: int=6
+ GetVertexCount(elementindex :int) : int + XYZPolyLine: int=7 winterfacen ManageStoe + «propertys ConponentlD) . sting
+ GetFaceCount{elementidex :int) : int + XYZPolygon: int=8 IArgument + KeepCumentState() : strin; ¢ #properlys ConponentDescriptionf) - sidng
+ GetFaceVenexhdices{elementindex :int, faceidex int) : intf] + XYZPolyhedron: int=9 + Restore State(statelD :string) : void *+ «properys ModellDi) - sting
+ GetXC: int, :nt) : double ¢ «propertys Key : atring + ClearState(statelD :string) : vold + «propertys ModelDescription() : tring
+ GetYC int, iint) : double + «propertys Valuef) : sting + «propertys hputExchangekemCount() : int
+ GetZC int, int) : double + wproperys S:B:l(lr:/y(] D{:’ul + wproperys ?u!n;lfxtha(;)gle,lelv(sjuun’() int
+ «propertys Description() : stiing + «propentys TimeHonzon() : INimeSpan
+ «propentys EadiestinputTime() : MimeStanp
+ Initialize(propenies :Argument()} : vold
HOW «interfaces + G int)
1Da + GerC int) : KC
R eriya g et + AddLink(link :Link) - void
e e + RemoveLink(linkiD :stiing) : vold
+ GetAmument(argumentindex :Int) : IArgument N ;/"/'d""":’ ”"g"g
+ Prepare) : voi
+ lnitialize(propertles MAmgumentf]): vold i, X
+ 0 SelectedDataOperations :1DataC bool . ?ev\/arues/nnx- ITime, linkiD :string) : WalueSet
+ Finish() : vold
+ Dispose() : void
ainterfaces
meta data to express what can be
exchanged + upropertys Quantity() : Kuantity
+ apropertys ElementSet() : ElementSet
4 .
sinterfacen winterfaces
lll_lguﬁxcmgmlhm W = H
——— rguments E3~{~[3
+ apropertys DataOperationCount() : int 2 inte
+ GetDataOperation(dataOperationindex :int) : DataOperation Startmg p0|nt- OpenM|
the OMI-file

Some Key CCA Tools

Babel = A “multi-language” compiler for building HPC applications
from components written in different languages. (http://www.lInl.gov/
CASC/components/babel.html)

SIDL = Scientific Interface Definition Language (used by Babel).
Allows language-independent descriptions of interfaces.

Bocca = A user-friendly tool for rapidly building applications from
CCA components (RAD = Rapid Application Development) (http:/
portal.acm.orglcitation.cfm?id=1297390)

Ccaffeine = A CCA component framework for parallel computing
(http://www.cca-forum.org/ccafe/ccaffeine-man)

New CCA build system = Unnamed, user-friendly build system for
the complete CCA “tool chain”. It uses a Python-based tool called
Contractor.

CCA: The Babel Tool

C I /fgo + f95 + 2003

\Lz
=

I k» Python

Language interoperability is a powerful feature of the CCA framework.
Components written in different languages can be rapidly linked in HPC
applications with hardly any performance cost. This allows us to “shop” for
open-source solutions (e.qg. libraries), gives us access to both procedural and
object-oriented strategies (legacy and modern code), and allows us to add
graphics & GUIs at will.

CCA: The Babel Tool

Minimal performance cost: A widely used rule of thumb is that
environments that impose a performance penalty in excess of 10% will be
summarily rejected by HPC software developers.

Babel’s architecture is general enough to support new languages, such as
Matlab, IDL and C# once bindings are written for them.

More than a least-common-denominator solution; it provides object
-oriented capabilities in languages like C, F77, FOX where they aren'’t
natively available.

Has intrinsic support for complex numbers and flexible multi-dimensional
arrays (& provides for languages that don’t have these). Babel arrays can
be in row-major, column-major or arbitrary ordering. This allows data in
large arrays to be transferred between languages without making copies.

Babel opens scientific and engineering libraries to a wider audience.

Babel supports RPC (remote procedure calls or RMI) over a network.

CCA: The Babel Tool

| is Middleware for HPC

Performance (in process
m “The world’s most rapid

i

&)
O
2
communication among many D 35 >
Im programming languages in a A=
2006 single application. S
= 10 (&)
=
0.
CORBA COM NET Babel
BlueGene, Cray, No No No Yes*
Linux, AlX, & OS X
Fortran No Limited Limited Yes
Multi-Dim Arrays No No No Yes
Complex Numbers No No No Yes
Licensing Vendor Closed Closed Open
Specific Source Source | Source

CCA: The Bocca Tool

Provides project management and comprehensive build environment for
creating and managing applications composed of CCA components

The purpose of Bocca is to let the user create and maintain useful HPC
components without the need to learn the intricacies of CCA (and Babel)
and waste time and effort in low-level software development and
maintenance tasks. Can be abandoned at any time without issues.

Bocca lays down the scaffolding for a complete componentized
application without any atttendant scientific or mathematical
implementation.

Built on top of Babel; is language-neutral and further automates tasks
related to component “glue code”

Supports short time to first solution in an HPC environment

Easy-to-make, stand-alone executables coming in March 2008
(automatically bundles all required libraries; RC + XML -> EXE)

CCA

e 06
-
File View CCA Info

-

7 X<l -

'o
=2
™
et
-~
™

myProject. Driver

_ ’

myProject. Finalize

myProject. HalfCircleShape
myProject. Initialize

myProject. LawOfWallVelocity
myProject. ManningVelocity

myProject. TrapezoidShape

The Ccaffeine-GUI Tool

Common Component Architecture

{3} Common Component Architecture: Untitled_0.bld (changed)

Arena

;

I o

- LawOfWallVelocityO TrapezoidShape0

input)=

output (shape) ~ shape

Driver0 ManningVelocity0 HalfCircleShape0

Il

A “wiring diagram” for a simple CCA project. The CCA framework
called Ccaffeine provides a “visual programming” GUI for linking
components to create working applications.

N —

LO CD Tt S Gl [EaF (OO

Requirements for Code Contributors

. Code must be in a Babel-supported language.

Code must compile with a CSDMS-supported, open-source
compiler (e.g. gcc, gfortran, etc.)

Refactor source code to have an IRF interface

Provide descriptions of all input & output exchange items
Include suitable festing procedures and data

Include a user’s guide or at least basic documentation

Specify what open-source license applies to your code

Use standard or generic file formats whenever possible for I/O
Apply a CSDMS automated wrapping tool

CSDMS

Community Surface Dynamics Modeling System

Other CCA-Related Projects

CASC = Center for Applied Scientific Computing
(https://computation.linl.gov/casc/)

TASCS = The Center for Technology for Advanced Scientific Computing Software
(http://www.tascs-scidac.org) (focus is on CCA and associated tools; was CCTTSS)

PETSc = Portable, Extensible Toolkit for Scientific Computation
(http://www.mcs.anl.gov/petsc) (focus is on linear & nonlinear PDE solvers; HPC/MPI)

ITAPS = The Interoperable Technologies for Advanced Petascale Simulations Center
(http://www.itaps-scidac.org) (focus is on meshing & discretization; was TSTT)

PERI = Performance Engineering Research Institute
(http://www.peri-scidac.org) (focus is on HPC quality of service & performance)

TOPS = Terascale Optimal PDE Solvers
(http://www.scidac.gov/ASCR/ASCR_TOPS.html) (focus is on solvers)

SCIRun = CCA framework from Scientific Computing and Imaging Institute
(http://software.sci.utah.edu/scirun.html) (this is a CCA framework)

Conclusions

The Common Component Architecture (CCA) is a mature and powerful

environment for component-based software engineering (CBSE) and
building high-performance computing (HPC) applications.

Some of its most powerful tools include Babel, Bocca, Ccafe-GUI and the
Ccaffeine framework. Each of these tools fulfills a particular need in an

elegant manner in order to greatly simplify the effort that is required to
build an HPC application.

The CCA framework currently meets most of the requirements of CSDMS
and native Windows support (vs. Cygwin) is likely in the near future.

CCA has been shown to be interoperable with ESMF and should also be
interoperable with a Java version of OpenMI.

For more information, please see the “CSDMS Handbook” at:
http://csdms.colorado.edu/wiki/index.php/Tools CSDMS Handbook

Python Support in CCA / Babel

Support for Java & Python makes it possible to add components
with GUIs, graphics or network access anywhere in the application
(e.g. via wxPython or PyQT). Python code can be compiled to
Java with Jython. (See www.jython.org for details)

NumPy is a fairly new Python package that provides fast, array-
based processing similar to Matlab or IDL. SciPy is a closely
related package for scientific computing. Matplotlib is a package
that allows Python users to make plots using Matlab syntax.

Python is used by Google and is the new ESRI scripting language. It
can be expected that this will result in new GIS-related packages/
plug-ins. Python is entirely open-source and a large number of
components are available (e.g. XML parser). Currently has over
one million users and is growing.

GIS tools are often useful for earth-surface

modeling and visualization. P pgthOn

Component Technology

Advantages of Component vs. Subroutine Programming

Can be written in different languages and still communicate.
Can be replaced, added to or deleted from an app. at run-time via dynamic linking.

Can easily be moved to a remote location (different address space) without
recompiling other parts of the application (via RMI/RPC support).

Can have multiple different interfaces and can have state.

Can be customized with configuration parameters when application is built.

Provide a clear specification of inputs needed from other components in the system.
Have potential to encapsulate parallelism better.

Allows for multicasting calls that do not need return values (i.e. sending data to
multiple components simultaneously).

CBSE = Component-Based Software Engineering

Component technology is basically “plug and play” technology (think of “plugins™)
With components, clean separation of functionality is mandatory vs. optional.
Facilitates code re-use and rapid comparison of different methods, etc.

Facilitates efficient cooperation between groups, each doing what they do best.
Promotes economy of scale through development of community standards.

Possible Component Examples

Airy Waves Stokes SWAN REF-DIF | Boussinesq
Waves (FunWave)
Bagnold Einstein Meyer- Yalin Power law
Peter
Muller
Green- Smith- Beven Richards’ Richards’
Ampt Parlange 1D 3D
Kinematic Diffusive Dynamic
Wave Wave Wave
MARSSIM CHILD SIBERIA Erode TOPOG
(Howard) (Tucker) | (Willgoose) | (Peckham) | (CSIRO)
GEOTOP GSSHA MMS TopoFlow | MIKE SHE
(Rigon) (Ogden) | (Leavesley) | (Peckham) (DHI)

All approaches to modeling a given “process” or phenomenon are
wrapped to present a standard “plug-and-play”, object-oriented interface
for their common capabilites (as method functions of some class)

MAY/JUNE 2007 \Volume 9, Number 3

inSCIENCE ENGINEERING

PYTHON: BATTERIES INCLUDED
Guest Editor’s Introduction
Poul . Duton
7
Python for Scientific Computing
Trans £. Ohphane

10

IPython: A System for Interactive Sr.u.nuflc Computing
e

Ferrondc Pérer ond @rian £, Gro

21

Computational Physics Education with Python
o Seve B Esgrenvy Arnd Bocker

- 20 ecrectathe 30
Sacpiae of computatonal
sophee of COMBY Python Unleashed on Systems Biology

Christopher & Mywes, Ryun N, Gutenkurst, orxd fumes P Sethog

e Lae of computen and

Maoral e I SO e 34

d ecueation. beery luce Reaching for the Stars with Python

Ol wleest therve MlCied, Perry Greonfiod

A Python Module for Modeling and Control Design of Flexible Robots
Ryor W, Krouss and Wayme |, ook

Statement of Purpose

3 ergineering and to

#0h ar sounte Code e ade asalabie
chectrorically aver 19 Intemet. The In- 41
erdnd audhence Compses phasical

Python in Nanophotonics Research
wertity, engioeen, mathematiclars,

Peter Blenstman, Lieven Vonholme, Wim Bogaerts,

anxd ehers wh winsel Deselit bom. Peter Dumon, and Peter r3lesyer

e pataticnal methodclogies. 46

AT articies and technical notes

n CIS6 are peer reviewsd Using Python to Solve Partial Differential Fqualinm

Xent-Andre Mardal, Ola Skavhoug, Glen
Gunnar A. Staft, and Asmund -.-J"JJ'L

48

Q Analysis of Functional Magnetic Resonance Imaging in Python
Hrhed 00 1003 feyred papes X o Milman and Matthew Rrett

52

Python for Internet GIS Applications

KXuaon Shi

56

Quantum Chaos in Billiards
Ared Bicker

60
INTERNATIONAL POLAR YEAR

An Ice-Free Asctic? Opportunities for Computationad Scence
L Brovso Treembiuy, Manko M, MHollond, (nng V. Gerodetskaya, and Gavn A, Schevict

65

A Guide to the
Python Universe

for ESRI Users

Ay Horward Busler, lorw Stase University

3as Nssoncally followed two models. The
RC Macro Largsage (AML). This
» files, data han

The Zen of Python, by Tim Peters

Beautiful is better than ugly
Exphicit is better than implicit,
spcmmn

4. and Be code Is very boear in

24 2 struggle, and

ed Sag. Both are cuson lang
MaSTY COMmers
Wih the inerodaction of AsGIS ¥, yoer scripeing-based view o the

‘.
uyukn'erules
Emsheuilnmra- .
Uniess explicily slenced.
I the face of ambiguity, refuse the temptation to guess.
MWHMMMW
10 do

Amhmnqldh at first enless you're

Msmmn-!./

Although never is often better than “right* nowe

¥ the implementation is hard to explain, it'sa bad idea.

I the implementation is easy to explain i may be 2
idea.

geod
Namespaces are one honking great idea—let’s do more
those!

ponenes of 2 typical

sutadlaticns. Thin you a2 cw of what is avail
the Pythen unive:
ESRI woh.

Introducing Pythen The Dns.qr xmm
Pyhon was first released i 1591 by Guido van Rossum
voor Wiscinde en ka (CWI) In the Netherlan

Joves, Its
v show
Muzy of
Lazguzges wack
es i hacke

ises, proenocs, and
Pyhoa's b

grammers will caly need

angeage and help them write code thae could

for megracion within GIS com

ccenful in glung sysems wgether. E s of the Naid L=

Python: Batteries Included, special issue of "Computing
in Science & Engineering devoted to Python, May-June
2007, vol. 9(3), 66 pp. Nice collection of articles, incl.
papers on ipython, matplotlib, GIS, solving PDEs.

Butler, H. (2005) A guide to the Python universe for ESRI

users, ArcUser (April-dJune 2005), p. 34-37. (tools for
ellipsoids, datums, file formats like shapefiles)

Other Component Architecture Links
(Commercial, non-HPC, non-scientific computing)

CORBA (Object Management Group)
http://www.omgq.org/gettingstarted
http://www.omgq.org/gettingstarted/history of corba.htm

COM (Component Object Model, Microsoft, incl. COM+, DCOM & ActiveX)
http://www.microsoft.com/com/default.mspx

NET (Microsoft Corp.)
http://www.microsoft.com/net

JavaBeans (Sun Microsystems)
http://java.sun.com/products/javabeans

Enterprise JavaBeans (Sun Microsystems)
http://java.sun.com/products/ejb

Types of Model Coupling

Layered = A vertical stack of grids that may represent:
(1) different domains (e.g atm-ocean, atm-surf-subsurf, sat-unsat),
(2) subdivision of a domain (e.g stratified flow, stratigraphy),
(3) different processes (e.g. precip, snowmelt, infil, seepage, ET)
A good example is a distributed hydrologic model.

Nested = Usually a high-resolution (and maybe 3D) model that is
embedded within (and may be driven by) a lower-resolution
model. (e.g. regional winds/waves driving coastal currents, or a
3D channel flow model within a landscape model)

Boundary-coupled = Model coupling across a natural (possibly
moving) boundary, such as a coastline. Usually fluxes must be
shared across the boundary.

