Sediment transport and the Indian Rivers Interlink project

Stephanie Higgins\(^1\), Irina Overeem\(^1\), and James P. M. Syvitski\(^1\)

\(^1\)Community Surface Dynamics Modeling System (CSMDS), \(^2\)Institute of Arctic and Alpine Research (INSTAAR), \(^3\)University of Colorado Boulder, Boulder, CO, USA

Introduction

What is the Interlink Project?

The Indian Rivers Interlink (IRI) project aims to link several of India’s major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has increased support under Prime Minister Narendra Modi. Construction on the first three canals (#s 24, 26 and 27) has controversially begun.

If the Interlink project continues, fourteen canals would ultimately divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the south and west. This is expected to affect sediment transport to the Ganges-Brahmaputra Delta. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas (Fig. 1).

Input & Validation Data I

Canal and dam data

Data sources for water input/outtake:
1. Open Street Map (Fig. 3)
2. Google Maps/Google Earth
3. Feasibility reports (NWDA-WRIS)
6. News Articles
7. Georeferenced maps (Fig. 2)

Fig. 2 Example of georeferenced NWDA maps

Fig. 3 Open Street Map India: Croass-sourced rivers and dams

Data sources for discharge/water volumes:
1. Feasibility reports (NWDA-WRIS)
2. HydroTrend with Pervez & Henry (2014) data
3. RiverWatch (AMSR-E) (Brakenridge et al., 2007)

Precipitation

For monthly average precipitation and daily standard deviations, we use interpolated averages between 43 National Oceanic and Atmospheric Administration (NOAA) National Climate Data Center Global Surface Summary of Day (GSOD) observation stations located in China, Nepal, India, Bhutan and Bangladesh. These averages come from Pervez & Henry (2014) (Fig. 4).

Fig. 4 Precipitation stations and contours of average precipitation, from Pervez & Henry (2014)

Input & Validation Data II

Hypsometric Curves

Hydrotrend takes as input a hypsometric curve (cumulative area vs. elevation) of the drainage basin (e.g., Fig. 6) Here, watersheds above and below each outtake point are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) V. 5 (David Tarboten, Utah State University).

Preliminary Results: Link #13

As a “proof-of-concept,” we performed a preliminary model run for the watershed above Bahadurabad Station. We looked at the impacts of link #13, the Manas-Sankosh-Tista-Ganga link, on water and sediment discharge.

Fig. 5 Watershed of the Brahmaputra River above Bahadurabad gauging station. Shading shows areas effectively removed from the watershed by proposed canal #13, the Manas-Sankosh-Tista-Ganga link, which would transport water from the shaded areas out of the Brahmaputra watershed and into the Ganges river and further south.

Fig. 6 Changes in hypsometry with and without link #13.

Running HydroTrend in WMT

A new service component

Automatically generating hypsometry input files (HYDROC0.HYPS) and other input files for HydroTrend will ultimately be possible through WMT. Users will be able to enter a latitude and longitude and select a Digital Elevation Model (GTPO30, Hydro 1K, SRTM, or a user-supplied DEM) to drive HydroTrend, GDAL, and new Python wrappers produce watershed hypsometric curves and shapefiles above the specified point.

Fig. 7 a) Farakka (orange) and Bahadurabad (grey) waterhatches with no link #13 in place.

Fig. 9 a) Observed vs. modeled river discharge for Bahadurabad station with and without link #13. b) Predicted sediment discharge change due to link #13.

Modelled no-link discharge agrees well with observations, but this is primarily due to “breaking” of the mass balance coefficient in HydroTrend. Improved precipitation data may be needed. As expected, sediment discharge is predicted to decrease by as much as 20% due to link #13 – however, model uncertainty must be quantified before we can say whether or not this reduction is significant.

Fig. 8 a) Summary of link canals and major rivers. From the National Perspective Plan, National Water Development Agency (NWDA), www.nwda.gov.in.

Fig. 10 The WMT interface for HydroTrend.

Running HydroTrend in WMT

A new service component

Automatically generating hypsometry input files (HYDROC0.HYPS) and other input files for HydroTrend will ultimately be possible through WMT. Users will be able to enter a latitude and longitude and select a Digital Elevation Model (GTPO30, Hydro 1K, SRTM, or a user-supplied DEM) to drive HydroTrend, GDAL, and new Python wrappers produce watershed hypsometric curves and shapefiles above the specified point.

Fig. 10 a) Farakka (orange) and Bahadurabad (grey) waterhatches with no link #13 in place. b) Predicted sediment discharge change due to link #13.

Acknowledgments

This work was funded by the Belmont Forum Collaborative Research grant (DELTAS: Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessment) (’13)Poulabol, PI). We gratefully acknowledge Shahmir Pervez and Geetha Henry (South Dakota State University) for providing precipitation data. Thank you to Michael Kyawtwa for providing the inspiration for this project.

References


India Water Resources Information System of India (India WRIS), www.india-water.org.


Fig. 11 Automatically generating input file will simplify application of HydroTrend to multiple sub-basins, allowing improved modeling of large catchments. Example Ganges sub-basins: Pervez & Henry (2014)