

Using the Weather Research & Forecasting Model (WRF) for Surface Dynamics and Environmental Change Studies

- Next-generation mesoscale atmospheric modeling system *modular, flexible, portable, highly parallel code*
- Community model

multi-agency (NCAR, NOAA, FAA, AFWA, NRL ...) + university community

- Fully compressible non-hydrostatic Euler equations (designed for use at scales ranging from meters to 1000s of kilometers)
- Nesting capability (up to 9 levels) (2-way interactive, moving nests)
- Cloud-resolving when dx < 10 km

Weather Research & Forecasting Model

- Advantages
 - captures nonlinear mesoscale effects (convective storms, land-sea breezes, ...)
 - high-temporal resolution allows simulation of extreme events (intense wind or rain, ...)
 - enables the coupling of processes from global-to-local
- Suitable for a wide range of applications
 - real-time numerical weather prediction
 - atmospheric research
 - regional climate simulations (past, present, future)
 - coupled modeling systems (WRF/CCSM, WRF/ROMS, ...)

Convective Updraft (Moeng, NCAR)

what is this?

WRF Physics Modules & Coupling

Dynamics Solver – integrates the compressible non-hydrostatic Euler equations

- Shortwave Radiation
 - Dudhia, Goddard, GFDL, CCSM3
- Longwave Radiation
 - RRTM, GFDL, CCSM3
- **Cloud Microphysics**

• Kessler; Lin et al.; NCEP; WSM 3,5,6 class; Ferrier; Thompson; Morrison

- **Cumulus Cloud Parameterization**
 - Kain-Fritsch, Betts-Miller-Janjic, Grell-Devenvi

Planetary Boundary Layer

• YSU, Mellor-Yamada-Janjic, MRF

Land Surface Model

• RUC LSM, Noah LSM, Urban Canopy model, CLM

Spatial Discretization

Arakawa C-grid

WRF uses the flux-form of the Euler equations (conserves mass, enthalpy, ...)

WRF Output and Diagnostic Fields

- (air) temperature field 3D
- pressure field 3D
- density 3D
- water vapor density 3D
- wind speed & direction 3D
- vorticity
- convective instability
- ground temperature
- soil moisture
- snow cover
- surface dewpoint temperature
- surface frost point temperature
- wind shear
- sensible heat flux
- latent heat flux
- BL relative humidity

- precipitation
- precip. type (rain, graupel, hail, snow)
- convective vs. non-convective precip.
- column-integrated cloud liquid mass
- cloud cover
- cloud water mixing ratio
- cloud ice mixing ratio
- cloud ceiling
- cloud-top temperature

2 Run Modes

1) Retrospective Analyses

Nest WRF within observed large-scale circulation.

2) Future (Past) Climate Projections

Nest WRF within large-scale circulation projected by an AOGCM.

* Do this for an ensemble of AOGCMs.

WRF Nesting Capability

This enables us to downscale the large-scale circulation to much finer spatial scales.

- 1-way
- 2-way interactive
- moving nest

Example 2-way: Red Rock Lakes NWR, Montana

Sample 2-way WRF Nests

Parent Domain: 30-km resolution

large-scale circulation

Red Rock Lakes NWR

GCM Resolution

Red Rock Lakes NWR

Red Rock Lakes NWR

The Need for Parallel

A **48-hr WRF forecast** for the continental U.S. would take **52 hours** to calculate at 12-km resolution on a:

Dual core, 4.7 GHz chip 64-bit floating point precision 16 GB per processor ~ 6 Gflop/s (circa 2008)

2 Levels of WRF Parallelism

Distributed Memory Parallel

- Model domain is decomposed into Patches, one for each distributed memory Node.
- Communication: MPI

Example: 9 available nodes, 9 patches

2 Levels of WRF Parallelism

Model Domain

Shared Memory Parallel

- Each patch is decomposed into Tiles, one for each shared memory processor.
- Communication: OpenMP

Example: 8 processors per node

2 Levels of WRF Parallelism

Shared + Distributed Memory Parallel

- Model domain is decomposed into Patches & Tiles.
- Communication:

OpenMP & MPI

Example: 9 available nodes, 72 processors

WRF Multiprocessor Performance

WRF Multiprocessor Performance

WRF Examples

- Assess ability of the wind to lift materials at potential source sites during high-wind events.
- Determine dust-transport pathways.
- Investigate the influence of terrain on the wind field in the Mojave Desert at a variety of scales.

Wind Event: 25 Feb 2007, 1400 PST

Mojave Desert

Sea-Level Pressure (D1: 27-km)

130 W 120 W 110 W 120 W hPa m s⁻¹ 37.5 36 32.5 30 27.5 26 22.5 20 40 N н 1012 17.5 12.5 7.5 30 N COTE | 2.5

Wind Event: 22 Mar 2009, 1000 PST

Mojave Desert

Sea-Level Pressure (D1: 27-km)

Wind Event: 13 Dec 2008, 1400 PST

Mojave Desert

Sea-Level Pressure (D1: 27-km)

80

70

60

50

40

30

20

10

Wind Event: 4 May 2007, 1700 PDT

Mojave Desert

Sea-Level Pressure (D1: 27-km)

Wind Event: 5 Jan 2007, 1000 PST

Mojave Desert

Sea-Level Pressure (D1: 27-km)

Mesquite Playa 22 Mar, 2009

Mojave Desert

- What can landforms tell us about the past behavior of the atmosphere?
- Yardangs are good recorders of the wind direction during strong wind events.
- Question: Was the wind field different when these yardangs formed?

Domain 1: 27-km resolution

Caribou Mtn

Rocky Mountains

glaciers

Extent, Year=280, ELA=3400 m, AAR=0.60

Ice extent during the Last Glacial Maximum produced by glacier model-gc2d.

Domain 1: 27-km resolution

• What will be the impact of future climate change on coastal erosion rates in the Arctic?

• We will need:

hi-res RCM (e.g. WRF) wave model ocean current & temp. model permafrost model

