
A Component-Based Approach to Integrated Modeling

in the Geosciences: The Design of CSDMS

Scott Peckham, Eric Hutton

CSDMS, University of Colorado, 1560 30th Street, UCB 450, Boulder, CO 80309, USA

Boyana Norris

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.
Cass Ave., Argonne, IL 60439, USA

Abstract

The development of scientific modeling software increasingly requires the

coupling of multiple independently developed models. Component-based

software engineering enables the integration of plug-and-play components,

but significant additional challenges must be addressed in any specific do-

main in order to produce a usable development and simulation environment

that is also going to encourage contributions and adoption by entire com-

munities. In this paper we describe the challenges in creating a coupling

environment for Earth-surface process modeling and how we approach them

in our integration efforts at the Community Surface Dynamics Modeling Sys-

tem.

Keywords:

component software, CCA, CSDMS, modeling, code generation

Email addresses: Scott.Peckham@colorado.edu (Scott Peckham),
Eric.Hutton@colorado.edu (Eric Hutton), norris@mcs.anl.gov (Boyana Norris)

Preprint submitted to Computers and Geosciences: Modeling for Environmental ChangeMarch 16, 2011

1. Introduction1

The Community Surface Dynamics Modeling System (CSDMS) project [12]2

is an NSF-funded, international effort to develop a suite of modular numerical3

models able to simulate a wide variety of Earth-surface processes, on time4

scales ranging from individual events to many millions of years. CSDMS5

maintains a large, searchable inventory of contributed models and promotes6

the sharing, reuse, and integration of open-source modeling software. It has7

adopted a component-based software development model and has created8

a suite of tools that make the creation of plug-and-play components from9

stand-alone models as automated and effortless as possible. Models or pro-10

cess modules that have been converted to component form are much more11

flexible and can be rapidly assembled into new configurations to solve a wider12

variety of scientific problems. The ease with which one component can be re-13

placed by another also makes it easy to experiment with different approaches14

to providing a particular type of functionality. The CSDMS project also has a15

mandate from the NSF to provide a migration pathway for surface dynamics16

modelers toward high-performance computing (HPC) and provides a 720-17

core supercomputer for use by its members. In addition, CSDMS provides18

educational infrastructure related to physically based modeling.19

The main purpose of this paper is to present in some detail the key issues20

and design criteria for a component-based, integrated modeling system and21

then describe the design choices adopted by the CSDMS project to address22

these criteria. CSDMS was not developed in isolation: it builds on and23

extends proven, open-source technology. The CSDMS project also maintains24

close collaborations with several other integrated modeling projects and seeks25

2

to evaluate different approaches in pursuit of those that are optimal. As with26

any design problem, myriad factors must be considered in determining what27

is optimal, including how various choices affect users and developers. Other28

key factors are performance, ease of maintenance, ease of use, flexibility,29

portability, stability, encapsulation, and future proofing.30

1.1. Component Programming Concepts31

Component-based programming is all about bringing the advantages of32

“plug and play” technology into the realm of software. When one buys a33

new peripheral for a computer, such as a mouse or printer, the goal is to34

be able to simply plug it into the right kind of port (e.g., a USB, serial,35

or parallel port) and have it work, right out of the box. For this situation36

to be possible, however, some kind of published standard is needed that37

the makers of peripheral devices can design against. For example, most38

computers have universal serial bus (USB) ports, and the USB standard is39

well documented. A computer’s USB port can always be expected to provide40

certain capabilities, such as the ability to transmit data at a particular speed41

and the ability to provide a 5-volt supply of power with a maximum current42

of 500 mA. The result of this standardization is that one can usually buy a43

new device, plug it into a computer’s USB port, and start using it. Software44

“plug-ins” work in a similar manner, relying on interfaces (ports) that have45

well-documented structure or capabilities. In software, as in hardware, the46

term component refers to a unit that delivers a particular type of functionality47

and that can be “plugged in.”48

Component programming build on the fundamental concepts of object-49

oriented programming, with the main difference being the introduction or50

3

presence of a runtime framework. Components are generally implemented as51

classes in an object-oriented language, and are essentially “black boxes” that52

encapsulate some useful bit of functionality.53

The purpose of a framework is to provide an environment in which com-54

ponents can be linked together to form applications. The framework provides55

a number of services that are accessible to all components, such as the linking56

mechanism itself. Often, a framework will also provide a uniform method of57

trapping or handling exceptions (i.e., errors), keeping in mind that each com-58

ponent will throw exceptions according to the rules of the language that it is59

written in. In some frameworks (e.g., CCA’s Ccaffeine [1]), there is a mech-60

anism by which any component can be promoted to a framework service, as61

explained in a later section.62

One feature that often distinguishes components from ordinary subrou-63

tines, software modules, or classes is that they are able to communicate with64

other components that may be written in a different programming language.65

This capability is referred to as language interoperability. In order for this66

to be possible, the framework must provide a language interoperability tool67

that can create the necessary “glue code” between the components. For a68

CCA-compliant framework, that tool is Babel [14, 29], and the supported69

languages are C, C++, Fortran (77-2003), Java, and Python. Babel is de-70

scribed in more detail in a later section. For Microsoft’s .NET framework [33],71

that tool is CLR (Common Language Runtime), which is an implementation72

of an open standard called CLI (Common Language Infrastructure), also73

developed by Microsoft. Some of the supported languages are C# (a spin-74

off of Java), Visual Basic, C++/CLI, IronLisp, IronPython, and IronRuby.75

4

CLR runs a form of bytecode called CIL (Common Intermediate Language).76

Note that CLI does not support Fortran, Java, standard C++, or standard77

Python.78

The Java-based frameworks used by Sun Microsystems are JavaBeans and79

Enterprise JavaBeans (EJB) [17]. In the words of Armstrong et al. [3]:80

Neither JavaBeans nor EJB directly addresses the issue of lan-81

guage interoperability, and therefore neither is appropriate for82

the scientific computing environment. Both JavaBeans and EJB83

assume that all components are written in the Java language. Al-84

though the Java Native Interface library supports interoperabil-85

ity with C and C++, using the Java virtual machine to mediate86

communication between components would incur an intolerable87

performance penalty on every inter-component function call.88

While in recent years the performance of Java codes has improved steadily89

through just-in-time (JIT) compilation into native code, Java is not yet avail-90

able on key high-performance platforms such as the IBM Blue Gene/L and91

Blue Gene/P supercomputers.92

Key advantages of component-based programming include the following.93

• Components can be written in different languages and still communi-94

cate (via language interoperability).95

• Components can be replaced, added to, or deleted from an application96

at runtime via dynamic linking (as precompiled units).97

5

• Components can easily be moved to a remote location (different ad-98

dress space) without recompiling other parts of the application (via99

RMI/RPC support).100

• Components can have multiple different interfaces.101

• Components can be “stateful”; that is, data encapsulated in the com-102

ponent is retained between method calls over its lifetime.103

• Components can be customized at runtime with configuration param-104

eters.105

• Components provide a clear specification of inputs needed from other106

components in the system.107

• Components allow multicasting calls that do not need return values108

(i.e., send data to multiple components simultaneously).109

• Components provide clean separation of functionality (for components,110

this is mandatory vs. optional).111

• Components facilitate code reuse and rapid comparison of different112

implementations.113

• Components facilitate efficient cooperation between groups, each doing114

what it does best.115

• Components promote economy of scale through development of com-116

munity standards.117

6

2. Background118

We briefly overview the component methodology used in CSDMS and119

the associated tools that support component development and application120

execution.121

2.1. The Common Component Architecture122

The Common Component Architecture (CCA) [3] is a component ar-123

chitecture standard adopted by federal agencies (largely the Department of124

Energy and its national laboratories) and academics to allow software com-125

ponents to be combined and integrated for enhanced functionality on high-126

performance computing systems. The CCA Forum is a grassroots organiza-127

tion that started in 1998 to promote component technology standards (and128

code reuse) for HPC. CCA defines standards necessary for the interopera-129

tion of components developed in different frameworks. Software components130

that adhere to these standards can be ported with relative ease to another131

CCA-compliant framework. While a variety of other component architecture132

standards exist in the commercial sector (e.g., CORBA, COM, .Net, and Jav-133

aBeans), CCA was created to fulfill the needs of scientific, high-performance,134

open-source computing that are unmet by these other standards. For ex-135

ample, scientific software needs full support for complex numbers, dynam-136

ically dimensioned multidimensional arrays, Fortran (and other languages),137

and multiple processor systems. Armstrong et al. [3] explain the motivation138

for creating CCA by discussing the pros and cons of other component-based139

frameworks with regard to scientific, high-performance computing. A number140

of DOE projects, many associated with the Scientific Discovery through Ad-141

7

vanced Computing (SciDAC) [46] program, are devoted to the development142

of component technology for high-performance computing systems. Several143

of these are heavily invested in the CCA standard (or are moving toward144

it) and involve computer scientists and applied mathematicians. Examples145

include the following.146

• TASCS: The Center for Technology for Advanced Scientific Computing147

Software, which focused on CCA and its associated tools [9].148

• CASC: Center for Applied Scientific Computing, which is home to149

CCA’s Babel tool [29].150

• ITAPS: The Interoperable Technologies for Advanced Petascale Simu-151

lation [16], which focuses on meshing and discretization components,152

formerly TSTT.153

• PERI: Performance Engineering Research Institute, which focuses on154

HPC quality of service and performance issues [30].155

• TOPS: Terascale Optimal PDE Solvers, which focuses on PDE solver156

components [24].157

• PETSc: Portable, Extensible Toolkit for Scientific Computation, which158

focuses on linear and nonlinear PDE solvers for HPC, using MPI [6, 7,159

8].160

A variety of different frameworks, such as Ccaffeine [1], CCAT/XCAT [25],161

SciRUN [15] and Decaf [26], adhere to the CCA component architecture stan-162

dard. A framework can be CCA-compliant and still be tailored to the needs of163

8

a particular computing environment. For example, Ccaffeine was designed to164

support parallel computing, and XCAT was designed to support distributed165

computing. Decaf [26] was designed by the developers of Babel primarily as166

a means of studying the technical aspects of the CCA standard itself. The167

important point is that each of these frameworks adheres to the same stan-168

dard, thus facilitating reuse of a (CCA) component in another computational169

setting. The key idea is to isolate the components themselves, as much as170

possible, from the details of the computational environment in which they171

are deployed. If this is not done, then we fail to achieve one of the main goals172

of component programming: code reuse.173

CCA has been shown to be interoperable with Earth System Modeling174

Framework (ESMF) [20] and Model Coupling Toolkit (MCT) [27, 28, 36,175

43]. CSDMS has also demonstrated that it is interoperable with a Java176

version of Open Modeling Interface (OpenMI) [44]. Many of the papers in177

our cited references have been written by CCA Forum members and are178

helpful for learning more about CCA. The CCA Forum has also prepared179

a set of tutorials called “A Hands-On Guide to the Common Component180

Architecture” [11].181

2.2. Language Interoperability with Babel182

Babel [29, 14] is an open-source, language interoperability tool (consist-183

ing of a compiler and runtime) that automatically generates the “glue code”184

necessary for components written in different computer languages to commu-185

nicate. As illustrated in Fig. 1, Babel currently supports C, C++, Fortran186

(77, 90, 95, and 2003), Java and Python. Babel is much more than a “least187

common denominator” solution; it even enables passing of variables with188

9

Figure 1: Language interoperability provided by Babel.

data types that may not normally be supported by the target language (e.g.,189

objects and complex numbers). Babel was designed to support scientific,190

high-performance computing and is one of the key tools in the CCA tool191

chain. It won an R&D 100 design award in 2006 for “The world’s most192

rapid communication among many programming languages in a single ap-193

plication.” It has been shown to outperform similar technologies such as194

CORBA and Microsoft’s COM and .NET.195

In order to create the glue code needed for two components written in196

different programming languages to exchange information, Babel needs to197

know only about the interfaces of the two components. It does not need198

any implementation details. Babel was therefore designed so that it can in-199

gest a description of an interface in either of two fairly “language-neutral”200

forms, XML (eXtensible Markup Language) or SIDL (Scientific Interface201

10

Definition Language). The SIDL language (somewhat similar to CORBA’s202

IDL) was developed for the Babel project. Its sole purpose is to provide a203

concise description of a scientific software component interface. This inter-204

face description includes complete information about a component’s inter-205

face, such as the data types of all arguments and return values for each of206

the component’s methods (or member functions). SIDL has a complete set207

of fundamental data types to support scientific computing, from Booleans208

to double-precision complex numbers. It also supports more sophisticated209

data types such as enumerations, strings, objects, structs,and dynamic multi-210

dimensional arrays. The syntax of SIDL is similar to that of Java. A com-211

plete description of SIDL syntax and grammar can be found in “Appendix212

B: SIDL Grammar” in the Babel User’s Guide [14]. Complete details on how213

to represent a SIDL interface in XML are given in “Appendix C: Extensible214

Markup Language (XML)” of the same guide.215

2.3. The Ccaffeine Framework216

Ccaffeine [1] is the most widely used CCA framework, providing the run-217

time environment for sequential or parallel components applications. Us-218

ing Ccaffeine, component-based applications can run on diverse platforms,219

including laptops, desktops, clusters, and leadership-class supercomputers.220

Ccaffeine provides some rudimentary MPI communicator services, although221

individual components are responsible for managing parallelism internally222

(e.g., communicating data to and from other distributed components). A223

CCA framework provides services, which include component instantiation224

and destruction, connecting and disconnecting of ports, handling of input225

parameters, and control of MPI communicators. Ccaffeine was designed pri-226

11

marily to support the single-component multiple-data (SCMD) programming227

style, although it can support multiple-component multiple-data (MCMD)228

applications that implement more dynamic management of parallel resources.229

The CCA specification also includes an event service description, but it is230

not fully implemented in Ccaffeine yet. Multiple interfaces to configuring231

and executing component applications within the Ccaffeine framework exist,232

including a simple scripting language, a graphical user interface, and the abil-233

ity to take over some of the operations normally handled by the frameworks,234

such as component instantiation and port connections.235

A typical CCA component’s execution consists of the following steps:236

• The framework loads the dynamic library for the component. Static237

linking options are also available.238

• The component is instantiated. The framework calls the setServices239

method on the component, passing a handle to itself as an argument.240

• User-specified connections to other components’ ports are established241

by the framework.242

• If the component provides a gov.cca.ports.Go port (similar to a243

“main” subroutine), its go() method can be invoked to start the main244

portion of the computation.245

• Connections can be made and broken throughout the life of the com-246

ponent.247

• All component ports are disconnected, and the framework calls re-248

leaseServices prior to calling the component’s destructor.249

12

The handle to the framework services object, which all CCA components250

obtain shortly after instantiation, can be used to access various framework251

services throughout the component’s execution. This represents the main252

difference between a class and a component: a component dynamically ac-253

cesses another component’s functionality through dynamically connecting254

ports (requiring the presence of a framework), whereas classes in object-255

oriented languages call methods directly on instances of other classes.256

2.4. Component Development with Bocca257

Bocca [2] is a tool in the CCA tool chain that was designed to help258

users create, edit, and manage a set of SIDL-based entities, including CCA259

components and ports, that are associated with a particular project. Once260

a set of CCA-compliant components and ports has been prepared, one can261

use a CCA-compliant framework such as Ccaffeine to link components from262

this set together to create applications or composite models.263

Bocca was developed to address usability concerns and reduce the de-264

velopment effort required for implementing multilanguage component appli-265

cations. Bocca was designed specifically to free users from mundane, time-266

consuming, low-level tasks so they can focus on the scientific aspects of their267

applications. It can be viewed as a development environment tool that al-268

lows application developers to perform rapid component prototyping while269

maintaining robust software- engineering practices suitable to HPC envi-270

ronments. Bocca provides project management and a comprehensive build271

environment for creating and managing applications composed of CCA com-272

ponents. Bocca operates in a language-agnostic way by automatically in-273

voking the Babel compiler. A set of Bocca commands required to create a274

13

component project can be saved as a shell script, so that the project can275

be rapidly rebuilt, if necessary. Various aspects of an existing component276

project can also be modified by typing Bocca commands interactively at a277

Unix command prompt.278

While Bocca automatically generates dynamic libraries, a separate tool279

can be used to create stand-alone executables for projects by automatically280

bundling all required libraries on a given platform. Examples of using Bocca281

are available in the set of tutorials called “A Hands-On Guide to the Common282

Component Architecture,” written by the CCA Forum members [11].283

2.5. Other Component-Based Modeling Projects284

We briefly discuss several other component-based projects in the area of285

Earth system-related modeling.286

• The Object Modeling System (OMS) [35] is a pure Java, object-oriented287

framework for component-based agro-environmental modeling.288

• The Open Modeling Interface (OpenMI) [44] is an open-source software-289

component interface standard for the computational core of numerical290

models. Model components that comply with this standard can be con-291

figured without programming to exchange data during computation (at292

runtime). Similar to the CCA component model, the OpenMI standard293

supports two-way links between components so that the involved mod-294

els can mutually depend on calculation results from each other. Linked295

models may run asynchronously with respect to time steps, and data296

represented on different geometries (grids) can be exchanged by using297

built-in tools for interpolating in space and time. OpenMI was designed298

14

primarily for use on PCs, using either the .NET or Java framework.299

CSDMS has experimented with OpenMI version 1.4 (version 2.0 was300

recently released) but currently uses a simpler component interface.301

• The Earth System Modeling Framework (ESMF) [18, 20] is software302

for building and coupling weather, climate, and related models writ-303

ten in Fortran. ESMF defines data structures, parallel data redistri-304

bution, and other utilities to enable the composition of multimodel305

high-performance simulations.306

• The Framework for Risk Analysis of Multi-Media Environmental Sys-307

tems (FRAMES) [19] is developed by the U.S. Environmental Protec-308

tion Agency to provide models and modeling tools (e.g., data retrieval309

and analysis) for simulating different environmental processes.310

3. Problem Definition – Component-based Plug-and-Play Model-311

ing312

Next we discuss the challenges that we faced in tackling the problem313

of creating plug-and-play modeling capabilities that can be extended and314

actively used by the CSDMS community.315

3.1. Attributes of Earth Surface Process Models316

The Earth surface process modeling community has numerous models,317

but it is difficult to couple or reconfigure them to solve new problems. The318

reason is that they are a heterogeneous set.319

• The models are written in many different languages, which may be320

object-oriented or procedural, compiled or interpreted, proprietary or321

15

open-source, etc. Languages do not all offer the same data types and322

features, so special tools are required to create “glue code” necessary323

to make function calls across the language barrier.324

• The models typically are not designed to “talk” to each other and do325

not follow any particular set of conventions.326

• The models generally have a geographic context and are often used in327

conjunction with GIS (Geographic Information System) tools.328

• The generally consist of one or more arrays (1D, 2D, or 3D) that are329

being advanced in time according to differential equations or other rules330

(i.e., we are not modeling molecular dynamics).331

• The models use different input and output file formats.332

• The models are often open source. Even many models that were orig-333

inally sold commercially are now available as open-source code, for334

example parts of Delt3D from Deltares and many EDF (Energie du335

Francais) models.336

3.2. Difficulties in Linking Models337

Linking together models that were not specifically designed from the out-338

set to be linkable is often surprisingly difficult, and a brute-force approach to339

the problem often requires a significant investment of time and effort. The340

main reason is that two models may differ in may ways. The following list341

of possible differences illustrates this point.342

• The models are written in different languages, making conversion time-343

consuming and error-prone.344

16

• The person doing the linking may not be the author of either model,345

and the code is often not well-documented or easy to understand.346

• Models may have different dimensionality (1D, 2D, or 3D).347

• Models may use different types of grids (e.g., rectangles, triangles, and348

Voronoi cells).349

• Each model has its own time loop or “clock.”350

• The numerical scheme may be either explicit or implicit.351

3.3. Design Criteria352

The technical goals of a component-based modeling system include the353

following.354

• Support for multiple operating systems (especially Linux, Mac OS X,355

and Windows).356

• Language interoperability to support code contributions written in pro-357

cedural languages (e.g., C or Fortran) as well as object-oriented lan-358

guages (e.g., Java, C++, and Python).359

• Support for both structured and unstructured grids, requiring a spatial360

regridding tool.361

• Platform-independent GUIs and graphics where useful.362

• Use of well-established, open-source software standards whenever pos-363

sible (e.g., CCA, SIDL, OGC, MPI, NetCDF, OpenDAP, and XUL).364

17

• Use of open-source tools that are mature and have well-established com-365

munities, avoiding dependencies on proprietary software whenever pos-366

sible (e.g., Windows, C#, and Matlab).367

• Support for parallel computation (multiprocessor, via MPI standard).368

• Interoperability with other coupling frameworks. Since code reuse is a369

fundamental tenet of component-based modeling, the effort required to370

use a component in another framework should be kept to a minimum.371

• Robustness and ease of maintainenance. It will clearly have many soft-372

ware dependencies, and this software infrastructure will need to be373

updated on a regular basis.374

• Use of HPC tools and libraries. If the modeling system runs on HPC375

architectures, it should strive to use parallel tools and models (e.g.,376

VisIt, PETSc, and the ESMF regridding tool).377

• Familiarity. Model developers and contributors should not be required378

to make major changes to how they work.379

Expanding the last bullet, developers should not be required to convert380

to another programming language or use invasive changes to their code (e.g.,381

use specified data structures, libraries, or classes). They should be able to382

retain “ownership” of the code and make continual improvements to it; some-383

one should be able to componentize future, improved versions with minimal384

additional effort. The developer will likely want to continue to use the code385

outside the framework. However, some degree of code refactoring (e.g., break-386

ing code into functions or adding a few new functions) and ensuring that the387

18

code compiles with an open-source compiler are considered reasonable re-388

quirements. It is also expected that many developers will take advantage of389

various built-in tools if doing so is straightforward and beneficial.390

3.4. Interface vs. Implementation391

The word interface may be the most overloaded word in computer science.392

In each case, however, it adheres to the standard, English meaning of the393

word that has to do with a boundary between two items and what happens394

at the boundary.395

Many people hear the word interface and immediately think of the in-396

terface between a human and a computer program, which is typically either397

a command-line interfaceor a graphical user interface (GUI). While such in-398

terfaces are an interesting and complex subject, this is usually not what399

computer scientists are talking about. Instead, they tend to be interested400

in other types of interface, such as the one between a pair of software com-401

ponents, or between a component and a framework, or between a developer402

and a set of utilities (i.e., an API or a software development kit).403

Within the present context of component programming, we are interested404

primarily in the interfaces between components. In this context, the word405

interface has a specific meaning, essentially the same as in the Java pro-406

gramming language. An interface is a user-defined entity/type, similar to407

an abstract class. It does not have any data fields, but instead is a named408

set of methods or member functions, each defined completely with regard to409

argument types and return types but without any actual implementation. A410

CCA port is simply this type of interface. Interfaces are the name of the411

game when it comes to the question of reusability or “plug and play.” Once412

19

an interface has been defined, one can ask the question: Does this compo-413

nent have interface A? To answer the question, we merely have to look at the414

methods (or member functions) that the component has with regard to their415

names, argument types, and return types. If a component does have a given416

interface, then it is said to expose or implement that interface, meaning that417

it contains an actual implementation for each of those methods. It is fine418

if the component has additional methods beyond the ones that constitute a419

particular interface. Thus, it is possible (and frequently useful) for a single420

component to expose multiple, different interfaces or ports. For example,421

multiple interfaces may allow a component to be used in a greater variety422

of settings. An analogy exists in computer hardware, where a computer or423

peripheral may actually have a number of different ports (e.g., USB, serial,424

parallel, and ethernet) to enable it to communicate with a wider variety of425

other components.426

The distinction between interface and implementation is an important427

theme in computer science. The word pair declaration and definition is used428

in a similar way. A function (or class) declaration tells what the function429

does (and how to interact with or use it) but not how it works. To see how430

the function actually works, we need to look at how it has been defined or431

implemented. C and C++ programmers are familiar with this idea, which432

is similar to declaring variables, functions, classes, and other data types in a433

header file with the file name extension .h or .hpp, and then defining their434

implementations in a separate file with extension .c or .cpp.435

Of course, most of the gadgets that we use every day (from iPods to cars)436

are like this. We need to understand their interfaces in order to use them437

20

(and interfaces are often standardized across vendors), but often we have no438

idea what is happening inside or how they actually work, which may be quite439

complex.440

While the tools in the CCA tool chain are powerful and general, they do441

not provide a ready interface for linking geoscience models (or any domain-442

specific models). In CCA terminology, port is essentially a synonym for443

interface and a distinction is made between ports that a given component uses444

(uses ports), and those that it provides (provides ports) to other components.445

Note that this model provides a means of bidirectional information exchange446

between components, unlike dataflow-based approaches (e.g., OpenMI) that447

support unidirectional links between components (i.e., the data produced by448

one component is consumed by another component).449

Each scientific modeling community that wishes to make use of the CCA450

tools is responsible for designing or selecting component interfaces (or ports)451

that are best suited to the kinds of models they wish to link together. This is452

a big job that involves social as well as technical issues and typically requires453

a significant time investment. In some disciplines, such as molecular biology454

or fusion research, the models may look quite different from ours. Ours tend455

to follow the pattern of a 1D, 2D or 3D array of values (often multiple,456

coupled arrays) advancing in time. However, our models can still be quite457

different from each other with regard to their dimensionality or the type458

of computational grid they use (e.g., rectangles, triangles or polygons), or459

whether they are implicit or explicit in time.460

21

3.5. Granularity461

While components may represent any level of granularity, from a simple462

function to a complete hydrologic model, the optimum level appears to be463

that of a particular physical process, such as infiltration, evaporation, or464

snowmelt. At this level of granularity researchers are most often interested465

in swapping out one method of modeling a process for another. A simpler466

method of parameterizing a process may apply only to simplified special cases467

or may be used simply because there is insufficient input data to drive a more468

complex model. A different numerical method may solve the same governing469

equations with greater accuracy, stability, or efficiency and may or may not470

use multiple processors. Even the same method of modeling a given process471

may exhibit improved performance when coded in a different programming472

language. But the physical process level of granularity is also natural for473

other reasons. Specific physical processes often act within a domain that474

shares a physically important boundary with other domains (e.g., coastline475

and ocean-atmosphere), and the fluxes between these domains are often of476

key interest. In addition, experience shows that this level of granularity477

corresponds to GUIs and HTML help pages that are more manageable for478

users.479

A judgment call is frequently needed to decide whether a new feature480

should be provided in a separate component or as a configuration setting481

in an existing component. For example, a kinematic wave channel-routing482

component may provide both Manning’s formula and the law of the wall as483

different options to parameterize frictional momentum loss. Each of these484

options requires its own set of input parameters (e.g., Manning’s n or the485

22

roughness parameter, z0). We could even think of frictional momentum loss486

as a separate physical process, under which we would have a separate Man-487

ning’s formula and law of the wall components. Usually, the amount of code488

associated with the option and usability considerations can be used to make489

these decisions.490

Some models are written in such a way that decomposing them into sep-491

arate process components is not really appropriate, because of some special492

aspect of the model’s design or because decomposition would result in an493

unacceptable loss of performance (e.g., speed, accuracy, or stability). For494

example, multiphysics models—such as Penn State Integrated Hydrologic495

Model (PIHM)—represent many physical processes as one large, coupled set496

of ODEs that are then solved as a matrix problem on a supercomputer.497

Other models involve several physical processes that operate in the same do-498

main and are relatively tightly coupled within the governing equations. The499

Regional Ocean Modeling System (ROMS) is an example of such a model,500

in which it may not be practical to model processes such as tides, currents,501

passive scalar transport (e.g., T and S), and sediment transport within sep-502

arate components. In such cases, however, it may still make sense to wrap503

the entire model as a component so that it may interact with other models504

(e.g., an atmospheric model, such as WRF, or a wave model, such as SWAN)505

or be used to drive another model (e.g., a Lagrangian transport model, such506

as LTRANS).507

23

4. Designing a Modeling Interface508

A component interface is simply a named set of functions (called meth-509

ods) that have been defined completely in terms of their names, arguments510

and return values. The purpose of this section is to explain the types of511

functions that are required and why. The functions that define an interface512

are somewhat analogous to the buttons on a handheld remote control—they513

provide a caller with fine-grained control of the model component.514

4.1. The “IRF” Interface Functions515

Most Earth-science models initialize a set of state variables (often as 1D,516

2D, or 3D arrays) and then execute of series of timesteps that advance the517

variables forward in time according to physical laws (e.g., mass conservation)518

or some other set of rules. Hence, the underlying source code tends to follow519

a standard pattern that consists of three main parts. The first part consists520

of all source code prior to the start of the time loop and serves to set up521

or initialize the model. The second part consists of all source code within522

the time loop and is the guts of the model where state variables are updated523

with each time step. The third part consists of all source code after the524

end of the time loop and serves to tear down or finalize the model. Note525

that root-finding and relaxation algorithms follow a similar pattern even if526

the iterations do not represent timestepping. A time-independent model527

can also be thought of as a time-stepping model with a single time step.528

For maximum plug-and-play flexibility, each of these three parts must be529

encapsulated in a separate function that is accessible to a caller. It turns out530

that we get more flexibility if the function for the middle phase is written to531

24

accept the start time and end time as arguments.532

For lack of a better term, we refer to this Initialize(), Run Until(), Fi-533

nalize() pattern as an IRF interface . All of the model coupling projects534

that we are aware of use this pattern as part of their component interface,535

including CSDMS, ESMF, OMF, and OpenMI. An IRF interface is also used536

as part of the Message Passing Interface (MPI) for communication between537

processes in high-performance computers.538

To see how an IRF interface is used when coupling models, consider two539

models, Models A and B, that do not have this interface. To combine them540

into a single model, where one uses the output of the other during its time541

loop, we would need to cut the code from within Model A’s time loop and542

paste it into Model B, or vice versa. The reason is that both models were543

designed to control the time loop and cannot reliquish this control.544

4.1.1. Initialize (Model Setup)545

The initialize step puts a model into a valid state that is ready to be546

executed. Mostly this involves initializing variables or grids that will be used547

within the execution step. Temporary files that the execution step will read548

from or write to should also be opened here.549

4.1.2. Run Until (Model Execution)550

The run step advances the model from its current state to a future state.551

For time-independent models the run step simply executes the model cal-552

culation and updates the model state so that future calls will not require553

executing the calculations again. Encapsulating only the code within the554

time loop allows an application to run the model to intermediate states.555

25

This is necessary to allow an application to query the model’s state for the556

purposes of (for instance) printing output or passing state data to another557

model.558

4.1.3. Finalize (Model Termination)559

The finalize step cleans up after the model is no longer needed. The main560

purpose of this step to make sure that all resources a model acquired through561

its life have been freed. Most often this will be freeing allocated memory,562

but it could also be freeing file or network handles. Following this step, the563

model should be left in an invalid state such that its run step can no longer564

be called until it has been initialized again.565

4.2. Getter and Setter Interface Functions566

A basic IRF interface, while important, really provides only the core567

functionality of a model coupling interface. A complete interface will also568

require functions that enable another component to request data from the569

component (a getter) or change data values (a setter) in the component.570

These are typically called within the Initialize() or Run Until() methods.571

4.2.1. Value Getters572

Limiting access to the model’s state to be through a set of functions573

allows control of what data the model shares with other programs and how574

it shares that data. The data may be transferred in two ways. The first is575

to give the calling program a copy of the data. The second is to give the576

actual data that is being used by the model (in C, this would mean passing a577

pointer to a value). The first has the advantage that it hides implementation578

details of the model from the calling program and limits what the calling579

26

program can do to the model. However, the downside of the first method is580

that communication will be slower (and could be significantly so, depending581

on the size of the data being transferred).582

4.2.2. Value Setters583

Variables in a model should be accessed and changed only through in-584

terface methods. This approach ensures that users of the interface are not585

able to change values that the interface implementor does not want them586

to change. This also detaches the programmer using the interface from the587

model implementation, thus freeing the model developer to change details of588

the model without an application programmer having to make any changes.589

The setter can also perform tasks other than just setting data. For in-590

stance, it might be useful if the setter checked to make sure that the new591

data is valid. After the setter method sets the data, it should ensure that592

the model is still in a valid state.593

The Get Value() and Set Value() methods can be general in terms of594

supporting different grid or mesh types, but it should be possible to bypass595

that generality and use simple, raster-based grids to keep things simple and596

efficient when the generality is not needed.597

CSDMS has wrapped two open-source regridding tools that can act as598

services (see Section 9) that other components can use when communicating599

with one another (an example regridding scenario is shown in Figure 2). The600

first is from the ESMF project. It is implemented in Fortran and is designed601

to use multiple processors on a distributed memory system. It supports602

sophisticated options such as mass-conservative interpolation. The second603

tool is the multithreaded tool included in the Java SDK for OpenMI.604

27

(a) Voronoi cells. (b) Intersecting raster and Voronoi cells.

(c) Voronoi cells before regridding. (d) After regridding to raster cells.

Figure 2: Regridding example.

The Get Value() and Set Value() methods should optionally allow spec-605

ification (via indices) of which individual elements within an array that are606

to be obtained or modified. We often need to manipulate just a few values,607

and we don’twant to transfer copies of entire arrays (which may be large)608

unless necessary.609

Each component should understand what variables will be requested from610

28

it; and if those represent some function of its state variables (e.g., a sum611

or product), then that computation should be done by the component and612

offered as an output variable rather than passing several state variables that613

must then be combined in some way by the caller.614

In order to support dynamically typed languages like Python, additional615

interface functions may be required in order to query whether the variable is616

currently a scalar or a vector (1D array) or a grid.617

4.3. Self-Descriptive Interface Functions618

Two additional methods for a modeling interface would enable a caller to619

query what type of data the component is able to use as input or compute620

as output. These would typically not require arguments and would simply621

return the names of all the possible input or output variables as an array of622

strings, for example Get Input Item List() and Get Output Item List(). An-623

other type of self-descriptive function would be a function like Get Status()624

that returns the component’s current status as a string from a standardized625

list.626

4.4. Framework Interface Functions627

A component typically needs some additional methods that allow it to628

be instantiated by and communicate with a component-coupling framework.629

For example, a component must implement methods called init (), getSer-630

vices(), and releaseServices() in order to be used within a CCA-compliant631

framework.632

29

4.5. Autoconnection Problem633

A key goal of component-based modeling is to create a collection of com-634

ponents that can be coupled together to create new and useful composite635

models. This goal can be achieved by providing every component with the636

same interface, and this is the approach used by OpenMI. A secondary goal,637

however, is for the coupling process to be as automatic as possible, that is,638

to require as little input as possible from users. To achieve this goal, we need639

some way to group components into categories according to the functionality640

they provide. This grouping must be readily apparent to both a user and the641

framework (or system) so that it is clear whether a particular pair of compo-642

nents are interchangeable. But what should it mean for two components to643

be interchangeable? Do they really need to use identical input variables and644

provide identical output variables? Our experience shows that this definition645

of interchangeable is unnecessarily strict.646

To bring these issues into sharper focus, consider the physical process of647

infiltration, which plays a key role in hydrologic models. As part of a larger648

hydrologic model, the main purpose of an infiltration component is to com-649

pute the infiltration rate at the surface, because it represents a loss term in650

the overall hydrologic budget. If the domain of the infiltration component651

is restricted to the unsaturated zone, above the water table, then it may652

also need to provide a vertical flow rate at the water table boundary. Thus,653

the main job of the infiltration component is to provide fluxes at the (top654

and bottom) boundaries of its domain. To do this job, it needs variables655

such as flow depth and rainfall rate that are outside its domain and com-656

puted by another component. Hydrologists use a variety of different methods657

30

and approximations to compute surface infiltration rate. The Richards 3D658

method, for example, is a more rigorous approach that tracks four state vari-659

ables throughout the domain; on the other hand, the Green-Ampt method660

makes a number of simplifying assumptions so that it computes a smaller661

set of state variables and does not resolve the vertical flow dynamics to the662

same level of detail (i.e., piston flow, sharp wetting front). As a result, the663

Richards 3D and Green-Ampt infiltration components use a different set of664

input variables and provide a different set of output variables. Nevertheless,665

they both provide the surface infiltration rate as one of their outputs and can666

therefore be used “interchangeably” in a hydrologic model as an “infiltration667

component.”668

The infiltration example illustrates several key points that are transfer-669

able to other situations. Often a model, such as a hydrologic model, breaks670

the larger problem domain into a set of subdomains where one or more pro-671

cesses are relevant. The boundaries of these subdomains are often physical672

interfaces, such as surface/subsurface, unsaturated/saturated zone, atmo-673

sphere/ocean, ocean/seafloor, or land/water. Moreover, the variables that674

are of interest in the larger model often depend on the fluxes across these675

subdomain boundaries.676

Within a group of interchangeable components (e.g., infiltration compo-677

nents), there are many other implementation differences that a modeler may678

wish to explore, beyond just how a physical process is parameterized. For679

example, performance and accuracy often depend on the numerical scheme680

(explicit vs. implicit, order of accuracy, stability), data types used (float vs.681

double), number of processors (parallel vs. serial), approximations used, the682

31

programming language, or coding errors.683

Autoconnection of components is important from a user’s point of view.684

Components typically require many input variables and produce many out-685

put variables. Users quickly become frustrated when they need to manually686

create all these pairings/connections, especially when using more than just687

two or three components at a time. The OpenMI project does not support688

the concept of auto-connection or interchangeable components. When using689

the graphical Configuration Editor provided in its SDK, users are presented690

with droplists of input and output variables and must select the ones to be691

paired. Doing so requires expertise and is made more difficult because there692

is so far no ontological or semantic scheme to clarify whether two variable693

names refer to the same item.694

The CSDMS project currently employs an approach to autoconnection695

that involves providing interfaces (i.e. ,CCA ports) with different names to696

reflect their intended use (or interchangeability), even though the interfaces697

are the same internally.698

5. Current CSDMS Component Interface699

This section contains a concise list of the current CSDMS IRF and get-700

ter/setter interfaces, which must be implemented by any compliant compo-701

nents.702

5.1. The IRF Interface703

The following methods comprise the IRF interface described in more de-704

tail in Section 4.1.705

32

CMI INITIALIZE (handle, filename)706

OUT handle handle to the CMI object

IN filename path to configuration file
707

708

CMI RUN UNTIL (handle, stop time)709

IN handle handle to the CMI object

IN stop time simulation time to run model until
710

711

CMI FINALIZE (handle)712

INOUT handle handle to the CMI object713

714

5.2. Value Getters and Setters715

The following methods comprise the CSDMS getter/setter interface dis-716

cussed in Section 4.2.717

CMI GRID DIMEN (handle, value str, dimen)718

IN handle handle to the CMI object

IN value str name of the value to get

OUT dimen length of each grid dimension

719

CMI GRID RES (handle, value str, res)720

IN handle handle to the CMI object

IN value str name of the value to get

OUT res grid spacing for each dimension

721

CMI GET GRID DOUBLE (handle, value str, buffer)722

33

IN handle handle to the CMI object

IN value str name of the value to get

OUT buffer initial address of the destination values

723

CMI SET GRID DOUBLE (handle, value str, buffer, dimen)724

IN handle handle to the CMI object

IN value str name of the value to get

IN buffer initial address of the source values

IN dimen grid dimension

725

CMI GET TIME SPAN (handle, span)726

IN handle handle to the CMI object

OUT span start and end times for the simulation
727

CMI GET ELEMENT SET (handle, value str, element set)728

IN handle handle to the CMI object

IN value str name of the value to get

OUT buffer model ElementSet

729

CMI GET VALUE SET (handle, value str, value set)730

IN handle handle to the CMI object

IN value str name of the value to get

OUT buffer model ValueSet

731

CMI SET VALUE SET (handle, value str, value set)732

IN handle handle to the CMI object

IN value str name of the value to get

IN buffer model ValueSet

733

34

6. Component Wrapping Issues734

In this section we discuss several methods for creating components based735

on existing codes by using an approach often referred to as wrapping.736

6.1. Code Reuse and the Case for Wrapping737

Using computer models to simulate, predict, and understand Earth sur-738

face processes is not a new idea. Many models exist, some of which are fairly739

sophisticated, comprehensive, and well tested. The difficulty with reusing740

these models in new contexts or linking them to other models typically has741

less to do with how they are implemented and more to do with the interface742

through which they are called (and to some extent, the implementation lan-743

guage.) For a small or simple model, little effort may be needed to rewrite744

the model in a preferred language and with a particular interface. Rewriting745

large models, however, is both time-consuming and error prone. In addition,746

most large models are under continual development, and a rewritten version747

will not see the benefits of future improvements. Thus, for code reuse to be748

practical, we need a language interoperability tool, so that components dont749

need to be converted to a different language, and a wrapping procedure that750

allows us to provide existing code with a new calling interface. As suggested751

by its name, and the fact that it applies to the “outside” (interface) of a com-752

ponent vs. its “inside” (implementation), wrapping tends to be noninvasive753

and is a practical way to convert existing models into components.754

6.2. Wrapping for Object-Oriented Languages755

Component-based programming is essentially object-oriented program-756

ming with the addition of a framework. If a model has been written as a757

35

class, then it is relatively straightforward to modify the definition of this758

class so that it exposes a particular model-coupling interface. Specifically,759

one could add new methods (member functions) that call existing methods,760

or one could modify the existing methods. Each function in the interface761

has access to all of the state variables (data members) without passing them762

explicitly; it also has access to all the other interface functions. In object-763

oriented languages one commonly distinguishes between private methods that764

are intended for internal use by the model object and public methods that are765

to be used by callers and that may comprise one or more interfaces. (Some766

languages, like Java, make this part of a method’s declaration.)767

In order for this model object to be used as a component in a CCA-768

compliant framework like Ccaffeine, it must also be “wrapped” by a CCA769

implementation file (or IMPL file). The CCA tool chain has tools such as770

Babel and Bocca that are used to autogenerate an IMPL-file template. For771

a model that is written in an object-oriented and Babel-supported language772

(e.g., C++, Python, or Java), the IMPL file needs to do little more than773

add interface functions like setServices and releaseServices that allow the774

component to communicate with and be instantiated by the framework. The775

interface functions used for intercomponent communication (i.e., passing data776

and IRF) can simply be inherited from the model class. Inheritance is a777

standard mechanism in object-oriented languages that allows one interface778

(set of methods) to be extended or overridden by another. Note that the779

IMPL file may have its own Initialize() function that first gets the required780

CCA ports and then calls the Initialize() function in the model’s interface.781

But the function that gets the CCA ports can simply be another function782

36

in the model’s interface that is used only in this context. Similarly, the783

IMPL file may have a Finalize() function that calls the Finalize() function784

of the model and then calls a function to release the CCA ports that are no785

longer needed. It is desirable to keep the IMPL files as clean as possible,786

which means adding some CCA-specific functions to the model’s interface.787

For example, a CSDMS component would have (1) functions to get and788

release the required CCA ports, (2) a function to create a tabbed-dialog789

(using CCA’s so-called parameter ports), and (3) a function that prints a790

language-specific traceback to stdout if an exception occurs during a model791

run.792

6.3. Wrapping for Procedural Languages793

Languages such as C or Fortran (up to 2003) do not provide object-794

oriented primitives for encapsulating data and functionality. Because component-795

based programming requires such encapsulation, the CCA provides a means796

to produce object-oriented software even in languages that do not support it797

directly. We briefly describe the mechanism for creating components based798

on functionality implemented in a procedural language (e.g., an existing li-799

brary or model).800

A class in object-oriented terminology encapsulates some set of related801

functions and associated data. To wrap a set of library functions, one can802

create a SIDL interface or class that contains a set of methods whose im-803

plementations call the legacy functions. The new interface does not have to804

mirror existing functions exactly, presenting a nonintrusive opportunity for805

redesigning the publicly accessible interfaces presented by legacy software.806

The creation of class or component wrappers also enables the careful defini-807

37

tion of namespaces, thus reducing potential conflicts when integrating with808

other classes or components. The SIDL definitions are processed by Babel to809

generate IMPL files in the language of the code being wrapped. The calls to810

the legacy library can then be added either manually or by a tool, depending811

on how closely the SIDL interface follows the original library interface.812

Function argument types that appear in the SIDL definition can be han-813

dled in two ways: by using a SIDL type or by specifying them as opaque.814

SIDL already supports most basic types and different kinds of arrays found815

in the target languages. Any user-defined types (e.g., structs in C or de-816

rived types in Fortran) must have SIDL definitions or be passed as opaques.817

Because opaques are not accessible from components implemented in a dif-818

ferent language, they are rarely used. Model state variables that must be819

shared among components can be handled in a couple of ways. They can820

be encapsulated in a SIDL class and accessed through get/set methods (e.g.,821

as described in Section 4.2). Recently Babel has added support for defining822

structs in SIDL, whose data members can be accessed directly from multiple823

languages.824

SIDL supports namespacing of symbols through the definition of packages825

whose syntax and semantics are similar to Java’s packages. In languages that826

do not support object orientation natively, symbols (e.g., function names)827

are prefixed with the names of all enclosing packages and parent class. This828

approach greatly reduces the potential build-, link-, or runtime name conflicts829

that can result when multiple components define the same interfaces (e.g.,830

the initialize, run, and finalize methods). These naming conventions can be831

applied to any code, not only SIDL-based components.832

38

Implementors working in non object-oriented languages should encapsu-833

late their model’s state data in an object that is opaque to the application834

programmer. Memory within the object is not directly accessible by the user835

but can be accessed through an opaque handle, which exists in user space.836

This handle is passed as the first argument to each of the interface functions837

so that they can operate on a particular instance of a model. For example,838

in C, this handle could simply be a pointer to the object and in Fortran, the839

handle could be an index into a table of opaque objects in a system table.840

Model handles are allocated and deallaocated in the initialize and finalize841

interface functions, respectively. For allocate calls, the initialize functions are842

passed an OUT argument that will contain a valid reference to the object. For843

deallocation, the finalize function accepts an INOUT variable that provides844

a reference to the object to be destroyed and sets the object to an invalid845

state.846

6.4. Guidelines for Model Developers847

Developers can follow several relatively simple follow so that it becomes848

much easier to create a reusable, plug-and-play component from their model849

source code. Given the large number of models that are contributed to the850

CSDMS project, it is much more efficient for model developers to follow851

these guidelines and thereby “meet us halfway” than for CSDMS staff to852

make these changes after code has been contributed. This can be thought of853

as a form of load balancing.854

39

6.4.1. Programming Language and License855

• Write code in a Babel-supported language (C, C++, Fortran, Java,856

Python).857

• If code is in Matlab or IDL, use tools like I2PY to convert it to Python.858

Python (with the numpy, scipy, and matplotlib packages) provides a859

free work-alike to Matlab with similar performance.860

• Make sure that code can be compiled with an open-source compiler861

(e.g., gcc and gfortran).862

• Specify what type of open-source license applies to your code. Rosen863

[41] provides a good, online, and open-source book that explains open-864

source licensing in detail. CSDMS requires that contributions have an865

open source license type that is compliant with the standard set forth866

by the Open Source Initiative.867

6.4.2. Model Interface868

• Refactor the code to have the basic IRF interface (5.1).869

• If code is in C or Fortran, add a model name prefix to all interface870

functions to establish a namespace (e.g., ROMS Initialize()). C code871

can alternatively be compiled as C++.872

• Write Initialize() and Run Until() functions that will work whether the873

component is used as a driver or nondriver.874

• Provide getter and setter functions (4.2.1).875

• Provide functions that describe input and output exchange items (4.2.1).876

40

• Use descriptive function names (e.g., Update This Variable).877

• Remove user interfaces, whether graphical, command line or otherwise,878

from your interface implementation. This avoids incompatible user879

interfaces competing with one another.880

6.4.3. State Variables881

• Decide on an appropriate set of state variables to be maintained by the882

component and made available to callers.883

• Attempt to minimize data transfer between components (as discussed884

above).885

• Use descriptive variable names.886

• Carefully track each variable’s units.887

6.4.4. Input and Output Files888

• Do not hardwire configuration settings in the code; read them from a889

configuration file (text).890

• Do not use hardwired input filenames.891

• Read configuration settings from text files (often in Initialize()). Do892

not prompt for command-line input. If a model has a GUI, write code893

so it can be bypassed; use the GUI to create a configuration file.894

• Design code to allow separate input and output directories that are895

read from the configuration file. This approach allows many users to896

use the same input data without making copies (e.g., test cases). It is897

41

frequently helpful to include a case prefix (scenario) and a site prefix898

(geographic name) and use them to construct default output filenames.899

• Establish a namespace for configuration files (e.g., ROMS input.txt vs.900

input.txt).901

• If large arrays are to be stored in files, save them as binary vs. text.902

(e.g., this is the case with NetCDF)903

• Provide self-test functions or unit tests and test data. One self-test904

could simply be a “sanity check” that uses trivial (perhaps hard-coded)905

input data. When analytic solutions are available, these make excellent906

self-tests because they can also be used to check the accuracy and907

stability of the numerical methods.908

• Do not create and write to output files within the interface implementa-909

tion. If this is not possible, output files should be well documented and910

allow for a naming convention that reduces the possibility of naming911

conflicts.912

6.4.5. Documentation913

• Help CSDMS to provide a standardized, HTML help page.914

• Help CSDMS to provide a standaridized, tabbed-dialog GUI.915

• Make liberal use of comments in the code.916

7. The CSDMS Modeling Tool (CMT)917

As explained in Section 2.3, Ccaffeine is a CCA-compliant framework918

for connecting components to create applications. From a user’s point of919

42

view, Ccaffeine is a low-level tool that executes a sequence of commands in a920

Ccaffeine script. The (natural language) commands in the Ccaffeine scripting921

language are fairly straightforward, so it is not difficult for a programmer to922

write one of these scripts. For many people, however, using a graphical923

user interface (GUI) is preferable because they don’thave to learn the syntax924

of the scripting language. A GUI also provides users with a natural, visual925

representation of the connected components as boxes with buttons connected926

by wires. It can also prevent common scripting errors and offer a variety of927

other convenient features. The CCA Forum developed such a GUI, called928

Ccafe-GUI, that presented components as boxes in a palette that can be929

moved into an arena (workspace) and connected by wires. It also allows930

component configurations and settings to be saved in BLD files and instantly931

reloaded later. Another key feature of this GUI is that, as a lightweight and932

platform-independent tool written in Java, it can be installed and used on933

any computer with Java support to create a Ccaffeine script. This script can934

then be sent to a remote, possibly high-performance computer for execution.935

While the Ccafe-GUI was certainly useful, the CSDMS project realized936

that it could be improved and extended in numerous ways to make it more937

powerful and more user-friendly. In addition, these changes would serve not938

only the CSDMS community but could be shared back with the CCA com-939

munity. That is, the new GUI works with any CCA-compliant components,940

not just CSDMS components. The new version is called CMT (CSDMS941

Modeling Tool). Significant new features of CMT 1.5 include the following.942

• Integration with a powerful visualization tool called VisIt (see below).943

• New, “wireless” paradigm for connecting components (see below).944

43

• A login dialog that prompts users for remote server login information.945

• Job management tools that are able to submit jobs to processors of a946

cluster.947

• “Launch and go”: launch a model run on a remote server and then948

shut down the GUI (the model continues running remotely).949

• New File menu entry: “Import Example Configuration.”950

• A Help menu with numerous help documents and links to websites.951

• Ability to submit bug reports to CSDMS.952

• Ability to do file transfers to and from a remote server.953

• Help button in tabbed dialogs to launch component-specific HTML954

help.955

• Support for droplists and mouse-over help in tabbed dialogs.956

• Support for custom project lists (e.g., projects not yet ready for re-957

lease).958

• A separate “driver palette” above the component palette.959

• Support for numerous user preferences, many relating to appearance.960

• Extensive cross-platform testing and “bulletproofing.”961

The CMT provides integrated visualization by using VisIt. VisIt [47] is an962

open-source, interactive, parallel visualization and graphical analysis tool for963

44

viewing scientific data. It was developed by the U.S. Department of Energy964

Advanced Simulation and Computing Initiative to visualize and analyze the965

results of simulations ranging from kilobytes to terabytes. VisIt was designed966

so that users can install a client version on their PC that works together with967

a server version installed on a high-performance computer or cluster. The968

server version uses multiple processors to speed rendering of large data sets969

and then sends graphical output back to the client version. VisIt supports970

about five dozen file formats and provides a rich set of visualization features,971

including the ability to make movies from time-varying databases. The CMT972

provides help on using VisIt in its Help menu. CSDMS uses a service com-973

ponent to provide other components with the ability to write their output974

to NetCDF files that can be visualized with VisIt. Output can be 0D, 1D,975

2D, or 3D data evolving in time, such as a time series (e.g., a hydrograph),976

a profile series (e.g., a soil moisture profile), a 2D grid stack (e.g., water977

depth), a 3D cube stack, or a scatter plot of XYZ triples.978

Another innovative feature of CMT 1.5 is that it allows users to toggle979

between the original, wired mode and a new wireless mode. CSDMS found980

that displaying connections between components with the use of wires (i.e.,981

red lines) did not scale well to configurations that contained several compo-982

nents with multiple ports. In wireless mode, a component that is dragged983

from the palette to the arena appears to broadcast what it can provide (i.e.,984

CCA provides ports) to the other components in the arena (using a con-985

centric circle animation). Any components in the arena that need to use986

that kind of port get automatically linked to the new one; this is indicated987

through the use of unique, matching colors. In cases where two components988

45

in the arena have the same uses port but need to be connected to different989

providers, wires can still be used.990

CSDMS continues to make usability improvements to the CMT and used991

the tool to teach a graduate-level course on surface process modeling at the992

University of Colorado, Boulder, in 2010. Several features of the CMT make993

it ideal for teaching, including (1) the ability to save prebuilt component994

configurations and their settings in BLD files, (2) the File >> Import Ex-995

ample Configuration feature, (3) a standardized HTML help page for each996

component, (4) a uniform, tabbed-dialog GUI for each component, (5) rapid997

comparison of different approaches by swapping one component for another,998

(6) the simple installation procedure, and (7) the ability to use remote re-999

sources.1000

Figure 3: CMT screenshot.

46

8. Providing Components with a Uniform Help System and GUI1001

Beyond the usual software engineering definition of a component, a useful1002

component will be one that also comes bundled with metadata that describes1003

the component and the underlying model that it is built around. While1004

creating a component as described in the preceding sections is important, it1005

is of equal importance to have a well-documented component that an end1006

user is able to easily use.1007

With a plug-and-play framework where users easily connect, interchange,1008

and run coupled models, there is a tendency for a user to treat components1009

as black boxes and ignore the details of the foundation that each component1010

was built upon. For instance, if a user is unaware of the assumptions that1011

underlie a model, that user may couple two components for which coupling1012

does not make sense because of the physics of each model. The user may1013

attempt to use a component in a situation where it was not intended to1014

be used. To combat this problem, components are bundled with HTML1015

help documents, which are easily accessible through the CMT, and describe1016

the component and the model that it wraps. These documents include the1017

following.1018

• Extended model description (along with references)1019

• Listing and brief description of the component’s uses and provides ports1020

• Main equations of the model1021

• Sample input and output1022

• Acknowledgment of the model developer(s)1023

47

A complete component also comes with metadata supplied in a more1024

structured format. Components include XML description files that describe1025

their user-editable input variables. These description files contain a series of1026

XML elements that contain detailed information about each variable includ-1027

ing a default value, range of acceptable values, short and long descriptions,1028

units, and data type.1029

<entry name=velocity>1030

<label>River velocity</label>1031

<help>Depth-averaged velocity at the river mouth</help>1032

<default>2</default>1033

<type>Float</type>1034

<range>1035

<min>0</min>1036

<max>5</max>1037

</range>1038

<units>m/s</units>1039

</entry>1040

Using this XML description, the CMT automatically generates a graphi-1041

cal user interface (in the form of tabbed dialogs) for each CSDMS component.1042

Despite each model’s input files being significantly different, this provides1043

CMT users with a uniform interface across all components. Furthermore, the1044

GUI checks user input for errors and provides easily accessible help within1045

the same environment—none of which is available in the batch interface of1046

most models. A special type of CCA provides port called a parameter port1047

is also used in the creation of the tabbed dialogs.1048

48

Nearly every model gathers initial settings from an input file and then1049

runs without user intervention. Ultimately, any user interface that wraps a1050

model must generate this input file for the component to read as part of its1051

initialization step. The above XML description along with a template input1052

file allows this to happen. Once input is gathered from the user, a model-1053

specific input file is created based on a template input file provided with each1054

component. A valid input file is created based on $-based substitutions in this1055

template file. Instead of actual values, the template file contains substitution1056

placeholders of the form $identifier. Each identifier corresponds to an1057

entry name in the XML description file and, upon substitution, is replaced1058

by the value gathered from an external user interface (the CMT GUI, for1059

instance).1060

9. Framework Services: “Built-in” Tools That Any Component1061

Can Use1062

Developers (e.g., CSDMS staff) may wish to make certain low-level tools1063

or utilities available so that any component (or component developer) can use1064

them without requiring any action from a user. These tools can be encapsu-1065

lated in special components called service components that are automatically1066

instantiated by a CCA framework on startup. The services or methods pro-1067

vided by these components are then called framework services. Unlike other1068

components, which users may assemble graphically into larger applications,1069

users do not interact with service components directly. However, a compo-1070

nent developer can make calls to the methods of service components through1071

service ports. The use of service components allows developers to maintain1072

49

code for a shared functionality in a single place and to make that function-1073

ality available to all components regardless of the language they are written1074

in (or which address space they are in). CSDMS uses service components for1075

tasks such as (1) providing component output variables in a form needed by1076

another component (e.g., spatial regridding, interpolation in time, and unit1077

conversion) and (2) writing component output to a standard format such as1078

NetCDF.1079

Any CCA component can be “promoted” to a service component. A de-1080

veloper simply needs to add lines to its setServices() method that register it as1081

a framework service. CCA provides a special port for this, gov.cca.ports.Ser-1082

viceRegistry, with three methods: addService(), addSingletonService(), and1083

removeService(). If a developer then wants another component to be able to1084

use this framework service, a call to the gov.cca.Services.getPort() method1085

must be added within its setServices() method. (A similar call must be added1086

in order to use CCA parameter ports and ports provided by other types of1087

components.) Note that the setServices() method is defined as part of the1088

gov.cca.Component interface.1089

CCA components are designed for use within a CCA-compliant frame-1090

work (like Ccaffeine) and may make use of service components. But what if1091

we want to use these components outside of a CCA framework? One option1092

is to encapsulate a set of functionality (e.g., a service component) in a SIDL1093

class and then “promote” this class to (SIDL) component status through in-1094

heritance and by adding only framework-specific methods like setServices().1095

(Note that a CCA framework is the entity that calls a component’s setSer-1096

vices() method as described in Section 2.3.) This approach can be used to1097

50

provide both component and noncomponent versions of the class. Compiling1098

the noncomponent version in a Bocca project generates a library file that we1099

can link against or, in the case of Python, a module that we can import.1100

10. Current Contents of the CSDMS Component Repository1101

At the time of this publication the CSDMS model repository contains1102

more than 160 models and tools. Of those, 50 have been converted into1103

components as described in this paper and can be used in coupled modeling1104

scenarios with the CMT or through the component composition interfaces1105

supported by Ccaffeine. An up-to-date list is maintained at the CSDMS we-1106

biste. As with the model repository as a whole, CSDMS components cover1107

the breadth of surface dynamics systems. Hydrologic components cover vari-1108

ous scales ranging from basin-scale (the entire TopoFlow [39] suite of models1109

consists of 15 components that cover infiltration, meteorology, and channel1110

dynamics; HydroTrend [4, 23]) to reach-scale (the one-dimensional sediment1111

transport models of Parker [38]). Terrestrial components include models of1112

landscape evolution (Erode, and CHILD [45]), geodynamics (Subside [21])1113

and cryospherics (GC2D [22]). Coastal and marine models include Ashton-1114

Murray Coastal Evolution Model [4, 5], Avulsion [4], and the stratigraphic1115

model sedflux [21]. The component repository also contains modeling tools1116

such as the ESMF and OpenMI SDK grid mappers, and file readers and1117

writers for standard file formats (NetCDF, VTK, for example).1118

51

11. Conclusions1119

CSDMS uses a component-based approach to integrated modeling and1120

draws on the combined power of many different open-source tools such as1121

Babel, Bocca, Ccaffeine, the ESMF regridding tool, and the VisIt visualiza-1122

tion tool. CSDMS also draws on the combined knowledge and creative effort1123

of a large community of Earth-surface dynamics modelers and computer sci-1124

entists. Using a variety of tools, standards, and protocols, CSDMS converts1125

a heterogeneous set of open-source, user-contributed models into a suite of1126

plug-and-play modeling components that can be reused in many different1127

contexts. Components that encapsulate a physical process usually repre-1128

sent an optimal level of granularity. Standards that CSDMS has adopted1129

and promotes include CCA, NetCDF [34], HTML, OGC (Open Geospatial1130

Consortium) [37], MPI (Message Passing Interface) [32] and XML [48].1131

All the software that underlies CSDMS is installed and maintained on its1132

high-performance cluster. CSDMS members have accounts on this cluster1133

and access its resources using a lightweight, Java-based client application1134

called the CSDMS Modeling Tool (CMT) that runs on virtually any desktop1135

or laptop computer. This approach can be thought of as a type of community1136

cloud since it provides remote access to numerous resources. This centralized1137

cloud approach offers many advantages including (1) simplified maintenance,1138

(2) more reliable performance, (3) automated backups, (4) remote storage1139

and computation (user’s PC remains free), (5) ability for many components1140

(such as ROMS) and tools (such as VisIt and ESMF’s regridder) to use1141

parallel computation, (6) requiring to install only a lightweight client on their1142

PC, (7) little technical support needed by users, and (8) ability to submit1143

52

and run multiple jobs.1144

Babel’s support of the Python language has proven very useful. Python1145

is a modern, open-source, object-oriented language with source code that1146

is easy to write, read and maintain. It runs on virtually any platform. It1147

is useful for system administration, model integration, rapid prototyping,1148

high-level tool development, visualization (via the matplotlib package) and1149

numerical modeling (via the numpy package). Bocca is written in Python, the1150

VisIt visualization package has a powerful Python API, and ESRI’s ArcGIS1151

software now uses Python as its scripting language ([10]). Many third-party1152

geographic information system (GIS) tools implemented in Python are also1153

available. With the numpy, scipy, and matplotlib packages, Python provides1154

a work-alike to commercial languages like Matlab with similar performance.1155

Other Python packages that CSDMS has found useful are suds (for SOAP-1156

based web services) and PyNIO (an API for working with NetCDF files).1157

Several exciting opportunities exist for further streamlining and expand-1158

ing the capabilities of CSDMS. One area of particular interest is how CS-1159

DMS can provide its members with multiple paths to parallel computation.1160

Software may be designed from the outset to use multiple processors, or be1161

refactored to do so, often using MPI or OpenMP. But this is not easy and1162

typically requires a multiyear investment. Another way to harness the power1163

of parallelism is to modify code to take advantage of numerical toolkits such1164

as PETSc (Portable Extensible Toolkit for Scientific Computation) [6, 7, 8]1165

that contain parallel solvers for many of the differential equations that are1166

used in physically based models. A third way is to for models written in1167

array-based languages such as IDL, Matlab [31] and Python/NumPy [42] to1168

53

use array-based functions and operators that have been parallelized. This1169

approach, although available only in commercial packages at present, is at-1170

tractive for several reasons: (1) developers in these languages already know1171

to avoid spatial loops and use the array-based functions whenever possible1172

for good performance, (2) most of these array-based functions are straightfor-1173

ward to parallelize, and (3) developers need only import a different package1174

to take advantage of the parallelized functions.1175

Web services provide many additional opportunities. Peckham and Goodall1176

[40] have demonstrated how CSDMS components can use CUAHSI-HIS [13]1177

web services to retrieve hydrologic data, but CSDMS components could also1178

offer their capabilities as web services.1179

CSDMS is also interested in automated component wrapping, which can1180

be achieved by adding special annotation keywords within comments in the1181

source code. If the code is sufficiently annotated, it is possible to write a flex-1182

ible tool to wrap the component with any desired interface. Unfortunately,1183

most existing code has not been annotated in this way, and it is typically1184

necessary to involve the code’s developer in the annotation process.1185

Acknowledgments1186

CSDMS gratefully acknowledges major funding through a cooperative1187

agreement with the National Science Foundation (EAR 0621695). Addi-1188

tional work was supported by the Office of Advanced Scientific Computing1189

Research, Office of Science, U.S. Dept. of Energy, under Contracts DE-AC02-1190

06CH11357 and DE-FC-0206-ER-25774.1191

54

References1192

[1] Allan, B., Armstrong, R., Lefantzi, S., Ray, J., Walsh, E., Wolfe, P.,1193

2010. Ccaffeine – a CCA component framework for parallel computing.1194

http://www.cca-forum.org/ccafe/.1195

[2] Allan, B. A., Norris, B., Elwasif, W. R., Armstrong, R. C., Dec. 2008.1196

Managing scientific software complexity with Bocca and CCA. Scientific1197

Programming 16 (4), 315–327.1198

[3] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes,1199

L., Parker, S., Smolinski, B., 1999. Toward a Common Component Ar-1200

chitecture for high-performance scientific computing. In: Proc. 8th IEEE1201

Int. Symp. on High Performance Distributed Computing.1202

[4] Ashton, A., Kettner, A. J., Hutton, E. W. H., 2011. Progress in coupling1203

between coastline and fluvial dynamics. Computers & Geosciences (this1204

issue).1205

[5] Ashton, A., Murray, A. B., Arnoult, O., 2001. Formation of coastline1206

features by large-scale instabilities induced by high-angle waves. Nature1207

414, 296–300.1208

[6] Balay, S., Brown, J., , Buschelman, K., Eijkhout, V., Gropp, W. D.,1209

Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., Zhang,1210

H., 2010. PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1,1211

Argonne National Laboratory.1212

55

[7] Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Kne-1213

pley, M. G., McInnes, L. C., Smith, B. F., Zhang, H., 2011. PETSc web1214

page. Http://www.mcs.anl.gov/petsc.1215

[8] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F., 1997. Effi-1216

cient management of parallelism in object oriented numerical software1217

libraries. In: Arge, E., Bruaset, A. M., Langtangen, H. P. (Eds.), Modern1218

Software Tools in Scientific Computing. Birkhäuser Press, pp. 163–202.1219

[9] Bernholdt D. (PI), 2010. TASCS Center.1220

http://www.scidac.gov/compsci/TASCS.html.1221

[10] Buttler, H., AprilJune 2005. A guide to the python uni-1222

verse for esri users. ArcUser Mag.Available online at1223

http://www.esri.com/news/arcuser/.1224

[11] CCA Forum, 2010. A hands-on guide to the Common Component Ar-1225

chitecture. http://www.cca-forum.org/tutorials/.1226

[12] CSDMS, 2011. Community Surface Dynamics Modeling System (CS-1227

DMS). http://csdms.colorado.edu.1228

[13] CUAHSI, 2011. Consortium of Universities for the Advancement of the1229

Hydrological Sciences Inc. . http://www.cuahsi.org.1230

[14] Dahlgren, T., Epperly, T., Kumfert, G., Leek, J., 2007. Babel User’s1231

Guide. CASC, Lawrence Livermore National Laboratory, UCRL-SM-1232

230026, Livermore, CA.1233

56

[15] de St. Germain, J. D., Morris, A., Parker, S. G., Malony, A. D., Shende,1234

S., May 15-17 2002. Integrating performance analysis in the Uintah1235

software development cycle. In: Proceedings of the 4th International1236

Symposium on High Performance Computing (ISHPC-IV). pp. 190–206.1237

URL http://www.sci.utah.edu/publications/dav00/ishpc2002.pdf1238

[16] Diachin L. (PI), 2011. Center for Interoperable Tech-1239

nologies for Advanced Petascale Simulations (ITAPS).1240

http://www.scidac.gov/math/ITAPS.html.1241

[17] EJB, 2011. Enterprise Java Beans Specification.1242

http://java.sun.com/products/ejb/docs.html.1243

[18] ESMF Joint Specification Team, 2011. Earth System Modeling Frame-1244

work (ESMF) Website. http://www.earthsystemmodeling.org/.1245

[19] FRAMES, 2011. Framework for Risk Analysis of Multi-Media Environ-1246

mental Systems (FRAMES). http://mepas.pnl.gov/FRAMESV1/.1247

[20] Hill, C., DeLuca, C., Balaji, V., Suarez, M., da Silva, A., ESMF Joint1248

Specification Team, 2004. The architecture of the Earth System Model-1249

ing Framework. Computing in Science and Engineering 6, 18–28.1250

[21] Hutton, E. W. H., Syvitski, J. P. M., 2008. Sedflux-2.0: An advanced1251

process-response model that generates three-dimensional stratigraphy.1252

Computers & Geosciences 34 (10), 1319–1337.1253

[22] Kessler, M. A., Anderson, R. S., Briner, J. P., 2008. Fjord insertion1254

into continental margins driven by topographic steering of ice. Nature1255

Geoscience 1, 365–369.1256

57

[23] Kettner, A. J., Syvitski, J. P. M., 2008. Hydrotrend version 3.0: a1257

climate-driven hydrological transport model that simulates discharge1258

and sediment load leaving a river system. Computers & Geosciences1259

34 (10), 1170–1183.1260

[24] Keyes D. (PI), 2011. Towards Optimal Petascale Simulations (TOPS)1261

Center. http://tops-scidac.org/.1262

[25] Krishnan, S., Gannon, D., April 2004. XCAT3: A framework for CCA1263

components as OGSA services. In: Proceedings of the 9th International1264

Workshop on High-Level Parallel Programming Models and Supportive1265

Environments (HIPS 2004). IEEE Computer Society, pp. 90–97.1266

[26] Kumfert, G., April 2003. Understanding the CCA Specification Using1267

Decaf. Lawrence Livermore National Laboratory.1268

URL http://www.llnl.gov/CASC/components/docs/decaf.pdf1269

[27] Larson, J. W., 2009. Ten organising principles for coupling in multi-1270

physics and multiscale models. ANZIAM Journal 47, C1090–C1111.1271

[28] Larson, J. W., Norris, B., 2007. Component specification for parallel1272

coupling infrastructure. In: Gervasi, O., Gavrilova, M. L. (Eds.), Pro-1273

ceedings of the International Conference on Computational Science and1274

its Applications (ICCSA 2007). Vol. 4707 of Lecture Notes in Computer1275

Science. Springer-Verlag, pp. 56–68.1276

[29] Lawrence Livermore National Laboratory, 2011. Babel.1277

http://www.llnl.gov/CASC/components/babel.html.1278

58

[30] Lucas R. (PI), 2011. Performance Engineering Research Institute1279

(PERI). http://www.peri-scidac.org.1280

[31] MathWorks, 2011. MATLAB - The Language of Technical Computing.1281

http://www.mathworks.com/products/matlab/.1282

[32] Message Passing Interface Forum, 1998. MPI2: A message passing in-1283

terface standard. High Performance Computing Applications 12, 1–299.1284

[33] NET, 2011. Microsoft .NET Framework.1285

http://www.microsoft.com/net/.1286

[34] NetCDF, 2011. NetCDF. http://www.unidata.ucar.edu/packages/netcdf.1287

[35] OMP, 2011. Object Modeling System v3.0.1288

http://www.javaforge.com/project/oms.1289

[36] Ong, E. T., Larson, J. W., Norris, B., Jacob, R. L., Tobis, M., Steder,1290

M., 2008. A multilingual programming model for coupled systems. In-1291

ternational Journal for Multiscale Computational Engineering 6, 39–51.1292

[37] Open Geospatial Consortium, 2011. OGC Standards and Specifications.1293

http://www.opengeospatial.org/.1294

[38] Parker, G., 2011. 1d sediment transport morphodynam-1295

ics with applications to rivers and turbidity currents.1296

http://vtchl.uiuc.edu/people/parkerg/morphodynamic e-book.htm.1297

[39] Peckham, S., 2008. Geomorphometry and spatial hydrologic modeling.1298

Vol. 33 of Geomorphometry: Concepts, Software and Applications. De-1299

velopments in Soil Science. Elsevier, Ch. 25, pp. 579–602.1300

59

[40] Peckham, S. D., Goodall, J. L., 2011. Driving plug-and-play compo-1301

nents with data from web services: A demonstration of interoperability1302

between CSDMS and CUAHSI-HIS. Computers & Geosciences (this is-1303

sue).1304

[41] Rosen, L., 2004. Open Source Licensing: Software Freedom and Intellec-1305

tual Property Law. Prentice Hall, http://rosenlaw.com/oslbook.htm.1306

[42] T. Oliphant et al., 2011. Scientific Computing Tools for Python –1307

NumPy. http://numpy.scipy.org/.1308

[43] The MCT Development Team, 2006. Model Coupling Toolkit (MCT)1309

Web Site. http://www.mcs.anl.gov/mct/.1310

[44] The OpenMI Association, 2011. The Open Modeling Interface1311

(OpenMI). http://www.openmi.org.1312

[45] Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., 2001. The1313

Channel-Hillslope Integrated Landscape Development (CHILD) Model.1314

Academic/Plenum Publishers, pp. 349–388.1315

[46] United States Department of Energy, 2011. SciDAC Initiative homepage.1316

http://scidac.gov/.1317

[47] VisIt, 2011. VisIt. http://wci.llnl.gov/codes/visit.1318

[48] XML, 2011. Extensible Markup Language (XML).1319

http://www.w3.org/XML/.1320

60

The submitted manuscript has been created

by UChicago Argonne, LLC, Operator of Ar-

gonne National Laboratory (“Argonne”). Ar-

gonne, a U.S. Department of Energy Office of

Science laboratory, is operated under Contract

No. DE-AC02-06CH11357. The U.S. Govern-

ment retains for itself, and others acting on

its behalf, a paid-up, nonexclusive, irrevocable

worldwide license in said article to reproduce,

prepare derivative works, distribute copies to

the public, and perform publicly and display

publicly, by or on behalf of the Government.

1321

61

