Earth-surface Dynamics Modeling & Model Coupling *A short course James P.M. Syvitski & Albert J Kettner* CSDMS, CU-Boulder

Module 2: Modeling discharge and Sediment Flux

ref: Syvitski, J.P.M. et al., 2007. Prediction of margin stratigraphy. In: C.A. Nittrouer, et al. (Eds.) Continental-Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. <u>IAS Spec. Publ.</u> No. 37: 459-530.

> DEM to flow paths (3) Climate to discharge (7) Paleo-discharge (5) Hydrological Modeling (5) Sediment Delivery (8) U.S. East Coast Example Waipaoa Model (2) Summary (1)

Step 1): use an appropriate topographic DEM: LIDAR (1-5 m), SRTM (30-90m), GLOBE & GTOPO30 (1km), ETOPO2/5 (4-10km)

SRTM Data Resolution

A horizontal pixel is 1-arc or 3-arc seconds, depending on data availability Mississippi floodplain detail

30 m horizontal resolution

90 m horizontal resolution

Step 2): Clean up the DEM for errors: e.g. 1) User developed (e.g. RiverTools), 2) SRTM Water Body Data Set – 30 m; 3) Hydro1K, 4) HydroSheds (6km), 5) STN30 (50km).

Replace Bad Values

3-arcsecond SRTM, Korea

Precipitation

 Gridded 0.5° by 0.5°: CRU or U. Delaware rain gauge data, based on: NSDC Global Historical Climatology Network 1,870 to 16,360 stations between years 1950-1999; Legates and Willmott archive 26,858 precipitation stations

Global distribution of 3423 met stations providing monthly averages on precipitation and temperature, with most stations reporting between 50 and 100 years of observations.

Precipitation

- 2. TRMM (Passive Microwave Radiometer, Precipitation Radar, and Visible-Infrared Scanner), plus the Special Sensor/Microwave Imagery, plus rain gauge data, run through algorithm 3B-43 equals 0.5° x 0.5° grid every 3 hours.
- 3. SSM/I (0.5° x 0.5°) plus GOES IR (1°x1°, 3-hourly) plus TIROS Operational Vertical Sounder (TOVS; 1°x1°, daily) plus ground data, equals 1° x 1° grid daily, since 1997.
- The Community Climate Model (CCM3) state of the art atmospheric general circulation model with a horizontal resolution 37 km, every hour, 1 year
- 5. NCAR/NCEP Reanalysis assimilates ground observations & satellite data in numerical weather/climate models to provide gridded 2°x2° data, 1948 and 2004, every 6 hrs

COMMUNITY SURFACE DYNAMICS MODELING SY:

Precipitation to Discharge

- 1. Precipitation as rain or snow: Need DEM, gridded temperature, lapse rates
- 2. Snow to glacial ice: Need DEM, equilibrium line altitude of glaciers and ice sheets
- 3. Snowmelt, glacial melt: Need DEM, gridded temperature, lapse rates

Precipitation to Discharge

Rainfall to Runoff: Need DEM, canopy, evapotranspiration, soil properties 4. 5. Meltwater to Runoff: Need DEM, routing, distribution of lakes/reservoirs

COMMUNITY SURFACE DYNAMICS MODELIN

Mean Discharge m³/s

Discharge Model Examples

WBTM: global 2D at 50x50km,

INSTAAR-HydroTrend: basin by

basin, 1km resolution (1D), daily,

monthly for 50 years

for years to millennium

INSTAAR-TopoFlow: local to

minutes, for weeks to year,

regional, 100m resolution,

functional routing.

Polar zones: low frontal rainfall; large contribution from snow & ice meltwater; short runoff season; low lapse rates; high inter annual variability; permafrost

Temperate zones: discharge from springtime snowmelt, summer convective rainfall, and fall time frontal rainfall; high alpine freeze-thaw cycles; highly industrialized hinterland

Tropical zones: little to no meltwater, intense convective rainfall, strong orographic influences, tropical storms (typhoons); monsoons; intense chemical weathering

Small rivers offer greater variability than large rivers.

25000 Eel River Discharge (m³/s)

Croatia

Parameterization of basin-averaged temperature

A) 2.5° grid of surface temperatures

Syvitski et al, Sedimentary Geology, 2003

B) Global station temperature versus latitude and the best-fit model.

C) Lapse-adjusted temperature versus latitude shows the general tightening of the fit

 $T(x,\theta,H) = T_0(x,\theta) - [L(x)H]$ $T_0 = T + [L(x)H]$

Parameterization of basin-averaged temperature

Observed versus predicted station temperatures. Half of the data falls within 1°C of prediction, and 82% falls within 2.5°C. Basin averaging of station temperatures reduces local variability and provides for basinaveraged values of ±1.5°C.

Syvitski et al, Sedimentary Geology, 2003.

Climate-Hydrologic Modeling brainstorming

Components of water discharge

snow melt ice melt rainfall runoff groundwater efflux

Snow or rain: hypsometry, lapse rate, freezing line, temperature Snow and ice: ELA, hypsometry, freezing line, temperature Nival freshet model: dry melt: fT; wet melt: fT; rain Solid vs. wet evaporation Rainfall vs. groundwater: rainfall intensity, canopy interception, hydraulic conductivity, saturation excess, pool size Kinematic wave effect vs. lake modulation Variability vs. coherency Drainage basin area vs. storm size and direction Interannual vs. intra-annual variability Climate change effects and water storage changes

HydroTrend

Data Assimilation

Syvitski et al, Terra Nostra, 2002

Hydrological Functionality

- ·Runoff (daily timestep)
- ·Routing
- ·Irrigation
- ·Reservoir Operation
- ·Data Assimilation

Mississippi time series

Gulf of Maine Daily Runoff

Wisser et al. In Preparation

Sediment Delivery

 $\frac{Q_s}{\rho g^{1/2} A^{5/4}} = \alpha \left(\frac{R}{A^{1/2}}\right)^n$

when
$$u \ge u_{cr} \longrightarrow Q_b = (\Gamma) Q^{\beta} S$$

Using the globally-averaged value n=1, and the global relationship between Q, in m³/s, and A, in km² ($Q = 0.075 A^{0.8}$)

 $Q_s = w B \cdot Q^{0.31} A^{0.5} R \cdot T \quad \text{for } T \ge 2^{\circ} C$

 $\rightarrow Q_s = (\mu) Q^{\beta} S$

 $Q_{s} = 2 w B \cdot Q^{0.31} A^{0.5} R \quad \text{for } T < 2^{\circ} C$ $Q_{s} = [\omega \rho g^{0.5}] [1 + 0.09 A_{g}] L (1 - T_{E}) E_{h} Q^{0.31} A^{0.5} R T$

Sediment Delivery $Q_s = [\omega \rho g^{0.5}] [1 + 0.09A_g] L (1-T_E) E_h Q^{0.31} A^{0.5} R T$

Earth-surface Dynamic Modeling & Model Coupling, 2009

COMMUNITY SURFACE DYNAMICS MODELING SYSTEM

Sediment Delivery $Q_s = [\omega \rho g^{0.5}] [1 + 0.09A_g] L (1-T_E) E_h Q^{0.31} A^{0.5} R T$

Sediment yield decreases away from highlands because: 1)Highland-produced sediment is trapped on floodplains & delta-plains 2)Lowland sediment production is low, e.g. low locale relief, rain shadows, vegetation cover

Elevations in 1 m bins

Sediment Delivery

$$Q_{\rm b} = \frac{\rho_{\rm s}}{\rho_{\rm s} - \rho} \frac{\rho g Q^{\beta} S e_{\rm b}}{\tan \phi}$$

when $u \ge u_{cr} \longrightarrow Q_b = (\Gamma) Q S$

				and a	and and	L to	L to	Qb	Qb	Qb	Qb loss
	A	R	Q	Qs	L	100m	10m	@100m	@10m	lost	per km
River	km ²	m	m^3/s	kg/s	km	km	km	kg/s	kg/s	%	kg/km [·] s
Chao Phrya (Thai)	160000	1920	963	349	1200	730	218	29	11	63	0.08
Fly (PNG)	64400	3990	2510	2219	1130	901	577	70	11	85	0.10
Godavari (India)	287000	1650	2650	5387	1450	513	95	137	69	50	0.72
Indus (Pak)	964000	7830	3171	12683	3180	1188	220	70	36	49	0.15
Irrawaddy (Burm)	430000	5881	13558	8239	2150	1078	337	338	99	71	0.71
Mekong (Viet)	811000	6100	14770	5070	4425	1008	566	783	64	92	1.27
Niger (Nig)	1240019	2130	6130	1268	4170	1023	242	182	63	66	0.49
Po (Ita)	70000	4800	1904	545	652	467	141	70	33	53	0.26
Rhone (Fr)	90000	4810	1700	1982	820	215	67	264	63	76	3.01
Euphrates (Iraq)	1050000	2960	1500	1680	2815	1157	511	48	7	85	0.08
Vistula (Pol)	200000	2500	1050	79	1091	547	86	42	30	28	0.14
Yangtze (PRC)	1958000	6800	28278	15210	4670	1771	840	642	83	87	0.67

East Coast Qs Grid

Regression formula of Syvitski et al. (2002) for long-term average sediment discharge

MARGINS: Source to Sink - Waipaoa, NZ

Figure 10. Comparison of the late Holocene suspended sediment discharge (99-yr running mean) from the Waipaoa River system computed using HydroTrend and the observed rate of terrigenous mass accumulation on the middle shelf at core site MD972122 [after *Gomez et al.*, 2007] (see Figure 1 for location).

Earth-surface Dynamic Modeling & Model Coupling, 2009

COMMUNITY SURFACE DYNAMICS MODELING SYSTEM

Modeling discharge and Sediment Flux Summary

•

- **DEM to flow paths:** DEM data quality, resolution, flow paths
 - Climate to discharge: gridded data, satellite systems, precip to runoff to discharge, climate zones, discharge variability
 - **Paleo-discharge:** time slices, resolution, boundary conditions, T°C,
 - Hydrological Modeling: processes to model coupling, simulations, data assimilation, humans
 - Sediment Delivery: bedload, suspended load, wash load, factors, reservoirs, lithology, climate, predictions, variability, yield, deposition
 - U.S. East Coast Example: gridding
 - Waipaoa Model: Human disturbance

