
The Technology Behind the
Community Surface Dynamics

Modeling System (CSDMS)
Scott D. Peckham

Chief Software Architect for CSDMS
October 10, 2008

 csdms.colorado.edu

 CSDMS Education and
 Knowledge Transfer (EKT)
 Working Group Meeting,
 Boulder, CO

Why is it Difficult to Link Models?
1.  Written in different languages (conversion is time-consuming, error-

prone and snapshots do not keep up with developer’s updates).
2.  The person doing the linking may not be the author of either model and

the code is often not well-documented or easy to understand.
3.  Models may have different dimensionality (1D, 2D or 3D)
4.  Models may use different grid types (rectangles, triangles, polygons)
5.  Each model has its own time loop or "clock".
6.  The numerical scheme may be either explicit or implicit.
7.  The type of coupling required poses its own challenges. Some common

types of model coupling are: (a) Layered = A vertical stack of grids (e.g.
distributed hydrologic model), (b) Nested = Usually a high-res model embedded
within (and driven by) a lower-res model. (e.g. regional winds/waves driving
coastal currents, or a 3D channel flow model within a landscape model), (c)
Boundary-coupled = Model coupling across a natural (possibly moving)
boundary, such as a coastline.

Functional Specs for the CSDMS
Support for multiple operating systems
 (especially Linux, Mac OS X and Windows)
Support for parallel computation (multi-proc., via MPI standard)
Language interoperability to support code contributions written in

C & Fortran as well as more modern object-oriented languages
(e.g. Java, C++, Python) (CCA is language neutral)

Support for both legacy code (non-protocol) and more structured
code submissions (“procedural” and object-oriented)

Should be interoperable with other coupling frameworks
Support for both structured and unstructured grids
Platform-independent GUIs and graphics where useful
Large collection of open-source tools

ESMF (Earth System Modeling Framework)
 www.esmf.ucar.edu, maplcode.org/maplwiki
PRISM (Program for Integrated Earth System Modeling)
 www.prism.enes.org (uses OASIS4)
OpenMI (Open Modeling Interface)
 www.openmi.org (an interface standard vs. framework)
CCA (Common Component Architecture)
 www.cca-forum.org,
 www.llnl.gov/CASC/components/babel.html
Others: GoldSim (www.goldsim.com) commercial
 FMS (www.gfdl.noaa.gov/~fms) GFDL

Non-scientific ones include CORBA, .NET, COM, JavaBeans,
Enterprise Java Beans (see Appendix slide for links)

Scientific “Coupling Frameworks”

Widely used at DOE labs (e.g. LLNL, ANL, Sandia) for
 a wide variety of projects (e.g. fusion, combustion)
Language neutral; Components can be written in C, C++,

Fortran 77/90/95/03, Java, or Python; supported via a
compiler called Babel, using SIDL / XML metadata

Interoperable with ESMF, PRISM, MCT, etc.
Has a rapid application development tool called BOCCA
Similar to CORBA & COM, but science application support
Can be used for single or multiple-processor systems,
 distributed or parallel, MPI, high-performance (HPC)
Structured, unstructured & adaptive grids
Has stable DOE / SciDAC (www.scidac.gov) funding

Overview of CCA

Architecture = A software component technology standard (e.g. CORBA,
CCA, COM, JavaBeans. synonym: “component model”)

Framework = Environment that holds CCA components as they are
connected to form applications and then executed. Provides a small set
of standard services, available to all components. May also provide a
language interoperability tool (e.g. Babel). The framework can be
tailored to the type of high-performance computing, e.g. Ccaffeine for
parallel and XCAT for distributed. Others are SCIRun2 and Decaf.

Components = Units of software functionality (black boxes) that can be
connected together to form applications within a framework.
Components expose well-defined interfaces to other components.

Interface = As defined in Java, similar to an abstract class. A specific
collection of class member functions or methods, with data types
specified for all arguments and return values but no implementation.

Ports = CCA’s term for component interfaces, either uses or provides.

Key CCA Concepts & Terms

A component is often implemented as a class with a set of member functions or
methods that provide a caller with complete control over the component’s capabilities.
One benefit of this is that the caller can use its own time loop or clock instead of the
one the model uses in stand-alone mode. This makes it easier to combine the
capabilities of multiple models in a larger model.

Initialize() = Open & read input files, initialize variables, open output files.

Run_Step() or Execute() = Run a single “step”, which may be a time step or an
iteration step (e.g. root-finding step or relaxation step).

Get_Values() = What, When, Where and How. Return a specified variable at a
specified time. Can also specify which grid cells and data operation.

Finalize() or Cleanup() = Close all files, print messages, free memory.

Test() = Perform one or more tests, from sanity check to comparison with an analytic
solution.

Run_Model() = Run the entire model in “stand-alone” mode, using information from an
input file.

Example: Basic “IRF” Interface

Example: OpenMI Interface

Babel = A “multi-language” compiler for building HPC applications
from components written in different languages. (http://www.llnl.gov/
CASC/components/babel.html)

SIDL = Scientific Interface Definition Language (used by Babel).
 Allows language-independent descriptions of interfaces.

Bocca = A user-friendly tool for rapidly building applications from
CCA components (RAD = Rapid Application Development) (http://
portal.acm.org/citation.cfm?id=1297390)

Ccaffeine = A CCA component framework for parallel computing
(http://www.cca-forum.org/ccafe/ccaffeine-man)

New CCA build system = Unnamed, user-friendly build system for
the complete CCA “tool chain”. It uses a Python-based tool called
Contractor.

Some Key CCA Tools

CCA: The Babel Tool

Language interoperability is a powerful feature of the CCA framework.
Components written in different languages can be rapidly linked in HPC
applications with hardly any performance cost. This allows us to “shop” for
open-source solutions (e.g. libraries), gives us access to both procedural and
object-oriented strategies (legacy and modern code), and allows us to add
graphics & GUIs at will.

+ f95 + f2003

CCA: The Babel Tool
Minimal performance cost: A widely used rule of thumb is that
 environments that impose a performance penalty in excess of 10% will be
 summarily rejected by HPC software developers.

Babel’s architecture is general enough to support new languages, such as
 Matlab, IDL and C# once bindings are written for them.

More than a least-common-denominator solution; it provides object
-oriented capabilities in languages like C, F77, F9X where they aren’t
 natively available.

Has intrinsic support for complex numbers and flexible multi-dimensional
 arrays (& provides for languages that don’t have these). Babel arrays can
 be in row-major, column-major or arbitrary ordering. This allows data in
 large arrays to be transferred between languages without making copies.

Babel opens scientific and engineering libraries to a wider audience.

Babel supports RPC (remote procedure calls or RMI) over a network.

is Middleware for HPC

CORBA COM .NET Babel
BlueGene, Cray,
Linux, AIX, & OS X

No No No Yes*

Fortran No Limited Limited Yes
Multi-Dim Arrays No No No Yes
Complex Numbers No No No Yes
Licensing Vendor

Specific
Closed
Source

Closed
Source

Open
Source

2006

“The world’s most rapid
communication among many
programming languages in a
single application.”

0

5

10

15

20

25

30

35

40

45

50

M
ill

io
n

ca
lls

/s
ec

C
O

R
B

A

B
ab

el

.N
ET

C
O

M

Performance (in process)

CCA: The Babel Tool

CCA: The Bocca Tool
Provides project management and comprehensive build environment for
 creating and managing applications composed of CCA components

The purpose of Bocca is to let the user create and maintain useful HPC
 components without the need to learn the intricacies of CCA (and Babel)
 and waste time and effort in low-level software development and
 maintenance tasks. Can be abandoned at any time without issues.

Bocca lays down the scaffolding for a complete componentized
 application without any atttendant scientific or mathematical
 implementation.

Built on top of Babel; is language-neutral and further automates tasks
 related to component “glue code”

Supports short time to first solution in an HPC environment

Easy-to-make, stand-alone executables coming in March 2008
 (automatically bundles all required libraries; RC + XML -> EXE)

CCA: The Ccaffeine-GUI Tool

A “wiring diagram” for a simple CCA project. The CCA framework
 called Ccaffeine provides a “visual programming” GUI for linking
 components to create working applications.

Requirements for Code Contributors
1.  Code must be in a Babel-supported language.
2.  Code must compile with a CSDMS-supported, open-source

compiler (e.g. gcc, gfortran, etc.)
3.  Refactor source code to have an IRF interface
4.  Provide descriptions of all input & output exchange items
5.  Include suitable testing procedures and data
6.  Include a user’s guide or at least basic documentation
7.  Specify what open-source license applies to your code
8.  Use standard or generic file formats whenever possible for I/O
9.  Apply a CSDMS automated wrapping tool

Other CCA-Related Projects
CASC = Center for Applied Scientific Computing
 (https://computation.llnl.gov/casc/)

TASCS = The Center for Technology for Advanced Scientific Computing Software
 (http://www.tascs-scidac.org) (focus is on CCA and associated tools; was CCTTSS)

PETSc = Portable, Extensible Toolkit for Scientific Computation
 (http://www.mcs.anl.gov/petsc) (focus is on linear & nonlinear PDE solvers; HPC/MPI)

ITAPS = The Interoperable Technologies for Advanced Petascale Simulations Center
 (http://www.itaps-scidac.org) (focus is on meshing & discretization; was TSTT)

PERI = Performance Engineering Research Institute
 (http://www.peri-scidac.org) (focus is on HPC quality of service & performance)

TOPS = Terascale Optimal PDE Solvers
 (http://www.scidac.gov/ASCR/ASCR_TOPS.html) (focus is on solvers)

SCIRun = CCA framework from Scientific Computing and Imaging Institute
 (http://software.sci.utah.edu/scirun.html) (this is a CCA framework)

Conclusions
The Common Component Architecture (CCA) is a mature and powerful
 environment for component-based software engineering (CBSE) and
 building high-performance computing (HPC) applications.

Some of its most powerful tools include Babel, Bocca, Ccafe-GUI and the
 Ccaffeine framework. Each of these tools fulfills a particular need in an
 elegant manner in order to greatly simplify the effort that is required to
 build an HPC application.

The CCA framework currently meets most of the requirements of CSDMS
 and native Windows support (vs. Cygwin) is likely in the near future.

CCA has been shown to be interoperable with ESMF and should also be
 interoperable with a Java version of OpenMI.

For more information, please see the “CSDMS Handbook” at:
http://csdms.colorado.edu/wiki/index.php/Tools_CSDMS_Handbook

Support for Java & Python makes it possible to add components
with GUIs, graphics or network access anywhere in the application
(e.g. via wxPython or PyQT). Python code can be compiled to
Java with Jython. (See www.jython.org for details)

NumPy is a fairly new Python package that provides fast, array-
based processing similar to Matlab or IDL. SciPy is a closely
related package for scientific computing. Matplotlib is a package
that allows Python users to make plots using Matlab syntax.

Python is used by Google and is the new ESRI scripting language. It
can be expected that this will result in new GIS-related packages/
plug-ins. Python is entirely open-source and a large number of
components are available (e.g. XML parser). Currently has over
one million users and is growing.

 GIS tools are often useful for earth-surface
 modeling and visualization.

Python Support in CCA / Babel

Advantages of Component vs. Subroutine Programming
Can be written in different languages and still communicate.
Can be replaced, added to or deleted from an app. at run-time via dynamic linking.
Can easily be moved to a remote location (different address space) without

recompiling other parts of the application (via RMI/RPC support).
Can have multiple different interfaces and can have state.
Can be customized with configuration parameters when application is built.
Provide a clear specification of inputs needed from other components in the system.
Have potential to encapsulate parallelism better.
Allows for multicasting calls that do not need return values (i.e. sending data to

multiple components simultaneously).

CBSE = Component-Based Software Engineering

Component technology is basically “plug and play” technology (think of “plugins”)
With components, clean separation of functionality is mandatory vs. optional.
Facilitates code re-use and rapid comparison of different methods, etc.
Facilitates efficient cooperation between groups, each doing what they do best.
Promotes economy of scale through development of community standards.

Component Technology

Possible Component Examples
Airy Waves Stokes

Waves
SWAN REF-DIF Boussinesq

(FunWave)

Bagnold Einstein Meyer-
Peter
Muller

Yalin Power law

Green-
Ampt

Smith-
Parlange

Beven Richards’
1D

Richards’
3D

Kinematic
Wave

Diffusive
Wave

Dynamic
Wave

MARSSIM
(Howard)

CHILD
(Tucker)

SIBERIA
(Willgoose)

Erode
(Peckham)

TOPOG
(CSIRO)

GEOTOP
(Rigon)

GSSHA
(Ogden)

MMS
(Leavesley)

TopoFlow
(Peckham)

MIKE SHE
(DHI)

All approaches to modeling a given “process” or phenomenon are
wrapped to present a standard “plug-and-play”, object-oriented interface
for their common capabilites (as method functions of some class)

Butler, H. (2005) A guide to the Python universe for ESRI
 users, ArcUser (April-June 2005), p. 34-37. (tools for
 ellipsoids, datums, file formats like shapefiles)

Python: Batteries Included, special issue of "Computing
in Science & Engineering devoted to Python, May-June
2007, vol. 9(3), 66 pp. Nice collection of articles, incl.
papers on ipython, matplotlib, GIS, solving PDEs.

Other Component Architecture Links
(Commercial, non-HPC, non-scientific computing)

CORBA (Object Management Group)
http://www.omg.org/gettingstarted
http://www.omg.org/gettingstarted/history_of_corba.htm

COM (Component Object Model, Microsoft, incl. COM+, DCOM & ActiveX)
http://www.microsoft.com/com/default.mspx

.NET (Microsoft Corp.)
http://www.microsoft.com/net

JavaBeans (Sun Microsystems)
http://java.sun.com/products/javabeans

Enterprise JavaBeans (Sun Microsystems)
http://java.sun.com/products/ejb

Layered = A vertical stack of grids that may represent:
 (1) different domains (e.g atm-ocean, atm-surf-subsurf, sat-unsat),
 (2) subdivision of a domain (e.g stratified flow, stratigraphy),
 (3) different processes (e.g. precip, snowmelt, infil, seepage, ET)
 A good example is a distributed hydrologic model.

Nested = Usually a high-resolution (and maybe 3D) model that is
embedded within (and may be driven by) a lower-resolution
model. (e.g. regional winds/waves driving coastal currents, or a
3D channel flow model within a landscape model)

Boundary-coupled = Model coupling across a natural (possibly
moving) boundary, such as a coastline. Usually fluxes must be
shared across the boundary.

Types of Model Coupling

