Modeling Elevation Equilibrium and Human Adaptation in Southwest Bangladesh

Christopher M. Tasich¹, Steven L. Goodbred¹, Jonathan Gilligan¹, Richard P. Hale², and Carol Wilson³ 1. Department of Earth & Environmental Science, Vanderbilt University, Nashville, TN 2. Department of Ocean, Earth & Atmospheric Sciences, Old Dominion University, Norfolk, VA 3. Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA Corresponding Author: Chris Tasich (chris.tasich@vanderbilt.edu)

INTRODUCTION

The low-lying tidal reaches of the Ganges-Brahmaputra delta relies on a system of polders (embanked landscapes) to prevent against tidal inundation and storm surge. These polders have increased the total habitable and arable land allowing the region to sustain a population of ~20 million people. An unintended consequence of poldering has been the reduction of water and sediment exchange between the polders and the tidal network, which has resulted in significant elevation offsets of 1-1.5 m relative to that of the natural landscape. Tidal River Management (TRM) and other engineering practices have been proposed in order to alleviate the offset. Previous work suggests if implemented properly with sufficient suspended sediment concentrations (SSC), TRM can be effective on timescales of 5-20 years. However, communities must also agree on how and when to implement TRM. Here, we expand previous numerical simulations of sediment accumulation through fieldbased constraints of grain size, compaction, and sea level rise. We then model human decisionmaking for implementation of TRM practices.

Our sediment model employs a basic mass balance of sediment accumulation as a function of tidal height, SSC, settling velocity, and dry bulk density. Tidal height is determined from pressure sensors and superimposed sea level rise rate, as defined by the representative concentration pathways of the IPCC. SSC varies within a tidal cycle (0-3 g/L) and seasonally (0.15-0.77 g/L). Multiple grain sizes (14-27 µm) are used as proxies for settling velocity by Stokes' Law. Dry bulk density (900-1500 kg/m3) is determined from sediment samples at depths of 50-100 cm. The human dimension is introduced through an agent-based model for community decision-making regarding TRM.

POLDERED LANDSCAPES

Fig 7, 8 | Flooding from Cyclone Aila The embankment surrounding 32 failed in multiple locations Polder resulting in tidal inundation for ~ 18 h/day.

Poldering has had the unintended

THE GANGES-BRAHMAPUTRA DELTA

- consequence of starving the interior land of fresh sediment.
- The interiors have compacted and are now below high tide. (Fig. 6)
- Storm surge can overtop the embankments and lead to sustained tidal inundation. (Fig. 7,8)
- How can we remediate this offset?

FIELD OBSERVATIONS

Fig 1 | Google Earth image of the Ganges-Delta. The poldered region is shown in red. The combined Ganges-Brahmaputra system conveys ~1.1 billion tons of sediment per year. The poldered region is disconnected from the fluvial network. However, nearly 200 million tons of sediment per year are reworked in the tidal network.

significantly lower in the dry season as D50 = 14µm compared to the monsoon season.

SEA LEVEL RISE OVER THE NEXT CENTURY

WHAT ABOUT THE SEDIMENT?

SEDIMENT AGGRADATION MODEL

Fig 14 | Conceptual model of Polder 32 and the adjacent Sundarbans. The Sundarbans are assumed to be at equilibrium with the tides. Sediment accumulation is defined by Eq. 1 where $\frac{ds}{dt}$ dz = 322.7614 cm is sedimentation rate, $\frac{dO}{dt}$ is deposition of organic matter, and $\frac{dP}{dt}$ is compaction rate. Sedimentation rates are much greater than organic deposition and compaction rates. Therefore, we can simplify to Eq. 2 and solve the integral using a finite-difference approximation (Eq. 3).

distance from main stem (km)

Fig 15 | Model results from historic tide gauge data (1977-2011). The model time step is equal to the tide gauge resolution (1 h). Model results show an asymptotic relationship with MHW.

 $ws = 0.1 \\ \rho = 800 \\ SSC = 0.7 \\ z_0 = 0.5$

All Landowners

Fig 16 Model projections using historic data and superimposing 5 mm of sea level rise per year. Using realistic parameters, Polder elevations eventually equilibrate to that of the natural level.

The bath tub model (Fig. 2) describing sea level rise is insufficient. A better understanding of the relationship of sea level and sediment accumulation is needed. This knowledge may be helpful in building landscapes that are more resilient to sea level rise (e.g. via Tidal River Management).

REFERENCES

- 1. Allison, M. A., Kuehl, S. A., Martin, T. C. & Hassan, A. Importance of flood-plain sedimentation for river sediment budgets and terrigenous input to the oceans: Insights from the Brahmaputra-Jamuna River. *Geology* **26,** 175–178 (1998).
- 2. Auerbach, L. W. et al. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nat. Clim. Chang. 5, 153–157 (2015).
- Temmerman, S., Govers, G., Wartel, S. & Meire, P. Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar. Geol. 212, 1–19 (2004).
- 4. Krone, R. B. A Method for Simulating Marsh Elevations. in *Coastal Sediments* 316–323 (1987). 5. Temmerman, S., Govers, G., Meire, P. & Wartel, S. Modelling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentrations, Scheldt estuary, Belgium. Mar. Geol. 193, 151–169 (2003).

ACKNOWLEDGEMENTS

- This work was supported by the United States Office of Naval Research and the National Science Foundation.
- Faculty and students of Khulna University for their research assistance.
- Faculty and students of Dhaka University for their research assistance.

TIDAL RIVER MANAGEMENT MODEL

of SSC. SSC scales as a function of distance to the sediment source (i.e.

a breach in the embankment) (Eq. 4) (Allison et al., 1998).

Fig 18 | Hypothetical polder subdivided into landowner plots with active tidal river management. The polder at t = 0 is prior to TRM. The landscape relief is "saucer-like" with the highest elevations (~ 0.5 m) nearest the embankment and the lowest elevations (~ 0.0 m) in the middle. A breach is then placed in the middle of the leftmost embankment and elevation changes based on the sediment aggradation model for each pixel. The **blacklines** represent landowner plots.

Calculate Expected Utility for next 5 years (both with > 50 % vote for TRM and without TRM) (Y) (N)TRM Utility > Base Utility TRM Calculate Elevation after for TRM

Fig 19 | Conceptualized agent-based model of tidal river management with voting. Each landowner in Fig. 18 aggregates all of their pixels and calculates expected utility with and without TRM. The agents then vote for or against TRM based on this expected utility. Future work will include different mechanisms of agent interaction (e.g. bargaining amongst landowners).