

INTRODUCTION

► Major advances in environmental science require transparent, refutable models, and

METHODS

or 1.0

OBSERVATIONS	ID	Location	Source	Year	Obser
5 heads at each well	PROXIMITY, in met	ers from observ	ation cell (OBS	Type=proximity; t	here are 5
	xyzobs1-3	well1	farm2	2010	0, 0 <u>,</u> 0 ⁵
and MODPATH-OBS	xyzobs4-5	well2-3	farm2	2010	0, 0°
observations as listed	TIME-OF-TRAVEL,	in elapsed years	s relative to obs	ervation (OBSTy	pe=time; th
in the table	timmedpit2	well2	pit	2010	23.38
	timminnit? a-f	well2	pit	2010	74 - 2
ERROR-BASED	timmaxpit2	well2	pit	2000 2010	23.4
OBSERVATION	timminall3	well3	all	2010	3.22
	timminriver3	well3	river	2010	127.68
WEIGHIING	timminfarm3	well3	farm	2010	3.22
Weights are assigned	timge1003	well3	all	2010	1.04
hased on typical errors	timlt1003	well3	all	2010	98.9
based on typical entris	CONCENTRATION	S, in parts per r	million (OBS Lyp	e=conc; there ar	e 50 observ
for the types of		well1	CIC	2010	372.5
observations supported	cnc_pcer	well2	cfc	2010	243.6 – 2
h. MODDATIL ODS	w2pce1970-2010	well2	DCe	1970-2010	2.0 - 8.1
by MODPATH-OBS,	w2pceExc1	well2	pce	1	67.7
all of which are used in	w2pceExc2	well2	pce	2	50.
the test and Weights -	cnc_cfc3	well3	cfc	2010	422.7
the test case. weights –	cnc_pce3	well3	рсе	2010	0.57
$1/s^2$, where s is the	SOURCE WATER 1	TYPE, in percent	t (OBSType=so	urce; there are 2	5 observation
standard deviation	typfarmto1	well1_obs	farm	2010	70.59
	typ_farm2	well2_obs	farm	2000	40.4
<u>OBS</u> s .	typ_river2	well2_obs	river	2010	10.9
Heads 0.5m	typ_pit3	Well3_ODS	pit	2010	0.0
	typitericits	well3 obs	farm	2010	92.4
MP-UBS Larger of	tvp_river3	well3 obs	river	2010	0.78
10% of obs	tyW2Pit1970-2010	well2_obs	pit	1970-2010	0.0 - 4.7

tyW2Tr1970-2010 well2_obs

Conc Conc

Conc

Conc

Percent

Percent

Percent

Percent Percent

Percent

Percent Percent

Percent

1970-2010

trench

0.0 – 5.7

Exceedance (Exc1⁸)

Exceedance (Exc2⁸)

Exploring Models

Mary C. Hill¹, Randall Hanson², Leon Kauffman³, Martyn Clark⁴, Dmitri Kavetski⁵, Ming Ye⁶ ^{1,2,3}U.S. Geological Survey, ¹Boulder, Colorado; ²San Diego, California, ³West Trenton, New Jersey; ⁴NCAR, Boulder, Colorado; ⁵University of Adelaide, Australia; ⁶Florida State University, Tallahassee, Florida

hydraulics

