Synopsis: To resolve or not to resolve? To nest or not to nest? Seems best not to. (in some cases at least)

Don't Upscale the Coastline: **Scales of Cumulative Change** Emerge A. Brad Murray, Eli Lazarus, Andrew Ashton, Sarah Tebbens, Steve Burroughs National Science Foundation ocomplexity/ ogy and Land-Use Dynamics

Conclusion:

Treat emergent dynamics when available (like fluid dynamics vs. molecules) More insight, and large-scale results may not depend on small-scale processes (e.g. could be worms or ice lenses...)

Intro: Coastline Change: many scales Where to start??

• Action during storms!

Interpretation: Coastline diffusion at large scales

wave-driven alongshore-

Results

small scales (< ~ km):

Larger scales (kms):

Results black = 1996

45

Alongshore Position (km) [Relative to VA/NC State Line]

B

var. independent of duration

change increases w/time;

var. maxima, 4 – 8 km;

large

100 km

/25/2002 11:18am

Observations: Large is different than small

Modeling large scale dynamics directly: diffusion, antidiffusion, and finite amplitude behaviors

- Discretize alongshore sediment flux, C. of mass
- Variables limited to:

e.g.:

- Shoreline orientation (on scales ~ km) - 'Deep-water' wave height, direction

prown noise NOBX 96–08 97–08 96–05 97–05 05–08 96–97

- (No ripples, bars, channels...)

- Partly rule-based (wave shadowing; coupling wave models soon)

Sediment Transport Shoreline

0.5	Steady wave climate
	⁶⁰⁰⁰ Ave. sh. chng. = 1.1 m/yr
	E-6000 Ave. erosion = 1.0 m/yr
Brol	Increased SW wind swell
$0.0 - 45^{\circ} 0^{\circ} 45^{\circ} 0^{\circ}$	⁶⁰⁰⁰ Ave. sh. chng. = 4.3 m/yr
Relative 'Deep-Water' Wave Angle	Ave. erosion = 3.5 m/yr
100 cm	Increased storms
	$\frac{6000}{0}$ Ave. sh. chng. = 6.3 m/yr
	د Ave. erosion = 4.4 m/yr
rs 100 km	Increased SE winds
ears	g 6000 Ave. sh. chng. = 3.9 m/yr
	$\frac{1}{2} = \frac{1}{6000}$ Ave. erosion = 5.4 m/yr
vears	
vears	Wayo Climato Chango Sconarios
	wave chinate change stenarios

red = 2005

1 km filter

5 km filter

65

Shoreline smoothing at large scales

Terrestrial example: modeling hillslope evolution

With Explicit Numerical Reductionism: What if sub model for worm behaviors isn't just right... And what about other hillslopes (e.g. dominated by small girls)? Or:

empirically based, mathematically rigourous, modeling of hillslopes directly?