
1

Using the channel profile analysis tool,
built by the University of Edinburgh
Land Surface Dynamics group

Part A: Extracting the channel network from a DEM

Simon M. Mudd, Mikaël Attal, David T. Milodowski, Stuart W.D. Grieve and Declan A. Valters
School of GeoSciences, University of Edinburgh
Contact: simon.m.mudd _at_ ed.ac.uk

Table of Contents
1. Quick guide ... 1

2. Overview ... 2

3. Warning ... 2

4. Getting the raw DEM into the toolkit ... 2

a. Data Sources ... 2

b. Converting your data into something LSDTopoTools can understand (.flt format) 3

5. Compiling the two driver functions .. 3

6. Running the channel network extraction ... 4

a. Writing junctions ... 4

b. Extracting the .chan file .. 8

c. Format of the .chan file ... 9

Appendix: Installing a compiler ... 10

Installing a compiler on a windows machine .. 10

1. Quick guide
If you already know more or less what you are doing, but need a quick reminder, here are the steps

involved:

2

a. Download your DEM.

b. Project it into a projected coordinate system (we usually use UTM).

c. Export the DEM in .flt format.

d. If the programs aren’t complied, make them with:

chi_step1_write_junctions.make and

chi_step2_write_junctions.make

e. Run the program chi1_write_junctions.exe on your DEM.

f. Import the junction raster (*.JI.flt) into a GIS and pick a junction (this is easiest if you also

import the stream order (*_SO.flt) and hillshade (*_HS.flt).

g. Run chi2_write_channel_file.exe to get the .chan file. Once you do this you

are ready to move on to section two: running the chi analysis!

2. Overview
This document gives instructions on how to use the segment fitting tool for channel profile analysis

developed by the Land Surface Dynamics group at the University of Edinburgh. The tool is used to

examine the geometry of channels using the integral method of channel profile analysis. For

background to the method, and a description of the algorithms, we refer the reader to Mudd et al.

(2013, draft manuscript). For background into the strengths of the integral method of channel profile

analysis, the user should read Perron and Royden (2013, ESPL):

http://mit.edu/perron/www/files/PerronRoyden13.pdf_

This document guides the user through the installation process, and explains how to use the model.

You will need a c++ compiler for this tutorial. If you have no idea what a c++ compiler is, see the

appendix. Visualisation of the model results is performed using Python scripts. We recommend

installing Python(x,y) (https://code.google.com/p/pythonxy/) and running the scripts within Spyder

(which is installed with Python(x,y). Both the recommended compiler and Python(x,y) are open

source: you do not need to buy any 3rd party software (e.g., Matlab) to run our topographic analysis!

3. Warning
This code is for research purposes and is under continuous development, so we cannot guarantee a

bug-free experience!

4. Getting the raw DEM into the toolkit

a. Data Sources
i. The topographic analysis package works from a DEM. You can get these from all

sorts of places. You can get data from a number of sources. For LiDAR, two good

sources are opentopography (http://www.opentopography.org/) and the U.S.

Interagency Elevation Inventory (http://www.csc.noaa.gov/inventory/#). Other

countries are not so progressive about releasing data but you could rummage

around the links here: http://en.wikipedia.org/wiki/National_lidar_dataset. For

10m data of the United States you can go to the national map viewer

http://mit.edu/perron/www/files/PerronRoyden13.pdf
https://code.google.com/p/pythonxy/
http://www.opentopography.org/
http://www.csc.noaa.gov/inventory/
http://en.wikipedia.org/wiki/National_lidar_dataset

3

(http://viewer.nationalmap.gov/viewer/). I get ASTER 30m data from the NASA’s

reverb site (http://reverb.echo.nasa.gov), One site that has filled and corrected 90-

m DEMs is here: http://www.viewfinderpanoramas.org/dem3.html

b. Converting your data into something LSDTopoTools can understand

(.flt format)
i. Load your DEM into ArcMap. DEMs come in all sorts of formats, and it is very likely

you will have to do some modification before you can start working on the DEM

with the Edinburgh topographic analysis toolkit. Firstly, you will have to make sure

the DEM is in projected coordinates. That is, distances should be measured in

something like metres rather than degrees. You can do this in ArcMap by going into

the toolbox and using Data Management Tools -> Projections and Transformations -

> Raster -> Project Raster

ii. The projection should be into a ‘projected’ (not geographic) coordinate system. I

usually use UTM, using the WGS 1984 standard. You can look up the UTM zone of

your site here: http://www.dmap.co.uk/utmworld.htm

iii. Once you have a projected DEM, the next step is to convert it into float format. The

Edinburgh software reads ONLY float and ascii format DEMs, and ascii DEMs are

huge and are not recommended. We have retained this format only for the

purposes of bug-checking. To convert a DEM into float format in ArcMap use the

Conversion Tools -> From Raster -> Raster to Float tool:

iv. The float DEM is comprised of 2 files: one with the extension flt and one with the

extension hdr. You will need both of these files.

v. Note that LSDTopoTools can also work with ascii DEM but this is not preferred since

they take up so much space compared to .flt files.

5. Compiling the two driver functions
The tools for topographic analysis are distributed as c++ source code. Before you run these tools you

will have to compile them. Compiling means that you translate from source code, which looks a bit

like English, to machine code, which is all 1s and 0s. To do this you use a compiler. If you have a Linux

http://viewer.nationalmap.gov/viewer/
http://reverb.echo.nasa.gov/
http://www.viewfinderpanoramas.org/dem3.html
http://www.dmap.co.uk/utmworld.htm

4

system al you really need to do is navigate to the folder containing the source files in a terminal

window. If you have a Windows computer follow the instructions in the appendix to get a compiler

installed. Then you compile using a command prompt (you can find this in windows 7 by typing

‘command prompt’ into the search for programs and files field in the start menu).

a. This should be fairly easy if you have your compiler installed. If you are working in the

Cygwin environment (see appendix) you will also need the make utility. First you compile the

junction selection tool. Do this by typing:

 make -f chi_step1_write_junctions.make

 at the command line and then hitting enter.

b. Now for the next tool, which creates something called a .chan file (you don’t need to worry

about what this is yet). The next tool is compiled with

 make -f chi_step2_write_junctions.make

c. The source code is now compiled on your system!

6. Running the channel network extraction
The channel extraction code requires two steps. In the first step, the toolkit takes the raw DEM and

prints several derived datasets from it. The main dataset used for the next step is the junction index

dataset. The second step involves selecting a junction from which the chi analysis proceeds.

a. Writing junctions
i. First, create a folder for your DEM. Make sure both the .flt and the .hdr file are in this

folder. Then you need to create a file that tells the analysis the name of the DEM and a

few parameters. You can name this file anything you like but I have called mine

chi_parameters.driver:

ii. The driver file must contain three lines. The first line is the name of the DEM without the

extension. In this example the name is ‘ganga’. The next line is a minimum slope for the

fill function. The default is 0.0001. The thrd line is the threshold number of pixels that

contribute to another pixel before that pixel is considered a channel. You can play with

these numbers a bit, in this example, I’ve set the threshold to 300 (it is a 10m DEM so in

the example the threshold drainage area is 3x105 m2. Here are the first 3 lines of the file:

iii. Once you have done this, you need to run the driver program. The driver program is

called chi1_write_junctions.exe. It takes 2 arguments. The first is the path

name into the folder where your data is stored, and the second is the name of the driver

file. To run the program, just type the program name and then the path name and driver

5

file name. The path has to end with a ‘/’ symbol. If you are working in Linux, then the

program name should be proceeded with a ‘./’ symbol. Here is a typical example:

./chi1_write_junctions.exe

/home/smudd/papers/Segment_fitting/Data_and_code_repository/

Data/PA/ chi_parameters.driver

iv. In later sections you will see that the driver file has the same format for all steps, but for

this step only the firste three lines are read. The driver file has a bunch of parameters

that are described later but there is a file in the distribution called

Driver_cheat_sheet.txt that has the details of the parameter values.

v. This is going to churn away for a little while. If you’ve used incorrect filenames the code

should tell you. The end result will be a large number of new files: The code prints a

filled DEM (with _fill in the filename), a hillshade raster (with _HS in the filename),

information about the stream orders (file with _SO in the filename) and a file with

information about thejunctions (_JI in the filename).

vi. You will then need to load these files into arcmap and look at them. You can’t load the

.FIPickle file but you can load all the other files. You’ll have to convert them from .flt

format, however, so in ArcMap us the Conversion Tools -> To Raster -> Float to Raster

tool:

vii. An alternaitve to ArcMap is Whitebox (http://www.uoguelph.ca/~hydrogeo/Whitebox/)

which has the advantage of being open source. You can import .flt files using the

http://www.uoguelph.ca/~hydrogeo/Whitebox/

6

import/export data tool menu:

viii. You want to look at the channel network and junctions. So at a minimum you should

import the hillshade raster, the stream order raster (_SO in filename) and the junction

index raster (_JI in filename) into your preferred GIS. The stream order raster will display

the channel network, with each channel having a stream order. The junction index file

is the key file, you will need information from this file for the next step. In the image

below, the channel network is in cool colours and the junctions are in warm colours.

7

Each junction has a unique integer value, called the junction index.

ix. Now, find the part of the map where you want to do the chi analysis. You need to

choose the junction at the downstream end of the channels where you will do your

analysis. Use the inspection tool to get the number of the junction that you want to

use as the lowest junction in the channel network.

x. THIS IS EXTREMELY IMPORTANT!!! Due to some details in data organization which are

somewhat dull, when you select a junction the algorithm will trace down to the NEXT

DOWNSTREAM junction and then work up from there. HOWEVER if you are working

8

up from a tributary that intersects to the main stem you need to select the junction 2

JUNCTIONS UPSTREAM from the mainstem. If you don’t do this the network code will

follow the mainstem as a tributary!! See the image:

xi. In the below case, I have found junction number 384. Record this junction number.

b. Extracting the .chan file
i. Now that you have the junction number, you need to run the second program. Before

you run this program, you need to write a file that contains the parameters for the chi

analysis.

ii. The first 3 lines of this file MUST be the same as the driver file in step 1. The code doesn’t

check this so you need to make sure on your own this is the case.

iii. The next two rows of the driver file are the junction number from which you want to

extract the network (see above, this is actually the 2nd most downstream junction in the

network due to some nuances of data organization which are too tedious to describe

9

here) and something that controls how the channel network is ‘pruned’. This is the ratio

in area between the main stem and a tributary that must be exceeded for a tributary to

be included in the analysis. If this number is 1 you only get the main stem. The smaller

the number the more tributaries you get. A reasonable number seems to be ~0.02.

iv. There can be more information in the driver file (for example, parameters for a chi

analysis), but the channel network extraction program will ignore these; it only looks at

the first 5 lines of the driver function.

v. From here you run the program chi2_write_channel_file.exe. You need to

include the path name and the name of the chi parameter file. In Linux the program

should be proceeded with ‘./’. Here is an example:

./chi2_write_channel_file.exe

/home/smudd/papers/Segment_fitting/Data_and_code_repository/

Data/PA/ chi_parameters.driver

vi. This will generate a DEM with _basin_ in the filename. Immediately before the .flt

extension the junction number will also be listed. In addition a .chan file (with

ChanNet and the junction number in the filename, see below) will be printed:

vii. The _basin_ file is a raster containing the outline of the contributing pixels to the basin

drained by the extracted channel network.

c. Format of the .chan file
The segment fitting algorithm (part B) works on a ‘channel’ file (we use the extension .chan to

denote a channel file). The channel file starts with six lines of header information that is used to

reference the channel to a DEM. If the channel is not generated from a DEM these six rows can

contain placeholder values. The six rows are

Nrows <- number of rows

Ncols <- number of columns

Xllcorner <- location in the x coordinate of the lower left corner

Yllcorner <- location in the y coordinate of the lower left corner

Node_spacing <- the spacing of nodes in the DEM

NoDataVal <- the value used to indicate no data

This header information is not used in the segment analysis; it is only preserved for channel data to

have some spatial reference so that scripts can be written to merge data from the channel files with

DEM data.

The rest of the channel file consists of rows with 9 columns.

 The first column is the channel number (we use c++ style zero indexing so the main stem has

channel number 0).

 The second column is the channel number of the receiver channel (the channel into which

this channel flows). The mainstem channel flows into itself, and currently the code can only

10

handle simple geometries where tributaries flow into the main stem channel only, so this

column is always 0.

 The third column is the node number on the receiver channel (which, recall, must be the

main stem) into which the tributary flows. The main stem is defined to flow into itself.

Suppose the main stem has 75 nodes. The third column would then be 74 for the main stem

(because of zero indexing: the first node in the main stem channel is node 0. Nodes are

organized from upstream down, so the most upstream node in the main stem channel is

node zero. Suppose tributary 1 entered the main stem on the 65th node of the main stem.

The third column for tributary 1 would be 64 (again, due to 0 indexing).

 The 4th column is the node index that refers back to the LSDFlowInfo object.

 The 5th column is the row in a DEM the node occupies.

 The 6th column is the column in a DEM the node occupies.

 The 7th column is the flow distance from the outlet of the node. It should be in metres.

 The 8th column is the elevation of the node. It should be in metres.

 The 9th column is the drainage area of the node. It should be in metres squared.

Many of these columns are not used in the analysis but are there to allow the user to refer the

channel file back to a DEM. Columns are separated by spaces so rows will have the format

Chan_number receiver_chan receiver_node node_index row col flow_dist elev drainage_area

Here are the first few lines of an example file:

Appendix: Installing a compiler
This section describes how to install the software on your Windows computer

Installing a compiler on a windows machine
There are several ways to install a compiler on a Windows machine but at Edinburgh we use the

Cygwin environment (http://www.cygwin.com/).

2907

3473

548517

4.40339e+06

10

-9999

0 0 1793 1619544 735 720 59819.3 408.117 30000

0 0 1793 1622700 736 719 59805.1 406.679 30300

0 0 1793 1625857 737 718 59791 404.598 31000

0 0 1793 1629014 738 717 59776.8 402.726 43900

0 0 1793 1632173 739 717 59766.8 400.542 45900

0 0 1793 1635333 740 717 59756.8 399.258 47100

http://www.cygwin.com/

11

1. Go to the Cygwin website and download setup.exe:

2. Once you download setup double click to run it:

3. You will get a bunch of warnings, but just keep clicking next until you get to a screen to

choose a ‘mirror’ site, and just pick a site (it doesn’t really matter which one):

4. You will get a window that asks you what packages you want to install. Then expand the

‘devel’ list of packages:

5. You toggle between installing and not installing by clicking these buttons: . The things

that are essential to install are the g++ compiler and the ‘make’ utility.

The GNU debugger might also come in handy later.

12

Note that as you learn about these tools you can always run setup again and install more

stuff.

6. Once you have got g++ and make, just click next a few times and things will install.

7. Once installation is complete, you need to edit the PATH environment variable on your

machine so it isees all the cygwin programs. If you are using windows 7, you can just type

‘environment variables’ into the search for program bar, and then click on the link to edit

the variables. You will get this screen:

8. Click on the environment variables button and then click on path and then edit

13

9. Append the path with a semicolon and then the path to the cygwin bin folder:

