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1. Objectives

• Explore the uncertainty from snow processes of a
physics-based integrated hydrologic model.

• Parameter calibration of integrated modeling system
with multivariate output.

2. Introduction

• Quantification of uncertainty of environmental models
plays an important role in the decision making pro-
cess.

• Parameter uncertainty is one of the major sources of
uncertainty, which comes from the model parameters
that are inputs to the computer model but whose exact
values are unknown to experimentalists and cannot be
controlled in physical experiments.

• Monte Carlo methods based on a large number of ran-
dom sampling have been widely used in the parameter
uncertainty analysis. Due to the increasing complexity
and computational cost of such environmental models,
Monte Carlo sampling is unrealistic for propagating pa-
rameter uncertainty.

• The Bayesian approach using Gaussian process (GP)
emulator has attracted much attention in the uncer-
tainty analysis of computationally expensive models.

It would be useful to evaluate the capability and uncer-
tainty of each processes simulation within the framework
of a physics-based integrated hydrologic model. This
study uses Penn State Integrated Hydrological Model
(PIHM) as an example to evaluate parameter uncertainty
from snow processes.

3. Study Area and Model Setup
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Figure 1: Location of Lysina.

The study site Lysina headwater catchment is located
50◦ 03’ N, 12◦40’ E in the western part of the Czech Re-
public (Figure 1), where 40% of its precipitation is in the
form of snow.
To evaluate uncertainty of snow processes, we use a
physics-based integrated hydrologic model: PIHM to
simulate the winter hydrologic processes. PIHM inte-
grates the hydrological processes including snow accu-
mulation and melt, interception, throughfall, infiltration,
recharge, evapotranspiration, overland flow, groundwa-
ter flow, and channel routing, in a fully coupled scheme
(Figure 2).
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U is the flux velocity vector, Γ is the conductivity tensor, 
and Q

ss
 is rate of increase/decrease in φ due to sources and sinks.

  is the normal vector to the surface j of the control volume i.

   is the average volumetric conservative scalar per 
unit planimetric prismatic volume area A

i
, A

ij
 is 

the interfacial area,    and     are the
advective and diffusive flux, respectively.
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Figure 2: The PIHM representation of hydrological
processes and coupling strategy.

4. Generalized Likelihood Uncertainty Estimation
(GLUE)

Uniform Monte Carlo sampling
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Figure 3: The GLUE procedure.

The users need subjectively select the likelihood func-
tions and the threshold.

5. Gaussian Process Emulator

Computer model -> simulator

Bayesian statistics
 Markov chain Monte Carlo

Posterior probability 

GP model -> emulator
fast proxy

Calibration, prediction, 
uncertainty analysis

Figure 4: The GP emulation procedure.

6. Results
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Figure 5: Posterior distribution of GLUE with threshold
of NSE>0.8.
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Figure 6: Posterior distribution of GLUE with threshold
of NSE>0.85.
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Figure 7: Posterior distribution of GLUE with threshold
of NSE>0.9.
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Figure 8: Posterior distribution of GP emulator.

7. Implications

• The uncertainty of hydraulic conductivity showed mul-
timodal distributions, even with long MCMC chains.

• The posterior distribution of melt factor suggested that
it is sharper and narrower constrained by streamflow
than that of constrained by snow water equivalent.
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