Network Environ Analysis

History and Background Research Questions: Analyses in Context Links to EcoNet and enaR

Stuart J Whipple

Odum School of Ecology University of Georgia USA

What is Network Environ Analysis (NEA) ?

Network Environ Analysis (NEA) is a environmental systems theory developed by Bernard C Patten and colleagues, largely at the University of Georgia, USA, which seeks to provide an answer to the question:

What is the essential nature of the organism-environment relationship? *What is environment?*

The methodology of NEA (Fath and Patten, 1999) is a set of numerical analyses based on Input-Output analysis, originally developed for economics by Leontief (1966), used to gain insight into the structure and function of weighted steady-state network models.

NEA is grounded in state space system theory and a differential equation representation of an open steady-state network with a conservative currency (matter or energy)

Leontief, W. 1966. Input-Output Economics. Oxford University Press. USA. Fath, BD and Patten, BC. 1999. Ecosystems 2:167-179

The measurable intrasystem environments of all system components

Environment

slide credit: BC Patten

Patten, BC. 1978. Ohio J. Science 78:206-222.

Steady-state model set up for NEA: terminology and matrices

Matrices oriented from columns to rowns

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

unweighted Adjacency matrix (A)

 $T_i^{in} = \sum_{j=1,n} f_{ij} + z_i$ $T_i^{out} = \sum_{j=1,n} f_{jj} + y_j$ **Total System Throughflow** $dx/dt = F \cdot 1 + z = 0$

 $T_i^{in} = T_i^{out}$

$$TST = \sum_{i=1}^{n} T_i$$

NEA methods: Big picture theoretical background

$$F = \begin{pmatrix} 0 & 0 & f_{13} \\ f_{21} & 0 & 0 \\ f_{31} & f_{32} & 0 \end{pmatrix}$$

compartment-wise throughflow environ measures system-wide throughflow environ measures

compartment-wise storage environ measures

system-wide storage environ measures

Unweighted adjacency matrix: Extended path structure – A-matrix power series

a_{ij}^(m) represents the number of pathways from compartment j to compartment i of length m that exist for the model represented by the structure of the adjacency matrix A.

Adjacency matrix represents the **direct paths** within the system between compartments, while the A^m matrix powers represent **indirect paths** between the compartments of length m referred to as the **extended path structure**

Weighted flow matrix- Extended path structure: throughflow-specific and storage-specific matrix power series

$$N = (I - G)^{-1} T = Nz$$
$$T_{ij} = n_{ij}z_j$$

This extended path structure is the microscopic interpretation behind the concept that environ analysis traces the input (z_i) from first compartment contact through the extended path structure of the system until it is exhausted at output (y_i)

$$(I - G)^{-1} = (I + G + G^{(2)} + G^{(3)} + G^{(M)} + ...)$$

 $T_{ij} = (1 + g_{ij} + g_{ij}^{(2)} + g_{ij}^{(3)} \dots) z_j$ indirect

direct

An analogous power series can be constructed for the storage-specific matrix

Extended path structure is also the mechanism behind dominance of indirect effects NEA results for most cyclic networks quantified by the indirect effects index

How does one conduct NEA 3. utility analysis methods

Intensive Utility measure

 $U = (I - D)^{-1}$

Intensive Utility measure is unitless

D represents the net flow between x_j and x_i

$$d_{ij} = \frac{f_{ij}}{T_i} - \frac{f_{ji}}{T_i}$$

$$u_{ij} = (1 + d_{ij} + d_{ij}^{(2)} + d_{ij}^{(3)} \dots)$$

direct indirect

What are the main types of NEA analyses ?

Unweighted adjacency matrix: A

Structural analysis: digraph

matrix power series: A^m

Determination of pathway numbers for paths of of lengths *m* using adjacency matrix power series

flux decomposition of matrix: A

Environ analysis: transactions

Throughflow (F): N matrix

Compartment-wise: environ intercompartmental flows, boundary flows

number of compartment visits

System-wide: 2 examples Finn cycling index Indirect Effects Index

Storage (F,x): S matrix **Compartment-wise:** environ <u>storages</u> & flows environ <u>residence time</u> **System-wide: 2 examples** Storage cycling index Indirect Effects Index

Weighted flow matrix: F

Utility analysis: relations

Direct utilities (net F, T-normalized): D matrix

Ultimate Utilities

U matrix

Compartment-wise:

weighted utility values (U) qualitative (0, +, -) interaction types (sgn(U))

System-wide:

Whole system utility measures:

mutualism (sum of number of positives / sum of number of negatives in U matrix)

synergism (sum of weighted entries in U matrix)

What sorts of ecological questions can be answered with NEA 'Analytical tracer' and storage or residence time : NEA

- 1. 'Analytical tracer' for different inputs (system entry) or outputs (system exit)
- 2. Storage or residence time for input to or output from the system
- 3. Cycle analysis Finn cycling index
- 4. Total Environ Throughflow (TET) : $TET_k = \sum_{j(\neq i)=1}^n e_{ij|k} + y_{j|k}$

Environ flow from compartment 2 to 3 resulting from input to compartment 1

Throughflow Output Environ 1 (N)

 $\widetilde{\mathcal{T}}_{1|3}$ $\widetilde{\mathcal{T}}_{1|3}$ $\widetilde{\mathcal{T}}_{1|3}$ $\widetilde{\mathcal{T}}_{1|3}$ $\widetilde{\mathcal{T}}_{1|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$ $\widetilde{\mathcal{T}}_{2|3}$

Environ input to compartment 1 resulting from output from compartment 2

Throughflow Input Environ 2 (N') Environ residence time of compartment 1 resulting from input to compartment 3

Storage Output Environ 3 (S)

Example analysis - system and conceptual model

Okefenokee Swamp, Georgia, USA

Water budget model of Okefenokee watershed

Conceptual Model: Rykiel, EJ. 1977. PhD. Dissertation. University of Georgia, USA

Source: Patten, BC and Matis, JH. 1982. *Ecological Modelling* 16:1-50.

Fig. 1. The Okefenokee swamp-upland watershed. Most of the area of the uplands is in the northwest quadrant. The three output streams and the Suwannee River Sill are indicated.

Water budget model of Okefenokee swamp watershed, Georgia, USA

Source: Patten, BC and Matis, JH. 1982. *Ecological Modelling* 16:1-50.

Example 1 - Flow tracing and TET : storage analysis results

Okefenokee water budget model : Fate of water input

Source: Patten, BC and Matis, JH. 1982. Ecological Modelling 16:1-50.

Example 2 - Network properties : Finn cycling index

Principal diagonal entries (Nii), provide a qutificitative measure comparament visite forms unitrie product, intervente a set of the product of the product

N model is a steady-state snapshot of a simulation by Tom James and colleagues of the South Florida Water Management District, USA

Finn, JT. 1978. Cycling index: a general definition for cycling in compartment models. In: *Environmental Chemistry and Cycling Processes*. US-DOE Symp. vol. 45. National Technical Information Center. Springfield, VA., pp. 148-164.

What sorts of ecological questions can be answered with NEA What can utility analysis tell us about ecosystem models?

Energy–Matter Flows Terminology

slide credit: BC Patten & SJ Whipple

Example 3 - Intensive Utility analysis - Concepts

Intraguild predation: Flow weights determine interaction types for small food web model

Patten & Whipple (2007) called this parametric determination Community Modules: Acyclic

Parametrically Determined

Interaction type determined by internal flow values

2.1 Omnivory, Intraguild Predation, etc.

Rules

Divergent competition (-,-) at a fixed trophic level within a feeding guild ...

... becomes, on introduction of cross-level (intraguild) feeding, structurally indeterminate interaction types (?, ?)

Images:http://www.google.com

Source: Patten, BC and Whipple, SJ. 2007. International Journal of Ecodynamics 2(2):88-96.

Example 3 - Intensive Utility analysis: Results

Intraguild predation: parametric determination of interaction types

The change in the weight of three intercompartmental flows results in two major utility effects:

1. Changed the sign of the interaction type in the Utility (U) matrix to indicate a change from nihilism (predation) to mutualism

2. System wide mutualism for case 1: 6/3 = 2 ; while System wide mutualism for case 2: 7/2 = 3.5

slide credit: BC Patten and SJ Whipple

Flux decomposition analysis

Flux decomposition analysis parses an arbitrary network into two sets of sub-networks.

Flux decomposition allows the steady-state model to be represented by a linear combination of its fluxes. Example figure based on Zhuang (2020)

1. simple paths with no repeating nodes and exactly one input from and one output (f_1 and f_2)

2. simple cycles with only one repeating node and no inputs or outputs (f_3)

Zhuang, Yuling. 2020. Sensitivity of system-wide ecosystem measures to model data. Masters Thesis. University of Georgia. USA.

Connections to Econet

Econet conducts a simulation of a user-specified ODE model to create a steady state flow-storage network

Econet conducts NEA analysis of the steady-state network and provides the N and S matrices from environ analysis and the D and U matrices from utility analysis

Econet provides a large set of system-wide measures derived from the environ matrices and utility matrices

Econet provides the flux decomposition graphs for the given system model

Kazanci, C., 2007. Econet: a new software for ecological modeling, simulation and network analysis. *Ecological Modelling*. 208 (1), 3–8.

Connections to enaR

e contain it war and the point of the point

enaStorage: Analysis returns the input- and output-oriented direct and integral storage matrices (S)

enaUtility: Analysis investigates the direct relationships (D) among the network nodes as well as the integral relationships (U)

enaEnviron: Returns the n unit and n realized input and output environs of the model)

Source: Borrett, SR and Lau, MK. 2014. enaR: an R package for ecosystem network analysis. *Methods in Ecology and Evolution* 5:1206-1213

Now, on to Caner to talk about Econet