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Example elemental cycle vignettes :

Some other time:



Schlünz and Schneider, 2000

TOC flux (106 tons C yr-1)



Hedges and Keil, 1995; Berner, 1982; McKee and Bianchi, 2000

•Accumulation rate (advection into anoxic storage regime)

•Corg – mineral associations  (stabilization)

•Oxygen exposure time  (oxidant reactivity – energy yield )
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Quantity of reactive Fe determines relative reaction balances and timing of 
redox stages in response to physical dynamics.  

The initial quantity and reactivity of Fe phases are largely determined by the
weathering regime in the drainage basin and coastal wetlands.
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Most diagenetically reduced Fe(II) is not associated with S.

Deposits are relatively S poor compared to Corg content.
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Implications for paleoenvironment reconstruction

Unsteady topset diagenetic regimes favor preservation of isotopically heavy S



Properties:

•Abundant supply of reactive Fe, Al –oxides 
(source region)

•Supply of reactive Corg , high remineralization rates      
(productive, source region)

•Suboxic diagenetic conditions (reducing, nonsulfidic)

•High flux of reactive biogenic SiO2   (productive)

•Alkali and alkaline earth rich solutions  (seawater)

Reverse weathering



Michalopoulos, et al., 2000, Geol.

Amazon – Guianas



unaltered Gulf of Papua  incubations
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• Li+ diffusive flux:  0.4  - 3 mmol m-2 yr-1    (up to 60% local river supply)

• No water column expression  (“conservative” Li+ , F- versus salinity relation )

High flux of Li+, K+, and F- into mobile suboxic zone 

Topset  GH14



Moore, et al, 1996, CSR
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Characteristic properties of tropical mobile deltaic muds :

• Unsteady, episodically mixed suboxic reactor (minor bioturbation)

• High reactive Fe  (300 - 400 μmol g-1; 2 - 3X temperate)

• High fraction reactive Fe reduced (>0.8)

• Low fraction Fe(II) as sulfide (<0.1)

• C / S ~ 4 – 6

• δ34S > 0 (10 to 30)

• Corg / SA  <  0.4 mg C m-2      

• Authigenic Fe - rich clays, carbonates



Anoxic ocean (reactive Fe relations; sedimentary structures)

Low productivity (low Corg)

Low SO4
2- ocean  (low S, high C/S , high  δ34S ‰)

no S disproportionation (high δ34S ‰ )

Environmental reconstruction ?

•Require criteria independent of commonly used geochemical properties
to constrain nature of depositional environment



•Energetic topset mud deposits behave as unsteady, suboxic batch reactors

•Terrestrial and marine sedimentary debris, river and sea water solutes 
are imported, modified in the topset reactor, and exported both seaward 
and shoreward  (material exchange, storage)

•Diagenetic reaction types, magnitudes, balances, products and net fluxes depend on:

reactant inputs (e.g., reactivity - kinetics, mass )
frequency, magnitudes, duration of physical disturbance (sedimentary dynamics)
residence times of particles within mobile suboxic zone         
geomorphology – oceanographic coupling (facies geometry)

•Permeable sand facies properties / fluxes remain largely unknown

•A wide spectrum of Corg pools of varied reactivity are efficiently remineralized

•Biogenic Si, alkalis, alkaline earths, and halides are consumed by 
reverse weathering processes

•Isotopic signatures are modified, including SO4 and Fe



Despite their central importance in governing the net output of source to sink systems,
modifying solute and particle compositions, and controlling material storage 
properties at the continent – ocean -atmospheric boundary, relatively few 
geochemical / biogeochemical studies of energetic topset muds, and even fewer of 
deltaic sand deposits, have been made.

Why?

•The complexity associated with the unsteady nature and physical setting of these 
systems is not amenable to quick results using standard sampling methods (e.g., 
characterization by 1 time sampling) and requires integrated interdisciplinary effort 
and new methodologies to make headway (difficult to organize, fund, and sustain).

•Enertia of traditional models.

•Lack of interest by biogeochemists in seabed relative to water column processes (out 
of sight out of mind).

Perpetuates an under appreciation or misunderstanding of the central role of the 
seabed and sedimentary dynamics in elemental cycling in shallow water systems.



Future biogeochemical study designs in energetic shallow systems
should include: 

Sedimentary reflux dynamics:

Frequency 
Duration (event, rest state)
Intensity  (mass / depth scales)
Net accumulation rate

Water column:  
Composition and productivity
Transport regime 

Coupling to seafloor biogeochemical cycling:

Reoxidation / exchange efficiency
Reaction progression - extent
Benthic fluxes (eddy correlation based)
Storage Properties



Formulate coupled, probabilistic sediment dynamics – biogeochemical response
models of :

Topset reworking / re-exposure frequencies / duration / magnitudes  (reflux)  (

Diagenetic reaction kinetics

Residence times within depositional regime

Export to foreset

Wetland – Topset exchange

Bioturbation – recolonization patterns (transient)

Primary production response to sediment remobilization


