
1

Using the channel profile analysis tool,
built by the University of Edinburgh
Land Surface Dynamics group

Simon M. Mudd, Mikaël Attal, David T. Milodowski, Stuart W.D. Grieve and Declan A. Valters
School of GeoSciences, University of Edinburgh
Contact: simon.m.mudd _at_ ed.ac.uk

Table of Contents
1. Quick guide .. 2

2. Overview .. 2

3. Warning .. 2

4. Steps involved to perform channel analysis ... 3

a. Preparing the channel data ... 3

b. Performing a statistical analysis to constrain the most likely m/n ratio.. 4

i. Compiling the code ... 4

ii. Running the code ... 5

iii. The .movern file ... 7

c. Optional: performing a sensitivity analysis on the best fit m/n ratio .. 7

d. Extracting the chi profiles .. 8

i. The .tree file ... 9

e. Visualising the data ... 9

i. AICc_plotting.py ... 10

ii. AICc_plotting_multiple.py .. 10

iii. chi_visualisation.py .. 10

iv. bf_movern_sensitivity.py ... 12

v. raster_plotter_2d_only.py ... 12

Appendix: Installing a compiler .. 14

Installing a compiler on a windows machine .. 14

2

1. Quick guide
If you already know more or less what you are doing, but need a quick reminder, here are the steps

involved:

a. Prepare your .chan file either using LSDTopoToolbox, (which is projected to be released

in 2014 but before then you can request a copy of the binaries from Simon Mudd), or

from your own script.

b. If the programs aren’t complied, make them with:

chi_m_over_n_analysis.make and chi_get_profiles.make

c. Run the program chi_m_over_n_analysis.exe to determine the best fit m/n

ratio. Note: this step will take some time (a few minutes to several days depending on

your paramter values).

d. If the m/n analysis yeilds ambiguous results, use the script

movern_sensitivty_driver_generation.py to generate driver files for a

sensitivity analysis and repeat the m/n analysis. In fact, we recommend doing this for all

natural channels since in many places a stream power incision model doesn’t do a great

job of explaining channel geometry and if you only use one set of parameter values you

might just get a set that gives a spuriously ‘clean’ result.

e. Run the program chi_get_profiles.exe to get the transformed profiles in chi-

elevation space.

f. Visualise the data with Python scripts.

2. Overview
This document gives instructions on how to use the segment fitting tool for channel profile analysis

developed by the Land Surface Dynamics group at the University of Edinburgh. The tool is used to

examine the geometry of channels using the integral method of channel profile analysis. For

background to the method, and a description of the algorithms, we refer the reader to Mudd et al.

(2013, draft manuscript). For background into the strengths of the integral method of channel profile

analysis, the user should read Perron and Royden (2013, ESPL):

http://mit.edu/perron/www/files/PerronRoyden13.pdf_

This document guides the user through the installation process, and explains how to use the model.

You will need a c++ compiler for this tutorial. If you have no idea what a c++ compiler is, see the

appendix. Visualisation of the model results is performed using Python scripts. We recommend

installing Python(x,y) (https://code.google.com/p/pythonxy/) and running the scripts within Spyder

(which is installed with python(x,y). Both the recommended compiler and Python(x,y) are open

source: you do not need to buy any 3rd party software (e.g., Matlab, ArcMap) to run our topographic

analysis!

3. Warning
This code is for research purposes and is under continuous development, so we cannot guarantee a

bug-free experience! If you find a bug, please send an email to simon.m.mudd _at_ ed.ac.uk

http://mit.edu/perron/www/files/PerronRoyden13.pdf
https://code.google.com/p/pythonxy/

3

4. Steps involved to perform channel analysis
Performing the channel analysis involves 4 steps, including visualization of the data

a. Preparing the data.

b. Performing a statistical analysis to constrain the most likely m/n ratio (if you don’t know

what that is, read Mudd et al (2013, in prep)).

c. Extract the chi profiles

d. Visualize the data.

a. Preparing the channel data
The segment fitting algorithm works on a ‘channel’ file (we use the extension .chan to denote a

channel file).

 If you have the full LSDTopoToolbox there are functions for this but at the moment we are not

releasing the full toolbox since it has some algorithms that we haven’t published yet. You can email

simon.m.mudd _at_ ed.ac.uk for the binaries until the code is released (probably in 2014). If you do

have the full package read the chi_analysis_getting_channel.docx document and skip to step 3b.

Users who don’t have the full LSDTopoToolbox package will need to write a script to convert profile

data of channels and channel networks into channel files. The channel file starts with six lines of

header information that is used to reference the channel to a DEM. If the channel is not generated

from a DEM these six rows can contain placeholder values. The six rows are

Nrows <- number of rows

Ncols <- number of columns

Xllcorner <- location in the x coordinate of the lower left corner

Yllcorner <- location in the y coordinate of the lower left corner

Node_spacing <- the spacing of nodes in the DEM

NoDataVal <- the value used to indicate no data

This header information is not used in the segment analysis; it is only preserved for channel data to

have some spatial reference so that scripts can be written to merge data from the channel files with

DEM data.

The rest of the channel file consists of rows with 9 columns.

 The first column is the channel number (we use c++ style zero indexing so the main stem has

channel number 0).

 The second column is the channel number of the receiver channel (the channel into which

this channel flows). The main stem channel flows into itself, and currently the code can only

handle simple geometries where tributaries flow into the main stem channel only, so this

column is always 0.

 The third column is the node number on the receiver channel (which, recall, must be the

main stem) into which the tributary flows. The main stem is defined to flow into itself.

Suppose the main stem has 75 nodes. The third column would then be 74 for the main stem

(because of zero indexing: the first node in the main stem channel is node 0). Nodes are

organized from upstream down, so the most upstream node in the main stem channel is

4

node zero. Suppose tributary 1 entered the main stem on the 65th node of the main stem.

The third column for tributary 1 would be 64 (again, due to 0 indexing).

 The 4th column is a ‘node reference’ which is specific to the University of Edinburgh’s DEM

analysis code, which is still under development and not being released with the channel

profile tool. Users can input a placeholder here (e.g. -99). This number is not used in the

analysis.

 The 5th column is the row in a DEM the node occupies: it can be used to refer the channel

back to a DEM, but is not used in the analysis.

 The 6th column is the column in a DEM the node occupies: it can be used to refer the channel

back to a DEM, but is not used in the analysis

 The 7th column is the flow distance from the outlet of the node. It should be in metres.

 The 8th column is the elevation of the node. It should be in metres.

 The 9th column is the drainage area of the node. It should be in metres squared.

Many of these columns are not used in the analysis but are there to allow the user to refer the

channel file back to a DEM. The columns used in the segment fitting analysis are the 1st, 2nd, 3rd, 7th,

8th and 9th columns, the other columns can be occupied by placeholder values. Columns are

separated by spaces so rows will have the format

Chan_number receiver_chan receiver_node node_index row col flow_dist elev drainage_area

Here are the first few lines of an example file:

b. Performing a statistical analysis to constrain the most likely m/n

ratio
Once the profile data has been converted into a .chan file, the data can then be processed to

determine the most likely m/n ratio for individual channels and also via the collinearity test (see

Mudd et al (2013, draft manuscript)).

i. Compiling the code

The code for running the statistical analysis to find the most likely m/n ratio can be compiled by

calling the makefile chi_m_over_n_analysis.make. If you are using a windows machine and

have installed Cygwin (see appendix) you need to ensure that you have installed the make utility. To

make the file navigate the folder that contains it and run

2907

3473

548517

4.40339e+06

10

-9999

0 0 1793 1619544 735 720 59819.3 408.117 30000

0 0 1793 1622700 736 719 59805.1 406.679 30300

0 0 1793 1625857 737 718 59791 404.598 31000

0 0 1793 1629014 738 717 59776.8 402.726 43900

0 0 1793 1632173 739 717 59766.8 400.542 45900

0 0 1793 1635333 740 717 59756.8 399.258 47100

5

make -f chi_m_over_n_analysis.make

This will create the program chi_m_over_n_analysis.exe.

ii. Running the code

This program is run with 2 arguments to the command line. The first argument is the path name of

the path where the .chan file is located, along with a driver file that contains the parameters of the

analysis. All data will be printed to files in this path. The second argument is the name of the driver

file. We typically use a .driver extension for the driver file but this is not a requirement. For example,

we call the program with

./chi_m_over_n_analysis.exe

/home/smudd/papers/Segment_fitting/Data_and_code_repository/Data/PA/ chi_parameters.driver

The ‘./’ leading ‘chi_m_over_n_analysis.make’ is only necessary on a Linux system. The

driver file contains a number of parameters for running the analysis. This file is used on several

different programs so not all parameters are used by chi_m_over_n_analysis.exe. The

parameters must be listed in the right order and there cannot be any extra information between

parameters (e.g., a string describing them). The parameters are:

 1st row: the prefix of the channel file (that is, the bit without the .chan). So, if the channel file

is some_channels.chan the first row of the driver file would be some_channels

 2nd row: Not used by chi_m_over_n_analysis.exe.

 3rd row: Not used by chi_m_over_n_analysis.exe. For reference it is the junction

index of the junction that is the downstream starting point of the analysis.

 4th row: Not used by chi_m_over_n_analysis.exe.

 5th row: Not used by chi_m_over_n_analysis.exe.

 6th row: A reference drainage area for integrating to chi space (A0)

 7th row: The minimum number of pixels in a segment. See Mudd et al (2013, draft

manuscript) for guidance. Values between 10-20 are recommended. The computational time

required is a highly nonlinear inverse function of this parameter. 20 might lead to a run

lasting a few minutes, whereas 5 might take many hours (or even days).

 8th row: The standard deviation of error (σ in the Mudd et al paper) on the DEM, and also

some error from geomorphic noise (i.e., a boulder in the channel). For SRTM this should be

something like 10-30 m. The larger this number, the fewer segments you will get (see Mudd

et al 2013 draft manuscript).

 9th row: The starting m/n value to test if it is the most likely.

 10th row: The change in m/n value that you want to loop over (suppose the starting m/n is

0.2 and the change in m/n is 0.05, then the next m/n value after 0.2 is 0.25).

 11th row: The number of m/n values you want to loop through.

 12th row: The ‘target nodes’, which is the maximum number of nodes you want to run

through the partitioning algorithm at a time. Recommended values are 80-140. The

computational time is nonlinearly related to this parameter, 80 might take several minutes

whereas 140 will take many hours, and 200 will take months.

 13th row: The number of iteration on the Monte Carlo routine that finds the statistics for

every node in the channel network rather than a subset of nodes.

 14th row: Not used chi_m_over_n_analysis.exe.

6

 15th row: The vertical drop over which slope-area analysis will be performed.

 16th row: The horizontal interval over which slope area analysis will be performed

 17th row: The maximum change in drainage area of an interval for slope-area analysis as a

fraction of the area at the midpoint of an interval.

 18th row: The ‘target skip’, which is the average number of nodes the routine skips when it is

trying to compute the best segments. If the DEM is 90m resolution, for example, the

resolution the algorithm will work at is ~300 meters. Here is an example file:

And here is the cheat sheet (also included in driver_cheat_sheet.txt):

UniUplift09b_mk4_t6

0.0001

300

0

0.02

1000

20

20

0.2

0.025

26

120

250

0.95

20

500

0.2

2

e_bathdem <- filename prefix

0.0001 <- minimum slope, don't change

300 <- N contributing pixels for a channel. Could reduce to, say 100 or

even 50.

1332 <- junction number, this will change

0.05 <- area fraction for channel pruning. 1= mainstem only, low numbers=

more tributaries

1000 <- A_0 for chi analysis: probably don't need to change

20 <- minimum segment length. Should be between 5-20.

10.5 <- sigma: some estimate of uncertainty in elevation data. Smaller =

more segments

0.15 <- starting m/n for best for m/n testing

0.025 <- increment of m/n for best for m/n testing

21 <- number of m/n values tested for m/n testing

90 <- target length of nodes to be analysed for segments. Should be

between 80-150

250 <- number of iterations for Monte Carlo analysis. 250 seems okay

0.95 <- Not used anymore!

20 <- Vertical interval for sampling for S-A analysis. Should be scaled

to DEM resolution

500 <- Horizontal interval for sampling for S-A analysis. Should be

scaled to DEM resolution.

0.2 <- An area thinning fraction for S-A analysis. 0.2 is probably about

right.

2 <- The mean number of data nodes you skip for each node of segment

7

Once this program has run, it will print out a file with the filename prefix and en extension of

.movern.

NOTE: This program is computationally expensive. Increasing the target length of nodes to be

analysed and reducing the minimum segment length increases the computational time required in

a highly nonlinear fashion. Increasing the skip value can reduce computational time required. You

can expect the computation to take several minutes (e.g. minimum segment length ~20, target

nodes ~100, skip set so main stem has 300-500 nodes analysed) to many hours (e.g. minimum

segment length of 5, target nodes of 120-140, skip set such that thousands of nodes are analysed).

iii. The .movern file

The .movern file is produced by the statistical analysis of the channel network in order to find the

most likely m/n ratio. The filename contains information about parameter values; these are parsed

by the visualisation algorithms. The format of the filename is the filename prefix, followed by

BFmovern, followed by the sigma values, the skip value, the minimum segment length value the

target nodes value and the junction number, all separated by the underscore symbol (‘_’). The file

then has the extension .movern.

The format of the file is:

 1st row: In the first column of the first row there is a placeholder value, -99, followed by the

m/n ratios tested each followed by a space.

 2nd row: In the first column is a placeholder value, -99, followed by the mean AICc (from

n_iterations iterations) for each tested m/n ratio for the collinearity test. These are

separated by spaces.

 3rd row: In the first column is a place holder value of -99, followed by the standard deviation

of the AICc for the collinearity test. When fits are extremely poor, the likelihood approaches

zero. Calculating the AICc involves taking the logarithm of the likelihood, to avoid this, the

code assigns a very small number to 0 likelihoods. This results in a high, but not infinite,

value of AICc. These poor fits will have a standard deviation of zero.

 Even rows thereafter: The first column is the channel number. The following columns are the

mean AICc values for that channel.

 Odd rows thereafter: The first column is the channel number. The following columns are the

standard deviations of the AICc values for that channel.

An example file looks like:

c. Optional: performing a sensitivity analysis on the best fit m/n ratio
For structurally or tectonically complex landscapes, it can be difficult to constrain the m/n ratio. In

such cases, it is wise to perform a sensitivity analysis of the best fit m/n ratio. To facilitate this, we

-99 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6

-99 4008 4008 4008 4008 4008 4008 4008 3814.91 2244.75 3970.91 4008 4008 4008

-99 0 0 0 0 0 0 0 342.679 320.434 165.212 0 0 0

0 2004 2004 2004 2004 2004 1983.16 896.708 262.442 150.257 388.449 912.111 1726.88 2001.94

0 0 0 0 0 0 117.541 87.9564 27.0629 22.415 71.0617 214.265 338.284 32.5587

1 2041.46 2040.94 2040.53 2034.99 1822.29 506.372 802.273 1397.62 2044.06 2045.3 2047.11 2047.9 2049.58

1 3.2877 3.28297 3.33219 62.2154 368.387 171.395 269.268 360.844 4.82244 5.21089 5.84698 6.65561 7.23849

8

provide a python script, movern_sensitivty_driver_generation.py, that generates a

number of driver files with the parameters minimum_segment_length, sigma, mean_skip and

target_nodes that vary systematically. To run this script you will need to change the data directory

and the filename of the original driver file within the script. You can then run the script in Spyder

(which is installed with the Python(x,y) distribution) or from the command line

Python movern_sensitivty_driver_generation.py

Note that if you run from the command line you will need to navigate to the folder that contains the

script.

The driver files will be numbered (e.g., my_driver.1.driver, my_driver.2.driver, etc.) and you can run

them with a command like:

./chi_m_over_n_analysis.exe

/home/smudd/papers/Segment_fitting/Data_and_code_repository/Data/Ape

nnines/ my_driver.1.driver

Or if you want to run them with no hangup and ‘nice’

nohup nice ./chi_m_over_n_analysis.exe

/home/smudd/papers/Segment_fitting/Data_and_code_repository/Data/Ape

nnines/ my_driver.1.driver &

And then just keep running them in succession until you use up all of your CPUs (luckily at Edinburgh
we have quite a few)!

d. Extracting the chi profiles
The next stage of the analysis is to extract the chi profiles. To compile the program to extract the chi

profiles, you need to usethe makefile chi_get_profiles.make. The program is compiled with

make –f chi_get_profiles.make

The makefile compiles a program called chi_get_profiles.exe. This is called, like

chi_m_over_n_analysis.exe , with two arguments: the path name and the driver name. The

driver file has exactly the same format as the driver file for chi_get_profiles.exe. A chi

profile will be produced for each m/n value outlined by these elements in the driver file:

 7th row: The starting (lowest) m/n value to test if it is the most likely.

 8th row: The change in m/n value that you want to loop over (suppose the starting m/n is 0.2

and the change in m/n is 0.05, then the next m/n value after 0.2 is 0.25).

 9th row : The number of m/n values you want to loop through.

Users may wish to modify these values in the driver file from the original values to explore only

those values which have ‘plausible’ values of the m/n ratio (see Mudd et al (2013 draft manuscript)

for guidance). For each m/n ratio tested, the code produces a file with the extension .tree and the

string within the filename “_fullProfileMC_forced_". This filename also contains the m/n value so for

example a filename might be called:

 pa_basin_fullProfileMC_forced_0.3_5_2_20_100_3124.tree.

9

The numbers in the filename are arranged in the following order: m/n ratio, sigma value, mean

skip, minimum segment length and target nodes. The final number before the extension (here,

3124) is copied from the 3rd row of the driver file: it is the ‘junction number’. Users can assign

different numbers to different basins to facilitate automation of data analysis.

i. The .tree file

The .tree file has as many rows as there are nodes in the channel network. There will be more nodes

in the .tree file than in the .chan file because the code extends all tributaries to the outlet. Each row

has 23 columns. The columns are:

 1st column: The channel number (like in .chan file)

 2nd column: The receiver channel (like in .chan file)

 3rd column: The node on receiver channel (like in .chan file)

 4th column: The node index (like in .chan file)

 5th column: The row of the node (like in .chan file)

 6th column: The column of the node (like in the .chan file)

 7th column: The flow distance of the node

 8th column: The chi coordinate of the node

 9th column: The elevation of the node

 10th column: The drainage area of the node

 11th column: The number of data points used to calculate node statistics. Because of the

skipping algorithm (see Mudd et al (2013 draft manuscript)) not all nodes are analysed each

iteration.

 12th column: The mean Mχ value for the node.

 13th column: The standard deviation of the Mχ value for the node.

 14th column: The standard error of the Mχ value for the node.

 15th column: The mean Bχ value for the node.

 16th column: The standard deviation of the Bχ value for the node.

 17th column: The standard error of the Bχ value for the node.

 18th column: The mean DW value for the node.

 19th column: The standard deviation of the DW value for the node.

 20th column: The standard error of the DW value for the node.

 21st column: The mean fitted elevation for the node.

 22nd column: The standard deviation of the fitted elevation for the node.

 23rd column: The standard error of the fitted elevation for the node.

If you are familiar with c++, here is the code for printing the .tree file:

e. Visualising the data
We have also provided python scripts for visualising the data (that is ‘visualizing’ for you yanks).

10

i. AICc_plotting.py

This script makes a plot of the AICc as a function of the m/n ratio for each channel as well as for the

collinearity test. The mean and standard deviation of the AICc is plotted. In addition the m/n ratio

with the minimum AICc value is highlighted, and there is a horizontal dashed line depicting the

minimum AICc value plus the standard deviation of the minimum AICc value. This dashed line can

help the user determine which m/n ratios are plausible (see Mudd et al (2013, draft manuscript)).

Here is an example:

To run the AICc_plotting.py script you must modify the path name and filename after line 35

of the script. The file it takes is an .movern file.

ii. AICc_plotting_multiple.py

This script looks through a directory (you need to change the DataDirectory variable in the script) for

any files with *BF_movern_*.movern in them and plots the AICc results. The code extracts the

parameter values from the filename so each plotted figure has the parameter values in the title.

Note that this script plots to file instead of to screen. You can change the kind of output file by

changing the parameter ‘OutputFigureFormat’. See MatPlotLib (http://matplotlib.org/)

documentation for options, but possibilities include ‘jpg’ and ‘pdf’.

iii. chi_visualisation.py

This script makes three figures. First, you must define the path name and the filename after line 39

of the script. This script takes a .tree file. The first figure is a plot of the channels in chi space. The

transformed data is in a semi-transparent solid line and the best fit segments are in dashed lines.

http://matplotlib.org/

11

Each tributary is plotted with a different colour. Here is an example:

NOTE: These examples are derived from numerical model landscapes and are ‘perfect’. Natural

channels will be considerably noisier.

The second figure generated by this script is a figure showing the gradient in χ-elevation space as a

function of χ. The gradient in χ-elevation is indicative of a combination of erosion rate and

erodability, so these plots allow perhaps a clearer idea of the different segments identified by the

segment fitting algorithms. The colour scheme from the first figure is carried forward, so that it is

easy to identify the characteristics of each tributary. Here is an example:

The third figure displays the longitudinal channel profiles (elevation as a function of flow distance),

but these channel profiles are coloured by the gradient in χ-elevation space. Here is an example:

12

iv. bf_movern_sensitivity.py

This script looks in the directory DataDirectory for all the files with *BF_movern_*.movern in the

filename and then compiles the best fit m/n ratio from these files. It then produces box and whisker

plots of the best fit m/n ratio. The red line is the median m/n ratio, the box shows the 25th and 75th

percentile m/n ratios, the whiskers show the data range, with outliers (as determined by the

Matplotlib function boxplot) as ‘+’ symbols. The boxes are notched; these give 85% confidence

intervals to the median value after bootstrapping 10,000 times. Here is an example plot:

v. raster_plotter_2d_only.py

This script contains two functions. One is for plotting the tributaries superimposed on a hillshade (or

any other raster) and another is for plotting the Mχ values superimposed on a raster (we usually do

this on the hillshade). For this to work, the .chan file must be referenced to a coordinate system.

That means that the row and column information in the .chan file corresponds to the xllcorner,

yllcorner and node spacing data in the first few lines of the .chan file. If you have the

LSDTopoToolbox this will happen automatically, but if you are writing a script to generate your own

.chan files you’ll need to ensure that your channel nodes have the correct row and column data. The

DEM used for the hillshade does not need to be the same as the DEM used for the .chan file (that is,

it can have different n_rows and n_columns etc, so you can, in principle, do a chi analysis on a

clipped version of a DEM but then plot the results on the full DEM extent. The two functions are:

 coloured_chans_like_graphs: This takes two strings: the filename of the raster and the

filename of the .tree file. You have to include the full path name for both of these files. The

13

colouring scheme used for the channels is the same as in the χ–elevation and χ–Mχ plots

made by chi_visualisation.py. Here is an example:

 m_values_over_hillshade: Again, this takes two strings: the filename of the raster and the

filename of the .tree file. You have to include the full path name for both of these files. The

colouring scheme on the Mχ values is the same as in the chi_visualisation.py plot where Mχ is

plotted on the channel profile. Here is an example:

To run one or the other of these function you need to scroll to the bottom of the script and

comment or uncomment one of the function lines.

14

Appendix: Installing a compiler
This section describes how to install the software on your Windows computer

Installing a compiler on a windows machine
There are several ways to install a compiler on a Windows machine but at Edinburgh when not using

Linux we use the Cygwin environment (http://www.cygwin.com/).

1. Go to the Cygwin website and download setup.exe:

2. Once you download setup double click to run it:

3. You will get a bunch of warnings, but just keep clicking next until you get to a screen to

choose a ‘mirror’ site, and just pick a site (it doesn’t really matter which one):

http://www.cygwin.com/

15

4. You will get a window that asks you what packages you want to install. Then expand the

‘devel’ list of packages:

5. You toggle between installing and not installing by clicking these buttons: . The things

that are essential to install are the g++ compiler and the ‘make’ utility.

The GNU debugger might also come in handy later.

Note that as you learn about these tools you can always run setup again and install more

stuff.

6. Once you have got g++ and make, just click next a few times and things will install.

7. Once installation is complete, you need to edit the PATH environment variable on your

machine so it isees all the cygwin programs. If you are using windows 7, you can just type

‘environment variables’ into the search for program bar, and then click on the link to edit

16

the variables. You will get this screen:

8. Click on the environment variables button and then click on path and then edit

9. Append the path with a semicolon and then the path to the cygwin bin folder:

