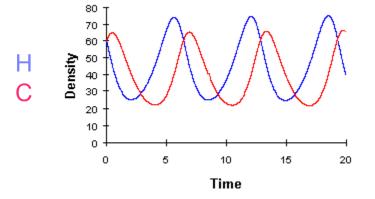
Population Models for Carbonate Workbench

Scoping

- a. Static Environmental context productivity
- b. Dynamic Population context community linkages
 - Basic / inefficient
 - Optimized


Volterra-Lotke

- Simplest:
 - Intrinsic rates of increase of prey:a, density related
 - Predation rates:b, conversion:c to prey offspring, density- related
 - Mortalities:m
 - & Environmental homogeneity (hiding places)
 - & Competition

$$\frac{dH}{dt} = aH - bHC$$
H, herbivore population

$$\frac{dC}{dt} = cbHC - mC$$
C, Consumer population

- Practical:
 - Numerical solutions
 - Limits to complexity

Ecopath

- Production = catch + predation + net migration + biomass accumulation + other mortality
- Consumption = production + respiration + unassimilated food
- Parameters needed (raw or estimated): biomass, production/biomass ratio (or total mortality), consumption/biomass ratio, and ecotrophic efficiency for each of the functional groups in a model

Path Model

Trophic energy flows => population and growth rates <u>Lots</u> of information from ecologists, reef studies, carbon biogeochemists We can use guilds (as zoologists do) for palaeo-communities

For example:

- •Trophic web
- •Sessile / vagrant
- Soft / Skeletonized
- •Hetero- / Autotroph
- •R/K strategies
- •Feeding scales
- •Grazing/Filter/Predator
- •Framework / Encrusting / Interstitial