
Overview of the CHILD Source-Code Structure

Greg Tucker

June 2008 (Last updated August 2009)

Contents

1 Introduction 2
1.1 About CHILD . 2
1.2 Source-Code Structure . 2

2 General Header Files: Classes, compiler, Definitions, Inclusions,
Template Model, and trapfpe 3

3 Basic Utilities 3
3.1 Error Handling: errors . 3
3.2 Command-Line Options: tOption . 3
3.3 Mathematics: Geometry, Mathutil, and Predicates 4
3.4 Vectors and Matrices: tArray and tMatrix 4
3.5 Linked List Management: tList, tPtrList, and tMeshList 4
3.6 Time Management: tRunTimer . 5

4 Mesh Construction and Management: tMesh, tLNode and MeshEle-
ments 5

5 Parameter and Data Input: tInput and tTimeSeries 5

6 Output: tOutput, tLOutput 6

7 Rainfall and Runoff: tStorm and tStreamNet 6

8 Erosion and Transport: Erosion 6

1

9 Stratigraphy 7
9.1 Layers beneath Nodes . 7
9.2 High-Resolution Gridded Stratigraphy: tStratGrid 7

10 Uplift, Subsidence and Baselevel Change: tUplift 7

11 Special Processes: Channel Meandering, Floodplain Deposition,
Eolian Deposition, Vegetation 8
11.1 Stream Meandering: tStreamMeander 8
11.2 Floodplain Deposition: tFloodplain 8
11.3 Vegetation Dynamics: tVegetation . 8
11.4 Dust Accumulation: tEolian . 9

12 Notes on the CHILD Interface Routines 9
12.1 How to Tell CHILD to Erode or Deposit Sediment 9
12.2 How to Track Water and Sediment Fluxes 10

1 Introduction

1.1 About CHILD

CHILD is a numerical landscape evolution model that was originally developed at
MIT in the mid to late 1990s by members of Rafael Bras’ geomorphology group
(Rafael Bras, Nicole Gasparini, Stephen Lancaster, and Greg Tucker). Since then,
the code has continued to grow, with new capabilities and contributions from re-
searchers around the world. The main version of the code is currently maintained in
a networked source-code repository at the University of Colorado. A release version
is available through the Community Surface Dynamics Modeling System (CSDMS):
http://csdms.colorado.edu.

1.2 Source-Code Structure

The CHILD (version 2008) source code is divided among a number of different source
files. These source files represent, more or less, the various modules and utility classes
that together make up CHILD. This document gives a brief overview of the module
and file structure. It is intended for developers who wish to add capabilities, create
linking software, or couple CHILD with other models. I assume you are basically
familiar with C++. File names and file sets are given in bold and class names are

2

given in italics. By “file set” I mean a group of related files that reside in the same
folder (for example, tUplift.h and tUplift.cpp).

The code consists of several different file sets, most of which reside in their own
sub-folders and usually consist of a header (.h) and source (.cpp) file. Sometimes
there will be only a header file, and sometimes more than one header and/or source
file.

The high-level structure, including initialization and the implementation of a time
loop, is handled by “Child Interface” code. This provides a simple interface through
which CHILD can be invoked by another application, with methods that initialize
the model, run one storm, run for a specified amount of time, and finalize. The main
driver is found in childDriver.cpp, which calls the Initialize, Run, and CleanUp
functions in the interface. The interface routines for the development version are
found in childInterface; for the release version, the corresponding code lives in the
childRInterface folder.

Most of the main modules, which handle processes such as water routing, erosion,
and tectonic uplift, are implemented as classes (such as the tStreamNet, tErosion,
and tUplift classes). (The file toddlermain.cpp implemented a now-obsolete release
version).

2 General Header Files: Classes, compiler, Defini-

tions, Inclusions, Template Model, and trapfpe

The header files handle various things. Classes.h tells the compiler what classes
to expect. Template model.h and compiler.h are meant to handle differences
between compilers (they aren’t foolproof). Definitions.h provides a list of defined
constants and macros. trapfpe.h, which I think was written by Arnaud Desitter,
enables floating-point-exception traps in Linux.

3 Basic Utilities

3.1 Error Handling: errors

The small errors file set takes care of reporting errors and warnings.

3.2 Command-Line Options: tOption

The tOption file set parses and handles command-line options.

3

3.3 Mathematics: Geometry, Mathutil, and Predicates

The mathutil file set handles random-number generation through the tRand class.
Thanks to Arnaud Desitter, it includes an implementation of a Mersenne Twister
pseudorandom number generator. The geometry.h file defines classes for 2D and 3D
points with constructors and assignment operators. The Predicates file set handles
arbitrary precision floating-point arithmetic, using a subset of a public domain code
modified by Stephen Lancaster.

3.4 Vectors and Matrices: tArray and tMatrix

The first version of CHILD was written before the Standard Template Library was
created, so it uses its own array (vector) handling routines in the tArray file set.
This implements the tArray class, which handles 1D arrays with bounds-checking,
constructors, etc. It is widely used throughout the code. The tMatrix file set
implements 2D arrays, or matrices, using the tMatrix class. It is not used especially
frequently in the code, however.

3.5 Linked List Management: tList, tPtrList, and tMeshList

CHILD makes heavy use of linked lists, which come in several flavors. Basic two-way
linked lists of objects are handled by the tList file set. It includes several classes:
tList implements the list itself, tListNodeBasic, tListable and tListNodeListable im-
plement the nodes that make up the list, and tListIter implements iterators that
move up and down a list to access its nodes. Lists of pointers to objects, as opposed
to lists of the objects themselves, have to be handled a little differently, and are
implemented by the tPtrList file set.

In addition to these, tMeshList handles a derived type of list designed specif-
ically for handling lists of mesh elements (nodes and edges; triangles don’t need
special handling). A tMeshList is a tList that is divided into two sections: an “ac-
tive” section (at the “top” of the list) representing nodes and edges that fall inside
the mesh boundaries. In other words, nodes that are part of the computed domain
and whose elevations change, etc., are placed in the active portion of the list. Bound-
ary nodes (whether open or closed to water and sediment) are placed in the inactive
(“bottom”) portion of the list. This makes it easy to access a list of active nodes.
Edges are handled in a similar fashion. The tMeshListIter class provides iterators to
access a tMeshList.

4

3.6 Time Management: tRunTimer

tRunTimer is a small class that keeps track of the current time in the simulation.

4 Mesh Construction and Management: tMesh,

tLNode and MeshElements

CHILD includes a large and fairly complex body of code to generate, maintain,
and update the Delaunay triangulation and related Voronoi diagram. The tMesh
class manages the overall mesh, and includes lists of three basic objects that make
up the mesh: nodes (tNode and tLNode classes), directed edges (tEdge class), and
triangles (tTriangle class). The tNode, tEdge, and tTriangle classes are defined in the
MeshElements fileset. The tNode class is designed to be generic and adaptable; its
data include 3D coordinates and a pointer to one of the edges (“spokes”) connected
to it, but little else. The tLNode class, which is inherited from tNode, contains most
of the data related to landscape evolution (drainage area, shear stress, etc.). Data
structures are described in Tucker et al. (2001 Computers and Geosciences).

5 Parameter and Data Input: tInput and tTime-

Series

Input of parameters and options is handled by the tInputFile class, which opens
and reads a specified file, and delivers the necessary parameters to the parts of the
code that request them. The class is generic and self-contained, and can easily be
used by other codes (I have used it so). It implements a simple “two-line” format
in which each parameter is represented by a unique tag on one line of the input file
and the value is specified on the next line. The order of parameters is arbitrary, and
comments can be included in the input file by placing a hash mark at the beginning
of the line.

Initial topography data, if desired, is not handled by tInputFile but rather by
the mesh routines (in the tMesh fileset). Some parameters can vary through time,
and the time variation is handled using the tTimeSeries class written by Patrick
Bogaart (currently at Wageningen University, Netherlands).

5

6 Output: tOutput, tLOutput

Output of data is handled by two related classes (and some helpers): tOutput and
tLOutput. The tOutput class handles output of triangulated mesh data to files.
The class handles only output of mesh data (nodes, edges, and triangles); output
of additional data (e.g., water or sediment flow) is handled by the derived class
tLOutput.

tOutput provides functions to open and initialize output files and write output
at a specified time in a simulation. The class is templated in order to allow for a
pointer to a templated tMesh object.

To handle output of application-specific data, one can create a class inherited
from tOutput and overload its virtual WriteNodeData function to output the addi-
tional data. In the present version of CHILD, the files tOutput.h/.cpp contain the
inherited class tLOutput, which handles output for the CHILD model. In the future,
such inherited classes could be kept in separate files to preserve the generality of
tOutput.

7 Rainfall and Runoff: tStorm and tStreamNet

The tStorm module generates storm events and interstorm periods using pseudo-
random numbers (or with constant intensity and duration, if the user desires). The
tStreamNet turns this into stream flow by computing drainage directions, infil-
tration, and discharge. It also computes channel geometry and sorts the node list
according to network position.

The stochastic rainfall model is discussed in Tucker and Bras (2000 Water Re-
sources Research) and Tucker (2004 Earth Surface Processes and Landforms). Runoff
and drainage routing algorithms are described in Tucker et al. (2001a Computers
and Geosciences and 2001b Chapter in Landscape Erosion and Evolution Modeling
by R. Harmon and W. Doe).

8 Erosion and Transport: Erosion

The Erosion module is the geomorphic workhorse. It implements various options
for sediment transport capacity and “bedrock” detachment. It includes the De-
tachErode function (and its counterpart, DetachErode2, written by Nicole Gasparini
for the sediment-flux-dependent bedrock erosion laws). This module also includes
hillslope transport. The erosion and transport algorithms are discussed in Tucker

6

et al. (2001b), Gasparini et al. (2004 Earth Surface Processes and Landforms), and
Gasparini et al. (2006 in Tectonics, climate and landscape evolution). As of this writ-
ing, DetachErode2 isn’t fully integrated; one has to hack childmain.cpp to make it
call DetachErode2 instead of DetachErode.

9 Stratigraphy

9.1 Layers beneath Nodes

Stratigraphy is normally handled using a stack of “layers” beneath each node. A
layer is implemented using class tLayer, which was created by Nicole Gasparini and
is defined in tLNode. Layer input (when a run is re-started) is handled in tMesh,
while output is handled in tOutput. For discussion of implementation and an
example application, see Gasparini et al. (2004).

9.2 High-Resolution Gridded Stratigraphy: tStratGrid

Handling layers as stacks beneath individual nodes can introduce problems when the
nodes are moving significantly, as in the case of channel meandering simulations (see
Clevis et al., 2006a Computers and Geosciences and Clevis et al., 2006b Geoarchaeol-
ogy).). To deal with this problem, Quintijn Clevis developed an alternative method
for handling stratigraphy based on a static raster grid that underlies the landscape.
The approach is implemented in tStratGrid. As of this writing, it has only been
used for a project on fluvial stratigraphy and geoarchaeology described by Clevis et
al. (2006b).

10 Uplift, Subsidence and Baselevel Change: tU-

plift

Vertical motion of the landscape relative to a baselevel are handled by tUplift. The
tUplift class provides a variety of different “uplift” geometries and methods (including
some that have lateral motion).

7

11 Special Processes: Channel Meandering, Flood-

plain Deposition, Eolian Deposition, Vegeta-

tion

11.1 Stream Meandering: tStreamMeander

Stephen Lancaster developed a module for stream meandering in which nodes rep-
resenting “large” streams (those with drainage area larger than some threshold)
undergo meandering, using a model described by Lancaster and Bras (2002 Hydro-
logical Processes). As channel nodes migrate, the mesh is constantly updated, with
some nodes being added (representing point-bar deposits) and others deleted (repre-
senting bank erosion). The code to implement this, in tStreamMeander, is quite
tricky, and has gone through a number of iterations and bug fixes. As of this writing,
the most recent published implementation is Clevis et al. (2006b) on geoarchaeology
simulation. Nate Bradley is also using the meander module to examine floodplain
sediment residence-time distributions (Bradley and Tucker, 2007 AGU abstract).
Applications that use the meander module have so far focused on a domain consist-
ing of an idealized segment of a large river valley, rather than an entire drainage
basin.

11.2 Floodplain Deposition: tFloodplain

For the floodplain evolution and geoarchaeology projects, a tFloodplain module
was created that deposits “overbank” sediment on a landscape based on a modified
version of Howard’s (1992) floodplain-sedimentation model. So far, this module has
only been used in the context of the geoarchaeology simulation project (Clevis et al.,
2006b).

11.3 Vegetation Dynamics: tVegetation

Around 1997, stimulated in part by simplifications used in climate-response modeling
by Tucker and Slingerland (1997 Water Resources Research), we started thinking
about the role of vegetation in controling channel network extent. The result was
a simple dynamic model of vegetation growth and erosion, which is implemented in
tVegetation. Daniel Collins explored this model for his MS thesis, and the results
appear in Collins et al. (2004 Journal of Geophysical Research). A zero-dimensional
version is presented (not coupled in CHILD) in Tucker et al. (2006 GSA Bulletin).
Lee Arnold also used the tVegetation model in a chapter of his D.Phil. thesis

8

(Arnold, 2006 Oxford D.Phil.), which I hope will see the light of publication some
day.

11.4 Dust Accumulation: tEolian

When the development team in Rafael Bras’ geomorphology group (Bras, Gasparini,
Lancaster and Tucker) began building CHILD at MIT in the mid to late 1990s, the
effort was supported by a Corps of Engineers grant that was geared in part toward
geoarchaeology modeling at Fort Riley, Kansas (see Zeidler et al., 1999 CEMML
Technical Report). Because the geomorphology of that setting includes a strong
component of glacial loess, we wrote a very simple tEolian module to drape dust
on the landscape at a specified rate. To the best of my knowledge, it has never been
published outside of technical reports.

12 Notes on the CHILD Interface Routines

As of academic year 2009-2010, CHILD has a set of interface functions. These
interface functions make it possible for CHILD to be treated as a callable component
by other code, so that it can be coupled with other models or simply driven from
an external program. This interface is motivated by the CSDMS project. As of
this writing (April 2010), most of the interface functions are only available in the
Development version; the Release version has a more limited set of interface routines.
The plan is to incorporate the full interface routines into the Release version once
they are mature.

The interface routines are declared in childInterface.h (note that the Release
version uses a different file, childRInterface.h).

12.1 How to Tell CHILD to Erode or Deposit Sediment

Sometimes it might be useful for an external program or module to modify CHILD’s
topography and deposits. For example, if CHILD is coupled to SedFlux, that model
might calculate a certain amount of erosion or sedimentation. The interface function
ExternalErosionAndDeposition supports this. It takes as an argument a vector
of nodes indicating the depth. Depths are positive for deposition and negative for
erosion. The vector must be in order by permanent ID number. As of now, this
function does not handle multiple grain-size fractions, and will probably fail if it is
used in a run with multiple sizes. Fixing this is on the “to do” list. Note also that
this function should not be used to implement external tectonics, because it alters the

9

layering (that is, deposition can actually add new layers rather than simply raising
the elevation, and likewise erosion can remove layers).

12.2 How to Track Water and Sediment Fluxes

Coupling CHILD with other process models, like SedFlux, will often require informa-
tion about CHILD’s fluxes of water and sediment. One might think that this would
simply involve querying CHILD’s current values of water and sediment discharge at
each node. However, in the most general case, it is not quite so straightforward.
Imagine for example that one wants to run CHILD for 1000 years, then use its wa-
ter and sediment fluxes over that time interval as input to another model. At the
end of 1000 years, each CHILD node will have a value for water and sediment flux,
but these values do not necessarily represent the average flux over the 1000-year pe-
riod. Suppose the run in question was configured to use CHILD’s stochastic rainfall
module. In that case, the discharge could fluctuate widely over the course of the
1000-year period, so that the value at t = 1000 does not necessarily reflect the values
at any other time during the 1000-year period. Likewise, the sediment fluxes will
vary widely in concert with the discharges.

This means that in order to properly record CHILD’s water and sediment fluxes
over a given period of time, another approach is needed. To that end, an interface
function called TrackWaterAndSedFluxAtNodes is provided. This function is used
to activate tracking of water and sediment flux at specified nodes (if it is not already
activated), or to re-set the list of nodes to track. The water and sediment fluxes at
the tracked nodes is recorded in a set of files. Each node has one file.

Tracking of fluxes is implemented with help from the tWaterSedTracker class,
which is defined in a pair of files tWaterSedTracker.h and tWaterSedTracker.cpp.
The sequence of events works like this:

1. When the CHILD interface is instantiated at the beginning of a run, it auto-
matically creates a tWaterSedTracker.

2. When the interface’s Initialize method is called, it checks the main input
file to see whether the user wants to tracker water and sediment fluxes (via the
tag OPT TRACK WATER SED TIMESERIES). If yes, then the WaterSedTracker’s
InitializeFromInputFile method is called to set things up.

3. The InitializeFromInputFile method reads in the number of nodes to track
and their (x, y) coordinates, and sets up an internal list of tracking nodes. It
also creates a set of output files for water and sediment fluxes, one per node.
The name for a typical flux output file looks like:

10

myrun node23 t0.water sed

Here, “myrun” is the base name, the node is 23, and the “t0” indicates that
the records begin from time 0. (The start time is included because the list of
nodes can change, and when that happens new files are created).

4. The Erosion module is told to activate tracking. This simply sets a flag inside
Erosion and hands it a pointer to the tWaterSedTracker.

5. When tracking is switched on, the cumulative sediment volume at each track-
ing node is recorded at the end of each sub-time step. This is implemented
in Erosion’s DetachErode method via a call to the tWaterSedTracker’s method
AddSedVolumeAtTrackingNodes. Caveats: this only works when (1) detachment-
limited mode is OFF (otherwise there are no defined sediment fluxes), and
(2) DetachErode, rather than Nicole’s DetachErode2 (which implements the
“f(Qs)” algorithms), is used.

6. At the end of each storm, the tWaterSedTracker’s WriteAndReset... method
is called. This records the average flux of sediment (volume divided by elapsed
time) at each of the tracking nodes, along with the fluvial discharge (which is
constant during each storm).

To make use of the flux data, the output files need to be opened and read. An
advantage is that the full time-series is provided (i.e., one data point per node per
storm). A disadvantage is that file I/O is required.

11

