Process linkages in the WRF-Hydro/National Water Model: Different processes acting on different scales

Large integrated NWC, NCAR and academic development team

NCAR: D. Gochis, A. Dugger, J. McCreight, K. Sampson, W. Yu, L. Pan, D. Yates, L. Karsten, A. RafieeiNasab, Y. Zhang, L. Read NOAA/OWP: B. Cosgrove, F. Salas, E. Clark, T. Graziano, Y. Liu, C. Phan, Z. Cui

An Array of Water Issues

Actionable Water Intelligence Global to Street Scale

Goals of Version 1 of the National Water Model

- Operational forecast streamflow guidance for currently
 <u>underserved locations</u>
- Spatially continuous estimates and forecasts of hydrologic states for the nation through, <u>enhanced physical accounting</u> <u>of major water cycle components</u> (snowpack, soil moisture, channel flow, major reservoir inflows, flood inundation)
- Seamlessly interface real-time hydrologic products into an advanced <u>geospatial intelligence framework</u>
- Implement an Earth system modeling architecture that permits <u>rapid model evolution</u> of new data, science and technology

http://water.noaa.gov/about/nwm

The National Water Model

Development Team: NCAR/RAL, NOAA/OWP/NWC, USGS, CUAHSI, Universities **Sponsor:** NOAA Office of Water Prediction

The National Water Model Version 1: Technical Specs

Development Team: NCAR/RAL, NOAA/OWP/NWC, USGS, CUAHSI, Universities **Sponsor:** NOAA Office of Water Prediction

Data Throughput:

- Input data per day: 4.45 Terabytes
- Output data per day: 3 Terabytes
- # of river channels: 2.7 million
- # of reservoirs: 1,260
- Total # of computational elements: ~360,000,000

Model Details:

- Number of lines of code: 74,740
- Computer usage: > 100,000 cpu-hours per day

Available online at: http://water.noaa.gov/tools/nwm-image-viewer

NWM Operational Cycles:

	Cycling	Forecast	Met Forcing	Outputs
ANALYSIS	Hourly	-3 - 0 hrs	MRMS QPE + HRRR/RAP Blend	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
SHORT-RANGE	Hourly	1 – 18 hrs	Downscaled HRRR/RAP Blend	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
NEDIUMERANCE	4x Daily	to 10 days	Downscaled GFS	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
LONG-RANGE	Daily x 16 ensembles	to 30 days	Downscaled & NLDAS2 Bias- Corrected CFS	1-km spatial fluxes (water & energy); NHDPlus channel routing

WRF-Hydro Ecohydrologic Physics:

Runoff and Routing Physics:

Column Eco-Physics: NoahMP

Overland Flow

Lateral Subsurface Flow

Baseflow Parameterization

Channel Hydraulics

Basic Water Management

NWM WRF-Hydro System: Spatial Transformation #1

Moving from 1km column LSM to 250m terrain routing grid:

NWM WRF-Hydro System: Spatial Transformation #2

Structured grids to NHDPlus Catchments and attributed Channels:

NWM WRF-Hydro System: Spatial Transformation #3

Adding in reservoir objects...:

National Water Model Products

Hydrologic Forecasts: Streamflow, hours to days to weeks

NWM v1.0 Jan. 3-7 Atmospheric River in California

📵 HydroInspector Plot - Mozilla Firefox O i http://hydro.rap.ucar.edu/HydroInspector/CONUS/plot.html NetCDF CSV NetCFF CSV NetCDF CSV NetCFF CSV NetFF CS Hide Forecasts o B Q 🕂 🛛 🗆 💥 🛎 🚍 📠 Channel Output 37.7169°N,-119.6660 Forecast comparison - - 12/31 06z - - 01/01 06z 16k - - 01/02 06z - - 01/03 06z - - 01/04.06701/05 06z = - 01/05.067- - 01/06 06z 1/04 06z 01/07 06z 14k- 01/08 06z - - 01/09 06z USGS Flow: MERCED R A POHONO B 12k 1/03 06z 10.3k) 10 17655k 104 iel Flow (ft^3/sec) 9.81638k ı I 8k T[†] į I Chan 11 ıł. 01/02 067 21 Jan 2 2017 Jan 4 Jan 6 Jan 8 Jan 12 Jan 14 Jan 16 Jan 18 Jan 9 12h Time (UTC)

📲 🔿 I'm Cortana. Ask me anything. 🔲 🤤 🧱 🛍 🍓 🖉 🥸 😰 💵 🕹 💆

へ 📼 🖫 다× 📮 🎫 10:43 PM 1/9/2017

Merced River streamflow forecasts, with snow depth

NWM v1.0: April 19 Snowmelt forecast

• Animas River at Durango medium range forecast

Total Rainfall During Flood Period (April 26th-May1st 2017)

NWM: Hydro Model Outputs...Channel inflow forecasts

Grand Canyon River Velocity Valid: 13 Dec.

1

Beyond Streamflow...Additional NWM Hydrologic Guidance NWM Analysis Output at 23Z on April 29th, 2017

Flash Flood Watch

Flash Flood Warning

Hydrologic Forecasts: Snowpack

• Validated against SNODAS, NRCS SNOTEL and NASA ASO/MODSCAG products

Hydrologic Forecasts: Evapotranspiration

Hydrologic Forecasts: Shallow Water Table Depth

- Real-time analyses and forecasts of depth to saturation
 - Shallow vadose zone
 - No regional aquifer
 - Likely most useful for 'flash flood guidance'

May 22, 2017 NWM Snow Water Eq. Colorscale: 0 – 500 mm

May 22, 2017 NWM Depth to saturation

Rwrfhydro: R package for Hydrological Model Evaluation

https://github.com/mccreigh/rwrfhydro

- Set of R tools to support WRF-Hydro pre- and post-processing
- Open source, community tool
- Full documentation and training vignettes
- Major Features:
 - Domain visualization
 - Remote sensing & geospatial data prep
 - Output post-processing
 - Observation data acquisition and processing
 - Model output evaluation and visualization
 - Generally model agnostic

National Water Model: Hyper-resolution Nest Development

Presented by: NCAR NWM Development Team

COMET Collaborator: T. Hogue, Col. School of Mines

NWM Hyper-resolution Nests: Goals

- Urban hyper-resolution nests
 - Experiment with levels of imperviousness in landuse
 - Test sensitivity to
 NoahMP and soil
 params
 - SMCMAX, SMCREF, SMCWLT, RETDP, OVRGH
 - Experiment with
 burning in detention
 features, streets (10m)
 - Experiment with LIDAR terrain data
- Develop methods for describing boundary conditions (in space and time) for nested runs

Thanks!

NWM:

http://water.noaa.gov/about/nwm

WRF-Hydro:

https://www.ral.ucar.edu/projects/wrf_hydro

Rwrfhydro Evaluation Tools:

https://github.com/mccreigh/rwrfhydro

