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Abstract

The development of scientific modeling software increasingly requires the
coupling of multiple independently developed models. Component-based
software engineering enables the integration of plug-and-play components,
but significant additional challenges must be addressed in any specific do-
main in order to produce a usable development and simulation environment
that is also going to encourage contributions and adoption by entire com-
munities. In this paper we describe the challenges in creating a coupling
environment for Earth-surface process modeling and how we approach them
in our integration efforts at the Community Surface Dynamics Modeling Sys-

tem.
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1. Introduction

The Community Surface Dynamics Modeling System (CSDMS) project [12]
is an NSF-funded, international effort to develop a suite of modular numerical
models able to simulate a wide variety of Earth-surface processes, on time
scales ranging from individual events to many millions of years. CSDMS
maintains a large, searchable inventory of contributed models and promotes
the sharing, reuse, and integration of open-source modeling software. It has
adopted a component-based software development model and has created
a suite of tools that make the creation of plug-and-play components from
stand-alone models as automated and effortless as possible. Models or pro-
cess modules that have been converted to component form are much more
flexible and can be rapidly assembled into new configurations to solve a wider
variety of scientific problems. The ease with which one component can be re-
placed by another also makes it easy to experiment with different approaches
to providing a particular type of functionality. The CSDMS project also has a
mandate from the NSF to provide a migration pathway for surface dynamics
modelers toward high-performance computing (HPC) and provides a 720-
core supercomputer for use by its members. In addition, CSDMS provides
educational infrastructure related to physically based modeling.

The main purpose of this paper is to present in some detail the key issues
and design criteria for a component-based, integrated modeling system and
then describe the design choices adopted by the CSDMS project to address
these criteria. CSDMS was not developed in isolation: it builds on and
extends proven, open-source technology. The CSDMS project also maintains

close collaborations with several other integrated modeling projects and seeks
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to evaluate different approaches in pursuit of those that are optimal. As with
any design problem, myriad factors must be considered in determining what
is optimal, including how various choices affect users and developers. Other
key factors are performance, ease of maintenance, ease of use, flexibility,

portability, stability, encapsulation, and future proofing.

1.1. Component Programming Concepts

Component-based programming is all about bringing the advantages of
“plug and play” technology into the realm of software. When one buys a
new peripheral for a computer, such as a mouse or printer, the goal is to
be able to simply plug it into the right kind of port (e.g., a USB, serial,
or parallel port) and have it work, right out of the box. For this situation
to be possible, however, some kind of published standard is needed that
the makers of peripheral devices can design against. For example, most
computers have universal serial bus (USB) ports, and the USB standard is
well documented. A computer’s USB port can always be expected to provide
certain capabilities, such as the ability to transmit data at a particular speed
and the ability to provide a 5-volt supply of power with a maximum current
of 500 mA. The result of this standardization is that one can usually buy a
new device, plug it into a computer’s USB port, and start using it. Software
“plug-ins” work in a similar manner, relying on interfaces (ports) that have
well-documented structure or capabilities. In software, as in hardware, the
term component refers to a unit that delivers a particular type of functionality
and that can be “plugged in.”

Component programming build on the fundamental concepts of object-

oriented programming, with the main difference being the introduction or
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presence of a runtime framework. Components are generally implemented as
classes in an object-oriented language, and are essentially “black boxes” that
encapsulate some useful bit of functionality.

The purpose of a framework is to provide an environment in which com-
ponents can be linked together to form applications. The framework provides
a number of services that are accessible to all components, such as the linking
mechanism itself. Often, a framework will also provide a uniform method of
trapping or handling exceptions (i.e., errors), keeping in mind that each com-
ponent will throw exceptions according to the rules of the language that it is
written in. In some frameworks (e.g., CCA’s Ccaffeine [1]), there is a mech-
anism by which any component can be promoted to a framework service, as
explained in a later section.

One feature that often distinguishes components from ordinary subrou-
tines, software modules, or classes is that they are able to communicate with
other components that may be written in a different programming language.
This capability is referred to as language interoperability. In order for this
to be possible, the framework must provide a language interoperability tool
that can create the necessary “glue code” between the components. For a
CCA-compliant framework, that tool is Babel [14, 29], and the supported
languages are C, C++, Fortran (77-2003), Java, and Python. Babel is de-
scribed in more detail in a later section. For Microsoft’s .NET framework [33],
that tool is CLR (Common Language Runtime), which is an implementation
of an open standard called CLI (Common Language Infrastructure), also
developed by Microsoft. Some of the supported languages are C# (a spin-
off of Java), Visual Basic, C++/CLI, TronLisp, IronPython, and IronRuby.
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CLR runs a form of bytecode called CIL (Common Intermediate Language).
Note that CLI does not support Fortran, Java, standard C++, or standard
Python.

The Java-based frameworks used by Sun Microsystems are JavaBeans and

Enterprise JavaBeans (EJB) [17]. In the words of Armstrong et al. [3]:

Neither JavaBeans nor EJB directly addresses the issue of lan-
guage interoperability, and therefore neither is appropriate for
the scientific computing environment. Both JavaBeans and EJB
assume that all components are written in the Java language. Al-
though the Java Native Interface library supports interoperabil-
ity with C and C++, using the Java virtual machine to mediate
communication between components would incur an intolerable

performance penalty on every inter-component function call.

While in recent years the performance of Java codes has improved steadily
through just-in-time (JIT) compilation into native code, Java is not yet avail-
able on key high-performance platforms such as the IBM Blue Gene/L and
Blue Gene/P supercomputers.

Key advantages of component-based programming include the following.

e Components can be written in different languages and still communi-

cate (via language interoperability).

e Components can be replaced, added to, or deleted from an application

at runtime via dynamic linking (as precompiled units).
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Components can easily be moved to a remote location (different ad-
dress space) without recompiling other parts of the application (via

RMI/RPC support).
Components can have multiple different interfaces.

Components can be “stateful”; that is, data encapsulated in the com-

ponent is retained between method calls over its lifetime.

Components can be customized at runtime with configuration param-

eters.

Components provide a clear specification of inputs needed from other

components in the system.

Components allow multicasting calls that do not need return values

(i.e., send data to multiple components simultaneously).

Components provide clean separation of functionality (for components,

this is mandatory vs. optional).

Components facilitate code reuse and rapid comparison of different

implementations.

Components facilitate efficient cooperation between groups, each doing

what it does best.

Components promote economy of scale through development of com-

munity standards.
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2. Background

We briefly overview the component methodology used in CSDMS and
the associated tools that support component development and application

execution.

2.1. The Common Component Architecture

The Common Component Architecture (CCA) [3] is a component ar-
chitecture standard adopted by federal agencies (largely the Department of
Energy and its national laboratories) and academics to allow software com-
ponents to be combined and integrated for enhanced functionality on high-
performance computing systems. The CCA Forum is a grassroots organiza-
tion that started in 1998 to promote component technology standards (and
code reuse) for HPC. CCA defines standards necessary for the interopera-
tion of components developed in different frameworks. Software components
that adhere to these standards can be ported with relative ease to another
CCA-compliant framework. While a variety of other component architecture
standards exist in the commercial sector (e.g., CORBA, COM, .Net, and Jav-
aBeans), CCA was created to fulfill the needs of scientific, high-performance,
open-source computing that are unmet by these other standards. For ex-
ample, scientific software needs full support for complex numbers, dynam-
ically dimensioned multidimensional arrays, Fortran (and other languages),
and multiple processor systems. Armstrong et al. [3] explain the motivation
for creating CCA by discussing the pros and cons of other component-based
frameworks with regard to scientific, high-performance computing. A number

of DOE projects, many associated with the Scientific Discovery through Ad-
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vanced Computing (SciDAC) [46] program, are devoted to the development
of component technology for high-performance computing systems. Several
of these are heavily invested in the CCA standard (or are moving toward
it) and involve computer scientists and applied mathematicians. Examples

include the following.

e TASCS: The Center for Technology for Advanced Scientific Computing

Software, which focused on CCA and its associated tools [9].

e CASC: Center for Applied Scientific Computing, which is home to
CCA’s Babel tool [29].

e [TAPS: The Interoperable Technologies for Advanced Petascale Simu-
lation [16], which focuses on meshing and discretization components,

formerly TSTT.

e PERI: Performance Engineering Research Institute, which focuses on

HPC quality of service and performance issues [30].

e TOPS: Terascale Optimal PDE Solvers, which focuses on PDE solver

components [24].

e PETSc: Portable, Extensible Toolkit for Scientific Computation, which
focuses on linear and nonlinear PDE solvers for HPC, using MPI [6, 7,

).

A variety of different frameworks, such as Ccaffeine [1], CCAT/XCAT [25],
SciRUN [15] and Decaf [26], adhere to the CCA component architecture stan-

dard. A framework can be CCA-compliant and still be tailored to the needs of
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a particular computing environment. For example, Ccaffeine was designed to
support parallel computing, and XCAT was designed to support distributed
computing. Decaf [26] was designed by the developers of Babel primarily as
a means of studying the technical aspects of the CCA standard itself. The
important point is that each of these frameworks adheres to the same stan-
dard, thus facilitating reuse of a (CCA) component in another computational
setting. The key idea is to isolate the components themselves, as much as
possible, from the details of the computational environment in which they
are deployed. If this is not done, then we fail to achieve one of the main goals
of component programming: code reuse.

CCA has been shown to be interoperable with Earth System Modeling
Framework (ESMF) [20] and Model Coupling Toolkit (MCT) [27, 28, 36,
43]. CSDMS has also demonstrated that it is interoperable with a Java
version of Open Modeling Interface (OpenMI) [44]. Many of the papers in
our cited references have been written by CCA Forum members and are
helpful for learning more about CCA. The CCA Forum has also prepared
a set of tutorials called “A Hands-On Guide to the Common Component

Architecture” [11].

2.2. Language Interoperability with Babel

Babel [29, 14] is an open-source, language interoperability tool (consist-
ing of a compiler and runtime) that automatically generates the “glue code”
necessary for components written in different computer languages to commu-
nicate. As illustrated in Fig. 1, Babel currently supports C, C++, Fortran
(77, 90, 95, and 2003), Java and Python. Babel is much more than a “least

common denominator” solution; it even enables passing of variables with

9
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Figure 1: Language interoperability provided by Babel.

data types that may not normally be supported by the target language (e.g.,
objects and complex numbers). Babel was designed to support scientific,
high-performance computing and is one of the key tools in the CCA tool
chain. It won an R&D 100 design award in 2006 for “The world’s most
rapid communication among many programming languages in a single ap-
plication.” It has been shown to outperform similar technologies such as
CORBA and Microsoft’s COM and .NET.

In order to create the glue code needed for two components written in
different programming languages to exchange information, Babel needs to
know only about the interfaces of the two components. It does not need
any implementation details. Babel was therefore designed so that it can in-
gest a description of an interface in either of two fairly “language-neutral”

forms, XML (eXtensible Markup Language) or SIDL (Scientific Interface

10
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Definition Language). The SIDL language (somewhat similar to CORBA’s
IDL) was developed for the Babel project. Its sole purpose is to provide a
concise description of a scientific software component interface. This inter-
face description includes complete information about a component’s inter-
face, such as the data types of all arguments and return values for each of
the component’s methods (or member functions). SIDL has a complete set
of fundamental data types to support scientific computing, from Booleans
to double-precision complex numbers. It also supports more sophisticated
data types such as enumerations, strings, objects, structs,and dynamic multi-
dimensional arrays. The syntax of SIDL is similar to that of Java. A com-
plete description of SIDL syntax and grammar can be found in “Appendix
B: SIDL Grammar” in the Babel User’s Guide [14]. Complete details on how
to represent a SIDL interface in XML are given in “Appendix C: Extensible
Markup Language (XML)” of the same guide.

2.3. The Ccaffeine Framework

Ccaffeine [1] is the most widely used CCA framework, providing the run-
time environment for sequential or parallel components applications. Us-
ing Ccaffeine, component-based applications can run on diverse platforms,
including laptops, desktops, clusters, and leadership-class supercomputers.
Ccaffeine provides some rudimentary MPI communicator services, although
individual components are responsible for managing parallelism internally
(e.g., communicating data to and from other distributed components). A
CCA framework provides services, which include component instantiation
and destruction, connecting and disconnecting of ports, handling of input

parameters, and control of MPI communicators. Ccaffeine was designed pri-

11
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marily to support the single-component multiple-data (SCMD) programming

style,

although it can support multiple-component multiple-data (MCMD)

applications that implement more dynamic management of parallel resources.

The CCA specification also includes an event service description, but it is

not fully implemented in Ccaffeine yet. Multiple interfaces to configuring

and executing component applications within the Ccaffeine framework exist,

including a simple scripting language, a graphical user interface, and the abil-

ity to take over some of the operations normally handled by the frameworks,

such as component instantiation and port connections.

A typical CCA component’s execution consists of the following steps:

The framework loads the dynamic library for the component. Static

linking options are also available.

The component is instantiated. The framework calls the setServices

method on the component, passing a handle to itself as an argument.

User-specified connections to other components’ ports are established

by the framework.

If the component provides a gov.cca.ports.Go port (similar to a
“main” subroutine), its go() method can be invoked to start the main

portion of the computation.

Connections can be made and broken throughout the life of the com-

ponent.

All component ports are disconnected, and the framework calls re-

leaseServices prior to calling the component’s destructor.

12



250

251

252

253

254

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

The handle to the framework services object, which all CCA components
obtain shortly after instantiation, can be used to access various framework
services throughout the component’s execution. This represents the main
difference between a class and a component: a component dynamically ac-
cesses another component’s functionality through dynamically connecting
ports (requiring the presence of a framework), whereas classes in object-

oriented languages call methods directly on instances of other classes.

2.4. Component Development with Bocca

Bocca [2] is a tool in the CCA tool chain that was designed to help
users create, edit, and manage a set of SIDL-based entities, including CCA
components and ports, that are associated with a particular project. Once
a set of CCA-compliant components and ports has been prepared, one can
use a CCA-compliant framework such as Ccaffeine to link components from
this set together to create applications or composite models.

Bocca was developed to address usability concerns and reduce the de-
velopment effort required for implementing multilanguage component appli-
cations. Bocca was designed specifically to free users from mundane, time-
consuming, low-level tasks so they can focus on the scientific aspects of their
applications. It can be viewed as a development environment tool that al-
lows application developers to perform rapid component prototyping while
maintaining robust software- engineering practices suitable to HPC envi-
ronments. Bocca provides project management and a comprehensive build
environment for creating and managing applications composed of CCA com-
ponents. Bocca operates in a language-agnostic way by automatically in-

voking the Babel compiler. A set of Bocca commands required to create a

13
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component project can be saved as a shell script, so that the project can
be rapidly rebuilt, if necessary. Various aspects of an existing component
project can also be modified by typing Bocca commands interactively at a
Unix command prompt.

While Bocca automatically generates dynamic libraries, a separate tool
can be used to create stand-alone executables for projects by automatically
bundling all required libraries on a given platform. Examples of using Bocca
are available in the set of tutorials called “A Hands-On Guide to the Common

Component Architecture,” written by the CCA Forum members [11].

2.5. Other Component-Based Modeling Projects

We briefly discuss several other component-based projects in the area of

Earth system-related modeling.

e The Object Modeling System (OMS) [35] is a pure Java, object-oriented

framework for component-based agro-environmental modeling.

e The Open Modeling Interface (OpenMI) [44] is an open-source software-
component interface standard for the computational core of numerical
models. Model components that comply with this standard can be con-
figured without programming to exchange data during computation (at
runtime). Similar to the CCA component model, the OpenMI standard
supports two-way links between components so that the involved mod-
els can mutually depend on calculation results from each other. Linked
models may run asynchronously with respect to time steps, and data
represented on different geometries (grids) can be exchanged by using

built-in tools for interpolating in space and time. OpenMI was designed

14
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primarily for use on PCs, using either the .NET or Java framework.
CSDMS has experimented with OpenMI version 1.4 (version 2.0 was

recently released) but currently uses a simpler component interface.

The Earth System Modeling Framework (ESMF) [18, 20] is software
for building and coupling weather, climate, and related models writ-
ten in Fortran. ESMF defines data structures, parallel data redistri-
bution, and other utilities to enable the composition of multimodel

high-performance simulations.

The Framework for Risk Analysis of Multi-Media Environmental Sys-
tems (FRAMES) [19] is developed by the U.S. Environmental Protec-
tion Agency to provide models and modeling tools (e.g., data retrieval

and analysis) for simulating different environmental processes.

Problem Definition — Component-based Plug-and-Play Model-
ing

Next we discuss the challenges that we faced in tackling the problem

of creating plug-and-play modeling capabilities that can be extended and

actively used by the CSDMS community.

3.1. Attributes of Farth Surface Process Models

The Earth surface process modeling community has numerous models,

but it is difficult to couple or reconfigure them to solve new problems. The

reason is that they are a heterogeneous set.

e The models are written in many different languages, which may be

object-oriented or procedural, compiled or interpreted, proprietary or

15
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open-source, etc. Languages do not all offer the same data types and
features, so special tools are required to create “glue code” necessary

to make function calls across the language barrier.

The models typically are not designed to “talk” to each other and do

not follow any particular set of conventions.

The models generally have a geographic context and are often used in

conjunction with GIS (Geographic Information System) tools.

The generally consist of one or more arrays (1D, 2D, or 3D) that are
being advanced in time according to differential equations or other rules

(i.e., we are not modeling molecular dynamics).
The models use different input and output file formats.

The models are often open source. Even many models that were orig-
inally sold commercially are now available as open-source code, for
example parts of Delt3D from Deltares and many EDF (Energie du

Francais) models.

3.2. Difficulties in Linking Models

Linking together models that were not specifically designed from the out-
set to be linkable is often surprisingly difficult, and a brute-force approach to
the problem often requires a significant investment of time and effort. The
main reason is that two models may differ in may ways. The following list

of possible differences illustrates this point.

e The models are written in different languages, making conversion time-

consuming and error-prone.

16



345 e The person doing the linking may not be the author of either model,

346 and the code is often not well-documented or easy to understand.

347 e Models may have different dimensionality (1D, 2D, or 3D).

348 e Models may use different types of grids (e.g., rectangles, triangles, and
349 Voronoi cells).

350 e Each model has its own time loop or “clock.”

351 e The numerical scheme may be either explicit or implicit.

2 3.3. Design Criteria

353 The technical goals of a component-based modeling system include the

34 following.

355 e Support for multiple operating systems (especially Linux, Mac OS X,

356 and WindOWS).

357 e Language interoperability to support code contributions written in pro-
358 cedural languages (e.g., C or Fortran) as well as object-oriented lan-
350 guages (e.g., Java, C++, and Python).

360 e Support for both structured and unstructured grids, requiring a spatial
361 regridding tool.

362 o Platform-independent GUIs and graphics where useful.

363 e Use of well-established, open-source software standards whenever pos-

364 sible (e.g., CCA, SIDL, OGC, MPI, NetCDF, OpenDAP, and XUL).
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e Use of open-source tools that are mature and have well-established com-
munities, avoiding dependencies on proprietary software whenever pos-

sible (e.g., Windows, C#, and Matlab).
e Support for parallel computation (multiprocessor, via MPI standard).

o [Interoperability with other coupling frameworks. Since code reuse is a
fundamental tenet of component-based modeling, the effort required to

use a component in another framework should be kept to a minimum.

e Robustness and ease of maintainenance. It will clearly have many soft-
ware dependencies, and this software infrastructure will need to be

updated on a regular basis.

e Use of HPC tools and libraries. If the modeling system runs on HPC
architectures, it should strive to use parallel tools and models (e.g.,

Vislt, PETSc, and the ESMF regridding tool).

e Familiarity. Model developers and contributors should not be required

to make major changes to how they work.

Expanding the last bullet, developers should not be required to convert
to another programming language or use invasive changes to their code (e.g.,
use specified data structures, libraries, or classes). They should be able to
retain “ownership” of the code and make continual improvements to it; some-
one should be able to componentize future, improved versions with minimal
additional effort. The developer will likely want to continue to use the code
outside the framework. However, some degree of code refactoring (e.g., break-

ing code into functions or adding a few new functions) and ensuring that the

18
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code compiles with an open-source compiler are considered reasonable re-
quirements. It is also expected that many developers will take advantage of

various built-in tools if doing so is straightforward and beneficial.

3.4. Interface vs. Implementation

The word interface may be the most overloaded word in computer science.
In each case, however, it adheres to the standard, English meaning of the
word that has to do with a boundary between two items and what happens
at the boundary.

Many people hear the word interface and immediately think of the in-
terface between a human and a computer program, which is typically either
a command-line interfaceor a graphical user interface (GUI). While such in-
terfaces are an interesting and complex subject, this is usually not what
computer scientists are talking about. Instead, they tend to be interested
in other types of interface, such as the one between a pair of software com-
ponents, or between a component and a framework, or between a developer
and a set of utilities (i.e., an API or a software development kit).

Within the present context of component programming, we are interested
primarily in the interfaces between components. In this context, the word
interface has a specific meaning, essentially the same as in the Java pro-
gramming language. An interface is a user-defined entity/type, similar to
an abstract class. It does not have any data fields, but instead is a named
set of methods or member functions, each defined completely with regard to
argument types and return types but without any actual implementation. A
CCA port is simply this type of interface. Interfaces are the name of the

game when it comes to the question of reusability or “plug and play.” Once
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an interface has been defined, one can ask the question: Does this compo-
nent have interface A? To answer the question, we merely have to look at the
methods (or member functions) that the component has with regard to their
names, argument types, and return types. If a component does have a given
interface, then it is said to exzpose or implement that interface, meaning that
it contains an actual implementation for each of those methods. It is fine
if the component has additional methods beyond the ones that constitute a
particular interface. Thus, it is possible (and frequently useful) for a single
component to expose multiple, different interfaces or ports. For example,
multiple interfaces may allow a component to be used in a greater variety
of settings. An analogy exists in computer hardware, where a computer or
peripheral may actually have a number of different ports (e.g., USB, serial,
parallel, and ethernet) to enable it to communicate with a wider variety of
other components.

The distinction between interface and implementation is an important
theme in computer science. The word pair declaration and definition is used
in a similar way. A function (or class) declaration tells what the function
does (and how to interact with or use it) but not how it works. To see how
the function actually works, we need to look at how it has been defined or
implemented. C and C++ programmers are familiar with this idea, which
is similar to declaring variables, functions, classes, and other data types in a
header file with the file name extension .h or .hpp, and then defining their
implementations in a separate file with extension .c or .cpp.

Of course, most of the gadgets that we use every day (from iPods to cars)

are like this. We need to understand their interfaces in order to use them
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(and interfaces are often standardized across vendors), but often we have no
idea what is happening inside or how they actually work, which may be quite
complex.

While the tools in the CCA tool chain are powerful and general, they do
not provide a ready interface for linking geoscience models (or any domain-
specific models). In CCA terminology, port is essentially a synonym for
interface and a distinction is made between ports that a given component uses
(uses ports), and those that it provides (provides ports) to other components.
Note that this model provides a means of bidirectional information exchange
between components, unlike dataflow-based approaches (e.g., OpenMI) that
support unidirectional links between components (i.e., the data produced by
one component is consumed by another component).

Each scientific modeling community that wishes to make use of the CCA
tools is responsible for designing or selecting component interfaces (or ports)
that are best suited to the kinds of models they wish to link together. This is
a big job that involves social as well as technical issues and typically requires
a significant time investment. In some disciplines, such as molecular biology
or fusion research, the models may look quite different from ours. Ours tend
to follow the pattern of a 1D, 2D or 3D array of values (often multiple,
coupled arrays) advancing in time. However, our models can still be quite
different from each other with regard to their dimensionality or the type
of computational grid they use (e.g., rectangles, triangles or polygons), or

whether they are implicit or explicit in time.
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3.5. Granularity

While components may represent any level of granularity, from a simple
function to a complete hydrologic model, the optimum level appears to be
that of a particular physical process, such as infiltration, evaporation, or
snowmelt. At this level of granularity researchers are most often interested
in swapping out one method of modeling a process for another. A simpler
method of parameterizing a process may apply only to simplified special cases
or may be used simply because there is insufficient input data to drive a more
complex model. A different numerical method may solve the same governing
equations with greater accuracy, stability, or efficiency and may or may not
use multiple processors. Even the same method of modeling a given process
may exhibit improved performance when coded in a different programming
language. But the physical process level of granularity is also natural for
other reasons. Specific physical processes often act within a domain that
shares a physically important boundary with other domains (e.g., coastline
and ocean-atmosphere), and the fluxes between these domains are often of
key interest. In addition, experience shows that this level of granularity
corresponds to GUIs and HTML help pages that are more manageable for
users.

A judgment call is frequently needed to decide whether a new feature
should be provided in a separate component or as a configuration setting
in an existing component. For example, a kinematic wave channel-routing
component may provide both Manning’s formula and the law of the wall as
different options to parameterize frictional momentum loss. Each of these

options requires its own set of input parameters (e.g., Manning’s n or the
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roughness parameter, z5). We could even think of frictional momentum loss
as a separate physical process, under which we would have a separate Man-
ning’s formula and law of the wall components. Usually, the amount of code
associated with the option and usability considerations can be used to make
these decisions.

Some models are written in such a way that decomposing them into sep-
arate process components is not really appropriate, because of some special
aspect of the model’s design or because decomposition would result in an
unacceptable loss of performance (e.g., speed, accuracy, or stability). For
example, multiphysics models—such as Penn State Integrated Hydrologic
Model (PIHM)—represent many physical processes as one large, coupled set
of ODEs that are then solved as a matrix problem on a supercomputer.
Other models involve several physical processes that operate in the same do-
main and are relatively tightly coupled within the governing equations. The
Regional Ocean Modeling System (ROMS) is an example of such a model,
in which it may not be practical to model processes such as tides, currents,
passive scalar transport (e.g., T and S), and sediment transport within sep-
arate components. In such cases, however, it may still make sense to wrap
the entire model as a component so that it may interact with other models
(e.g., an atmospheric model, such as WRF, or a wave model, such as SWAN)

or be used to drive another model (e.g., a Lagrangian transport model, such

as LTRANS).
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4. Designing a Modeling Interface

A component interface is simply a named set of functions (called meth-
ods) that have been defined completely in terms of their names, arguments
and return values. The purpose of this section is to explain the types of
functions that are required and why. The functions that define an interface
are somewhat analogous to the buttons on a handheld remote control—they

provide a caller with fine-grained control of the model component.

4.1. The “IRF” Interface Functions

Most Earth-science models initialize a set of state variables (often as 1D,
2D, or 3D arrays) and then execute of series of timesteps that advance the
variables forward in time according to physical laws (e.g., mass conservation)
or some other set of rules. Hence, the underlying source code tends to follow
a standard pattern that consists of three main parts. The first part consists
of all source code prior to the start of the time loop and serves to set up
or initialize the model. The second part consists of all source code within
the time loop and is the guts of the model where state variables are updated
with each time step. The third part consists of all source code after the
end of the time loop and serves to tear down or finalize the model. Note
that root-finding and relaxation algorithms follow a similar pattern even if
the iterations do not represent timestepping. A time-independent model
can also be thought of as a time-stepping model with a single time step.
For maximum plug-and-play flexibility, each of these three parts must be
encapsulated in a separate function that is accessible to a caller. It turns out

that we get more flexibility if the function for the middle phase is written to
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accept the start time and end time as arguments.

For lack of a better term, we refer to this Initialize(), Run_Until(), Fi-
nalize() pattern as an IRF interface. All of the model coupling projects
that we are aware of use this pattern as part of their component interface,
including CSDMS, ESMF, OMF, and OpenMI. An IRF interface is also used
as part of the Message Passing Interface (MPI) for communication between
processes in high-performance computers.

To see how an IRF interface is used when coupling models, consider two
models, Models A and B, that do not have this interface. To combine them
into a single model, where one uses the output of the other during its time
loop, we would need to cut the code from within Model A’s time loop and
paste it into Model B, or vice versa. The reason is that both models were

designed to control the time loop and cannot reliquish this control.

4.1.1. Initialize (Model Setup)

The initialize step puts a model into a valid state that is ready to be
executed. Mostly this involves initializing variables or grids that will be used
within the execution step. Temporary files that the execution step will read

from or write to should also be opened here.

4.1.2. Run_Until (Model Execution)

The run step advances the model from its current state to a future state.
For time-independent models the run step simply executes the model cal-
culation and updates the model state so that future calls will not require
executing the calculations again. Encapsulating only the code within the

time loop allows an application to run the model to intermediate states.
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This is necessary to allow an application to query the model’s state for the
purposes of (for instance) printing output or passing state data to another

model.

4.1.3. Finalize (Model Termination)

The finalize step cleans up after the model is no longer needed. The main
purpose of this step to make sure that all resources a model acquired through
its life have been freed. Most often this will be freeing allocated memory,
but it could also be freeing file or network handles. Following this step, the
model should be left in an invalid state such that its run step can no longer

be called until it has been initialized again.

4.2. Getter and Setter Interface Functions

A basic IRF interface, while important, really provides only the core
functionality of a model coupling interface. A complete interface will also
require functions that enable another component to request data from the
component (a getter) or change data values (a setter) in the component.

These are typically called within the Initialize() or Run_Until() methods.

4.2.1. Value Getters

Limiting access to the model’s state to be through a set of functions
allows control of what data the model shares with other programs and how
it shares that data. The data may be transferred in two ways. The first is
to give the calling program a copy of the data. The second is to give the
actual data that is being used by the model (in C, this would mean passing a
pointer to a value). The first has the advantage that it hides implementation

details of the model from the calling program and limits what the calling
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program can do to the model. However, the downside of the first method is
that communication will be slower (and could be significantly so, depending

on the size of the data being transferred).

4.2.2. Value Setters

Variables in a model should be accessed and changed only through in-
terface methods. This approach ensures that users of the interface are not
able to change values that the interface implementor does not want them
to change. This also detaches the programmer using the interface from the
model implementation, thus freeing the model developer to change details of
the model without an application programmer having to make any changes.

The setter can also perform tasks other than just setting data. For in-
stance, it might be useful if the setter checked to make sure that the new
data is valid. After the setter method sets the data, it should ensure that
the model is still in a valid state.

The Get_Value() and Set_Value() methods can be general in terms of
supporting different grid or mesh types, but it should be possible to bypass
that generality and use simple, raster-based grids to keep things simple and
efficient when the generality is not needed.

CSDMS has wrapped two open-source regridding tools that can act as
services (see Section 9) that other components can use when communicating
with one another (an example regridding scenario is shown in Figure 2). The
first is from the ESMF project. It is implemented in Fortran and is designed
to use multiple processors on a distributed memory system. It supports
sophisticated options such as mass-conservative interpolation. The second

tool is the multithreaded tool included in the Java SDK for OpenMI.
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(a) Voronoi cells. (b) Intersecting raster and Voronoi cells.

(c) Voronoi cells before regridding. (d) After regridding to raster cells.

Figure 2: Regridding example.

The Get_Value() and Set_Value() methods should optionally allow spec-
ification (via indices) of which individual elements within an array that are
to be obtained or modified. We often need to manipulate just a few values,
and we don’twant to transfer copies of entire arrays (which may be large)
unless necessary.

Each component should understand what variables will be requested from
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it; and if those represent some function of its state variables (e.g., a sum
or product), then that computation should be done by the component and
offered as an output variable rather than passing several state variables that
must then be combined in some way by the caller.

In order to support dynamically typed languages like Python, additional
interface functions may be required in order to query whether the variable is

currently a scalar or a vector (1D array) or a grid.

4.3. Self-Descriptive Interface Functions

Two additional methods for a modeling interface would enable a caller to
query what type of data the component is able to use as input or compute
as output. These would typically not require arguments and would simply
return the names of all the possible input or output variables as an array of
strings, for example Get_Input_Item_List() and Get_Output_Item_List(). An-
other type of self-descriptive function would be a function like Get_Status()
that returns the component’s current status as a string from a standardized

list.

4.4. Framework Interface Functions

A component typically needs some additional methods that allow it to
be instantiated by and communicate with a component-coupling framework.
For example, a component must implement methods called __init__(), getSer-
vices(), and releaseServices() in order to be used within a CCA-compliant

framework.
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4.5. Autoconnection Problem

A key goal of component-based modeling is to create a collection of com-
ponents that can be coupled together to create new and useful composite
models. This goal can be achieved by providing every component with the
same interface, and this is the approach used by OpenMI. A secondary goal,
however, is for the coupling process to be as automatic as possible, that is,
to require as little input as possible from users. To achieve this goal, we need
some way to group components into categories according to the functionality
they provide. This grouping must be readily apparent to both a user and the
framework (or system) so that it is clear whether a particular pair of compo-
nents are interchangeable. But what should it mean for two components to
be interchangeable? Do they really need to use identical input variables and
provide identical output variables? Our experience shows that this definition
of interchangeable is unnecessarily strict.

To bring these issues into sharper focus, consider the physical process of
infiltration, which plays a key role in hydrologic models. As part of a larger
hydrologic model, the main purpose of an infiltration component is to com-
pute the infiltration rate at the surface, because it represents a loss term in
the overall hydrologic budget. If the domain of the infiltration component
is restricted to the unsaturated zone, above the water table, then it may
also need to provide a vertical flow rate at the water table boundary. Thus,
the main job of the infiltration component is to provide fluxes at the (top
and bottom) boundaries of its domain. To do this job, it needs variables
such as flow depth and rainfall rate that are outside its domain and com-

puted by another component. Hydrologists use a variety of different methods
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and approximations to compute surface infiltration rate. The Richards 3D
method, for example, is a more rigorous approach that tracks four state vari-
ables throughout the domain; on the other hand, the Green-Ampt method
makes a number of simplifying assumptions so that it computes a smaller
set of state variables and does not resolve the vertical flow dynamics to the
same level of detail (i.e., piston flow, sharp wetting front). As a result, the
Richards 3D and Green-Ampt infiltration components use a different set of
input variables and provide a different set of output variables. Nevertheless,
they both provide the surface infiltration rate as one of their outputs and can
therefore be used “interchangeably” in a hydrologic model as an “infiltration
component.”

The infiltration example illustrates several key points that are transfer-
able to other situations. Often a model, such as a hydrologic model, breaks
the larger problem domain into a set of subdomains where one or more pro-
cesses are relevant. The boundaries of these subdomains are often physical
interfaces, such as surface/subsurface, unsaturated/saturated zone, atmo-
sphere/ocean, ocean/seafloor, or land/water. Moreover, the variables that
are of interest in the larger model often depend on the fluxes across these
subdomain boundaries.

Within a group of interchangeable components (e.g., infiltration compo-
nents), there are many other implementation differences that a modeler may
wish to explore, beyond just how a physical process is parameterized. For
example, performance and accuracy often depend on the numerical scheme
(explicit vs. implicit, order of accuracy, stability), data types used (float vs.

double), number of processors (parallel vs. serial), approximations used, the
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programming language, or coding errors.

Autoconnection of components is important from a user’s point of view.
Components typically require many input variables and produce many out-
put variables. Users quickly become frustrated when they need to manually
create all these pairings/connections, especially when using more than just
two or three components at a time. The OpenMI project does not support
the concept of auto-connection or interchangeable components. When using
the graphical Configuration Editor provided in its SDK, users are presented
with droplists of input and output variables and must select the ones to be
paired. Doing so requires expertise and is made more difficult because there
is so far no ontological or semantic scheme to clarify whether two variable
names refer to the same item.

The CSDMS project currently employs an approach to autoconnection
that involves providing interfaces (i.e. ,CCA ports) with different names to
reflect their intended use (or interchangeability), even though the interfaces

are the same internally.

5. Current CSDMS Component Interface

This section contains a concise list of the current CSDMS IRF and get-
ter/setter interfaces, which must be implemented by any compliant compo-

nents.

5.1. The IRF Interface

The following methods comprise the IRF interface described in more de-

tail in Section 4.1.
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CMLINITIALIZE (handle, filename)
ouT handle handle to the CMI object

IN filename path to configuration file

CMI_RUN_UNTIL (handle, stop_time)
IN handle handle to the CMI object

IN stop_time simulation time to run model until

CMI_FINALIZE (handle)
INOUT handle handle to the CMI object

5.2. Value Getters and Setters

The following methods comprise the CSDMS getter/setter interface dis-

cussed in Section 4.2.

CMI_GRID_DIMEN (handle, value_str, dimen)

IN handle handle to the CMI object
IN value_str name of the value to get
ouT dimen length of each grid dimension

CMI_GRID_RES (handle, value_str, res)

IN handle handle to the CMI object
IN value_str name of the value to get
ouT res grid spacing for each dimension

CMI_GET_GRID_DOUBLE (handle, value_str, buffer)
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IN handle handle to the CMI object

IN value_str name of the value to get

ouT buffer initial address of the destination values

CMI_SET_GRID_DOUBLE (handle, value_str, buffer, dimen)

IN handle handle to the CMI object

IN value_str name of the value to get

IN buffer initial address of the source values
IN dimen grid dimension

CMI_GET_TIME_SPAN (handle, span)
IN handle handle to the CMI object

ouT span start and end times for the simulation

CMI_GET_ELEMENT_SET (handle, value_str, element_set)

IN handle handle to the CMI object
IN value_str name of the value to get
ouT buffer model ElementSet

CMI_GET_VALUE_SET (handle, value_str, value_set)

IN handle handle to the CMI object
IN value_str name of the value to get
ouT buffer model ValueSet

CMI_SET_VALUE_SET (handle, value_str, value_set)

IN handle handle to the CMI object
IN value_str name of the value to get
IN buffer model ValueSet
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6. Component Wrapping Issues

In this section we discuss several methods for creating components based

on existing codes by using an approach often referred to as wrapping.

6.1. Code Reuse and the Case for Wrapping

Using computer models to simulate, predict, and understand Earth sur-
face processes is not a new idea. Many models exist, some of which are fairly
sophisticated, comprehensive, and well tested. The difficulty with reusing
these models in new contexts or linking them to other models typically has
less to do with how they are implemented and more to do with the interface
through which they are called (and to some extent, the implementation lan-
guage.) For a small or simple model, little effort may be needed to rewrite
the model in a preferred language and with a particular interface. Rewriting
large models, however, is both time-consuming and error prone. In addition,
most large models are under continual development, and a rewritten version
will not see the benefits of future improvements. Thus, for code reuse to be
practical, we need a language interoperability tool, so that components dont
need to be converted to a different language, and a wrapping procedure that
allows us to provide existing code with a new calling interface. As suggested
by its name, and the fact that it applies to the “outside” (interface) of a com-
ponent vs. its “inside” (implementation), wrapping tends to be noninvasive

and is a practical way to convert existing models into components.

6.2. Wrapping for Object-Oriented Languages

Component-based programming is essentially object-oriented program-

ming with the addition of a framework. If a model has been written as a
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class, then it is relatively straightforward to modify the definition of this
class so that it exposes a particular model-coupling interface. Specifically,
one could add new methods (member functions) that call existing methods,
or one could modify the existing methods. Each function in the interface
has access to all of the state variables (data members) without passing them
explicitly; it also has access to all the other interface functions. In object-
oriented languages one commonly distinguishes between private methods that
are intended for internal use by the model object and public methods that are
to be used by callers and that may comprise one or more interfaces. (Some
languages, like Java, make this part of a method’s declaration.)

In order for this model object to be used as a component in a CCA-
compliant framework like Ccaffeine, it must also be “wrapped” by a CCA
implementation file (or IMPL file). The CCA tool chain has tools such as
Babel and Bocca that are used to autogenerate an IMPL-file template. For
a model that is written in an object-oriented and Babel-supported language
(e.g., C++, Python, or Java), the IMPL file needs to do little more than
add interface functions like setServices and releaseServices that allow the
component to communicate with and be instantiated by the framework. The
interface functions used for intercomponent communication (i.e., passing data
and IRF) can simply be inherited from the model class. Inheritance is a
standard mechanism in object-oriented languages that allows one interface
(set of methods) to be extended or overridden by another. Note that the
IMPL file may have its own Initialize() function that first gets the required
CCA ports and then calls the Initialize() function in the model’s interface.

But the function that gets the CCA ports can simply be another function
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in the model’s interface that is used only in this context. Similarly, the
IMPL file may have a Finalize() function that calls the Finalize() function
of the model and then calls a function to release the CCA ports that are no
longer needed. It is desirable to keep the IMPL files as clean as possible,
which means adding some CCA-specific functions to the model’s interface.
For example, a CSDMS component would have (1) functions to get and
release the required CCA ports, (2) a function to create a tabbed-dialog
(using CCA’s so-called parameter ports), and (3) a function that prints a
language-specific traceback to stdout if an exception occurs during a model

rumn.

6.3. Wrapping for Procedural Languages

Languages such as C or Fortran (up to 2003) do not provide object-

oriented primitives for encapsulating data and functionality. Because component-

based programming requires such encapsulation, the CCA provides a means
to produce object-oriented software even in languages that do not support it
directly. We briefly describe the mechanism for creating components based
on functionality implemented in a procedural language (e.g., an existing li-
brary or model).

A class in object-oriented terminology encapsulates some set of related
functions and associated data. To wrap a set of library functions, one can
create a SIDL interface or class that contains a set of methods whose im-
plementations call the legacy functions. The new interface does not have to
mirror existing functions exactly, presenting a nonintrusive opportunity for
redesigning the publicly accessible interfaces presented by legacy software.

The creation of class or component wrappers also enables the careful defini-
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tion of namespaces, thus reducing potential conflicts when integrating with
other classes or components. The SIDL definitions are processed by Babel to
generate IMPL files in the language of the code being wrapped. The calls to
the legacy library can then be added either manually or by a tool, depending
on how closely the SIDL interface follows the original library interface.

Function argument types that appear in the SIDL definition can be han-
dled in two ways: by using a SIDL type or by specifying them as opaque.
SIDL already supports most basic types and different kinds of arrays found
in the target languages. Any user-defined types (e.g., structs in C or de-
rived types in Fortran) must have SIDL definitions or be passed as opaques.
Because opaques are not accessible from components implemented in a dif-
ferent language, they are rarely used. Model state variables that must be
shared among components can be handled in a couple of ways. They can
be encapsulated in a SIDL class and accessed through get/set methods (e.g.,
as described in Section 4.2). Recently Babel has added support for defining
structs in SIDL, whose data members can be accessed directly from multiple
languages.

SIDL supports namespacing of symbols through the definition of packages
whose syntax and semantics are similar to Java’s packages. In languages that
do not support object orientation natively, symbols (e.g., function names)
are prefixed with the names of all enclosing packages and parent class. This
approach greatly reduces the potential build-, link-, or runtime name conflicts
that can result when multiple components define the same interfaces (e.g.,
the initialize, run, and finalize methods). These naming conventions can be

applied to any code, not only SIDL-based components.
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Implementors working in non object-oriented languages should encapsu-
late their model’s state data in an object that is opaque to the application
programmer. Memory within the object is not directly accessible by the user
but can be accessed through an opaque handle, which exists in user space.
This handle is passed as the first argument to each of the interface functions
so that they can operate on a particular instance of a model. For example,
in C, this handle could simply be a pointer to the object and in Fortran, the
handle could be an index into a table of opaque objects in a system table.

Model handles are allocated and deallaocated in the initialize and finalize
interface functions, respectively. For allocate calls, the initialize functions are
passed an OUT argument that will contain a valid reference to the object. For
deallocation, the finalize function accepts an INOUT variable that provides
a reference to the object to be destroyed and sets the object to an invalid

state.

6.4. Guidelines for Model Developers

Developers can follow several relatively simple follow so that it becomes
much easier to create a reusable, plug-and-play component from their model
source code. Given the large number of models that are contributed to the
CSDMS project, it is much more efficient for model developers to follow
these guidelines and thereby “meet us halfway” than for CSDMS staff to
make these changes after code has been contributed. This can be thought of

as a form of load balancing.
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6.4.1. Programming Language and License

Write code in a Babel-supported language (C, C++, Fortran, Java,
Python).

If code is in Matlab or IDL, use tools like I2PY to convert it to Python.
Python (with the numpy, scipy, and matplotlib packages) provides a

free work-alike to Matlab with similar performance.

Make sure that code can be compiled with an open-source compiler

(e.g., gce and gfortran).

Specify what type of open-source license applies to your code. Rosen
[41] provides a good, online, and open-source book that explains open-
source licensing in detail. CSDMS requires that contributions have an
open source license type that is compliant with the standard set forth

by the Open Source Initiative.

6.4.2. Model Interface

Refactor the code to have the basic IRF interface (5.1).

If code is in C or Fortran, add a model name prefix to all interface
functions to establish a namespace (e.g., ROMS _Initialize()). C code

can alternatively be compiled as C++.

Write Initialize() and Run_Until() functions that will work whether the

component is used as a driver or nondriver.
Provide getter and setter functions (4.2.1).

Provide functions that describe input and output exzchange items (4.2.1).
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e Use descriptive function names (e.g., Update_This_Variable).

e Remove user interfaces, whether graphical, command line or otherwise,
from your interface implementation. This avoids incompatible user

interfaces competing with one another.

6.4.3. State Variables

e Decide on an appropriate set of state variables to be maintained by the

component and made available to callers.

e Attempt to minimize data transfer between components (as discussed

above).
e Use descriptive variable names.

e Carefully track each variable’s units.

6.4.4. Input and Output Files
e Do not hardwire configuration settings in the code; read them from a

configuration file (text).
e Do not use hardwired input filenames.

e Read configuration settings from text files (often in Initialize()). Do
not prompt for command-line input. If a model has a GUI, write code

so it can be bypassed; use the GUI to create a configuration file.

e Design code to allow separate input and output directories that are
read from the configuration file. This approach allows many users to

use the same input data without making copies (e.g., test cases). It is
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frequently helpful to include a case prefiz (scenario) and a site prefiz

(geographic name) and use them to construct default output filenames.

e Establish a namespace for configuration files (e.g., ROMS_input.txt vs.
input.txt).

o [f large arrays are to be stored in files, save them as binary vs. text.

(e.g., this is the case with NetCDF)

e Provide self-test functions or unit tests and test data. One self-test
could simply be a “sanity check” that uses trivial (perhaps hard-coded)
input data. When analytic solutions are available, these make excellent
self-tests because they can also be used to check the accuracy and

stability of the numerical methods.

e Do not create and write to output files within the interface implementa-
tion. If this is not possible, output files should be well documented and
allow for a naming convention that reduces the possibility of naming

conflicts.

6.4.5. Documentation

e Help CSDMS to provide a standardized, HTML help page.
e Help CSDMS to provide a standaridized, tabbed-dialog GUI.

e Make liberal use of comments in the code.

7. The CSDMS Modeling Tool (CMT)

As explained in Section 2.3, Ccaffeine is a CCA-compliant framework

for connecting components to create applications. From a user’s point of
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044

view, Ccaffeine is a low-level tool that executes a sequence of commands in a
Ccaffeine script. The (natural language) commands in the Ccaffeine scripting
language are fairly straightforward, so it is not difficult for a programmer to
write one of these scripts. For many people, however, using a graphical
user interface (GUI) is preferable because they don’thave to learn the syntax
of the scripting language. A GUI also provides users with a natural, visual
representation of the connected components as boxes with buttons connected
by wires. It can also prevent common scripting errors and offer a variety of
other convenient features. The CCA Forum developed such a GUI, called
Ccafe-GUI, that presented components as boxes in a palette that can be
moved into an arena (workspace) and connected by wires. It also allows
component configurations and settings to be saved in BLD files and instantly
reloaded later. Another key feature of this GUI is that, as a lightweight and
platform-independent tool written in Java, it can be installed and used on
any computer with Java support to create a Ccaffeine script. This script can
then be sent to a remote, possibly high-performance computer for execution.

While the Ccafe-GUI was certainly useful, the CSDMS project realized
that it could be improved and extended in numerous ways to make it more
powerful and more user-friendly. In addition, these changes would serve not
only the CSDMS community but could be shared back with the CCA com-
munity. That is, the new GUI works with any CCA-compliant components,
not just CSDMS components. The new version is called CMT (CSDMS
Modeling Tool). Significant new features of CMT 1.5 include the following.

e Integration with a powerful visualization tool called Vislt (see below).
e New, “wireless” paradigm for connecting components (see below).
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A login dialog that prompts users for remote server login information.

Job management tools that are able to submit jobs to processors of a

cluster.

“Launch and go”: launch a model run on a remote server and then

shut down the GUI (the model continues running remotely).

New File menu entry: “Import Example Configuration.”

A Help menu with numerous help documents and links to websites.
Ability to submit bug reports to CSDMS.

Ability to do file transfers to and from a remote server.

Help button in tabbed dialogs to launch component-specific HTML
help.

Support for droplists and mouse-over help in tabbed dialogs.

Support for custom project lists (e.g., projects not yet ready for re-

lease).
A separate “driver palette” above the component palette.
Support for numerous user preferences, many relating to appearance.

Extensive cross-platform testing and “bulletproofing.”

The CMT provides integrated visualization by using Vislt. Vislt [47] is an

open-source, interactive, parallel visualization and graphical analysis tool for
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viewing scientific data. It was developed by the U.S. Department of Energy
Advanced Simulation and Computing Initiative to visualize and analyze the
results of simulations ranging from kilobytes to terabytes. Vislt was designed
so that users can install a client version on their PC that works together with
a server version installed on a high-performance computer or cluster. The
server version uses multiple processors to speed rendering of large data sets
and then sends graphical output back to the client version. Vislt supports
about five dozen file formats and provides a rich set of visualization features,
including the ability to make movies from time-varying databases. The CMT
provides help on using Vislt in its Help menu. CSDMS uses a service com-
ponent to provide other components with the ability to write their output
to NetCDF files that can be visualized with VisIt. Output can be 0D, 1D,
2D, or 3D data evolving in time, such as a time series (e.g., a hydrograph),
a profile series (e.g., a soil moisture profile), a 2D grid stack (e.g., water
depth), a 3D cube stack, or a scatter plot of XYZ triples.

Another innovative feature of CMT 1.5 is that it allows users to toggle
between the original, wired mode and a new wireless mode. CSDMS found
that displaying connections between components with the use of wires (i.e.,
red lines) did not scale well to configurations that contained several compo-
nents with multiple ports. In wireless mode, a component that is dragged
from the palette to the arena appears to broadcast what it can provide (i.e.,
CCA provides ports) to the other components in the arena (using a con-
centric circle animation). Any components in the arena that need to use
that kind of port get automatically linked to the new one; this is indicated

through the use of unique, matching colors. In cases where two components
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in the arena have the same uses port but need to be connected to different
providers, wires can still be used.

CSDMS continues to make usability improvements to the CMT and used
the tool to teach a graduate-level course on surface process modeling at the
University of Colorado, Boulder, in 2010. Several features of the CMT make
it ideal for teaching, including (1) the ability to save prebuilt component
configurations and their settings in BLD files, (2) the File >> Import Ex-
ample Configuration feature, (3) a standardized HTML help page for each
component, (4) a uniform, tabbed-dialog GUI for each component, (5) rapid
comparison of different approaches by swapping one component for another,
(6) the simple installation procedure, and (7) the ability to use remote re-

sources.

File Edit View Tools Help
Working Directory:  ~/CMT_Output | @

Working Project: TopoFlow

{ | ® vVisualize 7 CMT Help |

Run Meteorology
Hydro_model Channels

[Palette
ChannelsDiffWave

ChannelsDynamwave

ChannelsKinwave

Meteorology

Snow

EvapEnergyBalance

EvapPriestleyTaylor

EvapReadFile

= ey
u_peak: 0.00350703181034 [m/s]

IceGC2D Tu_peak: 0.0 [min]
d_peak: 5.55555555556e-06 [m]
InfilG reenAmpt Td_peak: 0.0 [min]

InfilRichards1D

=7

InfilsmithParlange Finished. (Richards1)

Max(precip rate): 20.0 [mm/hr] !

Figure 3: CMT screenshot.
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8. Providing Components with a Uniform Help System and GUI

Beyond the usual software engineering definition of a component, a useful
component will be one that also comes bundled with metadata that describes
the component and the underlying model that it is built around. While
creating a component as described in the preceding sections is important, it
is of equal importance to have a well-documented component that an end
user is able to easily use.

With a plug-and-play framework where users easily connect, interchange,
and run coupled models, there is a tendency for a user to treat components
as black boxes and ignore the details of the foundation that each component
was built upon. For instance, if a user is unaware of the assumptions that
underlie a model, that user may couple two components for which coupling
does not make sense because of the physics of each model. The user may
attempt to use a component in a situation where it was not intended to
be used. To combat this problem, components are bundled with HTML
help documents, which are easily accessible through the CMT, and describe
the component and the model that it wraps. These documents include the

following.

e Extended model description (along with references)

Listing and brief description of the component’s uses and provides ports

e Main equations of the model

Sample input and output

Acknowledgment of the model developer(s)
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A complete component also comes with metadata supplied in a more
structured format. Components include XML description files that describe
their user-editable input variables. These description files contain a series of
XML elements that contain detailed information about each variable includ-
ing a default value, range of acceptable values, short and long descriptions,

units, and data type.

<entry name=velocity>
<label>River velocity</label>
<help>Depth-averaged velocity at the river mouth</help>
<default>2</default>
<type>Float</type>
<range>
<min>0</min>
<max>5</max>
</range>
<units>m/s</units>

</entry>

Using this XML description, the CMT automatically generates a graphi-
cal user interface (in the form of tabbed dialogs) for each CSDMS component.
Despite each model’s input files being significantly different, this provides
CMT users with a uniform interface across all components. Furthermore, the
GUT checks user input for errors and provides easily accessible help within
the same environment—mnone of which is available in the batch interface of
most models. A special type of CCA provides port called a parameter port

is also used in the creation of the tabbed dialogs.
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Nearly every model gathers initial settings from an input file and then
runs without user intervention. Ultimately, any user interface that wraps a
model must generate this input file for the component to read as part of its
initialization step. The above XML description along with a template input
file allows this to happen. Once input is gathered from the user, a model-
specific input file is created based on a template input file provided with each
component. A valid input file is created based on $-based substitutions in this
template file. Instead of actual values, the template file contains substitution
placeholders of the form $identifier. Each identifier corresponds to an
entry name in the XML description file and, upon substitution, is replaced
by the value gathered from an external user interface (the CMT GUI, for

instance).

9. Framework Services: “Built-in” Tools That Any Component

Can Use

Developers (e.g., CSDMS staff) may wish to make certain low-level tools
or utilities available so that any component (or component developer) can use
them without requiring any action from a user. These tools can be encapsu-
lated in special components called service components that are automatically
instantiated by a CCA framework on startup. The services or methods pro-
vided by these components are then called framework services. Unlike other
components, which users may assemble graphically into larger applications,
users do not interact with service components directly. However, a compo-
nent developer can make calls to the methods of service components through

service ports. The use of service components allows developers to maintain
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code for a shared functionality in a single place and to make that function-
ality available to all components regardless of the language they are written
in (or which address space they are in). CSDMS uses service components for
tasks such as (1) providing component output variables in a form needed by
another component (e.g., spatial regridding, interpolation in time, and unit
conversion) and (2) writing component output to a standard format such as
NetCDF.

Any CCA component can be “promoted” to a service component. A de-
veloper simply needs to add lines to its setServices() method that register it as
a framework service. CCA provides a special port for this, gov.cca.ports.Ser-
viceRegistry, with three methods: addService(), addSingletonService(), and
removeService(). If a developer then wants another component to be able to
use this framework service, a call to the gov.cca.Services.getPort() method
must be added within its setServices() method. (A similar call must be added
in order to use CCA parameter ports and ports provided by other types of
components.) Note that the setServices() method is defined as part of the
gov.cca.Component interface.

CCA components are designed for use within a CCA-compliant frame-
work (like Ccaffeine) and may make use of service components. But what if
we want to use these components outside of a CCA framework? One option
is to encapsulate a set of functionality (e.g., a service component) in a SIDL
class and then “promote” this class to (SIDL) component status through in-
heritance and by adding only framework-specific methods like setServices().
(Note that a CCA framework is the entity that calls a component’s setSer-

vices() method as described in Section 2.3.) This approach can be used to

50



1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

provide both component and noncomponent versions of the class. Compiling
the noncomponent version in a Bocca project generates a library file that we

can link against or, in the case of Python, a module that we can import.

10. Current Contents of the CSDMS Component Repository

At the time of this publication the CSDMS model repository contains
more than 160 models and tools. Of those, 50 have been converted into
components as described in this paper and can be used in coupled modeling
scenarios with the CMT or through the component composition interfaces
supported by Ccaffeine. An up-to-date list is maintained at the CSDMS we-
biste. As with the model repository as a whole, CSDMS components cover
the breadth of surface dynamics systems. Hydrologic components cover vari-
ous scales ranging from basin-scale (the entire TopoFlow [39] suite of models
consists of 15 components that cover infiltration, meteorology, and channel
dynamics; HydroTrend [4, 23]) to reach-scale (the one-dimensional sediment
transport models of Parker [38]). Terrestrial components include models of
landscape evolution (Erode, and CHILD [45]), geodynamics (Subside [21])
and cryospherics (GC2D [22]). Coastal and marine models include Ashton-
Murray Coastal Evolution Model [4, 5], Avulsion [4], and the stratigraphic
model sedflux [21]. The component repository also contains modeling tools
such as the ESMF and OpenMI SDK grid mappers, and file readers and
writers for standard file formats (NetCDF, VTK, for example).
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11. Conclusions

CSDMS uses a component-based approach to integrated modeling and
draws on the combined power of many different open-source tools such as
Babel, Bocca, Ccaffeine, the ESMF regridding tool, and the Vislt visualiza-
tion tool. CSDMS also draws on the combined knowledge and creative effort
of a large community of Earth-surface dynamics modelers and computer sci-
entists. Using a variety of tools, standards, and protocols, CSDMS converts
a heterogeneous set of open-source, user-contributed models into a suite of
plug-and-play modeling components that can be reused in many different
contexts. Components that encapsulate a physical process usually repre-
sent an optimal level of granularity. Standards that CSDMS has adopted
and promotes include CCA, NetCDF [34], HTML, OGC (Open Geospatial
Consortium) [37], MPI (Message Passing Interface) [32] and XML [48].

All the software that underlies CSDMS is installed and maintained on its
high-performance cluster. CSDMS members have accounts on this cluster
and access its resources using a lightweight, Java-based client application
called the CSDMS Modeling Tool (CMT) that runs on virtually any desktop
or laptop computer. This approach can be thought of as a type of community
cloud since it provides remote access to numerous resources. This centralized
cloud approach offers many advantages including (1) simplified maintenance,
(2) more reliable performance, (3) automated backups, (4) remote storage
and computation (user’s PC remains free), (5) ability for many components
(such as ROMS) and tools (such as Vislt and ESMF’s regridder) to use
parallel computation, (6) requiring to install only a lightweight client on their

PC, (7) little technical support needed by users, and (8) ability to submit
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and run multiple jobs.

Babel’s support of the Python language has proven very useful. Python
is a modern, open-source, object-oriented language with source code that
is easy to write, read and maintain. It runs on virtually any platform. It
is useful for system administration, model integration, rapid prototyping,
high-level tool development, visualization (via the matplotlib package) and
numerical modeling (via the numpy package). Bocca is written in Python, the
Vislt visualization package has a powerful Python API, and ESRI's ArcGIS
software now uses Python as its scripting language ([10]). Many third-party
geographic information system (GIS) tools implemented in Python are also
available. With the numpy, scipy, and matplotlib packages, Python provides
a work-alike to commercial languages like Matlab with similar performance.
Other Python packages that CSDMS has found useful are suds (for SOAP-
based web services) and PyNIO (an API for working with NetCDF files).

Several exciting opportunities exist for further streamlining and expand-
ing the capabilities of CSDMS. One area of particular interest is how CS-
DMS can provide its members with multiple paths to parallel computation.
Software may be designed from the outset to use multiple processors, or be
refactored to do so, often using MPI or OpenMP. But this is not easy and
typically requires a multiyear investment. Another way to harness the power
of parallelism is to modify code to take advantage of numerical toolkits such
as PETSc (Portable Extensible Toolkit for Scientific Computation) [6, 7, §]
that contain parallel solvers for many of the differential equations that are
used in physically based models. A third way is to for models written in

array-based languages such as IDL, Matlab [31] and Python/NumPy [42] to
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e use array-based functions and operators that have been parallelized. This
uo  approach, although available only in commercial packages at present, is at-
un  tractive for several reasons: (1) developers in these languages already know
u  to avoid spatial loops and use the array-based functions whenever possible
urs for good performance, (2) most of these array-based functions are straightfor-
urs ward to parallelize, and (3) developers need only import a different package
s to take advantage of the parallelized functions.

1176 Web services provide many additional opportunities. Peckham and Goodall
urr  [40] have demonstrated how CSDMS components can use CUAHSI-HIS [13]
s web services to retrieve hydrologic data, but CSDMS components could also
ure  offer their capabilities as web services.

1180 CSDMS is also interested in automated component wrapping, which can
us1  be achieved by adding special annotation keywords within comments in the
us2 source code. If the code is sufficiently annotated, it is possible to write a flex-
uss ible tool to wrap the component with any desired interface. Unfortunately,
uss most existing code has not been annotated in this way, and it is typically

uss necessary to involve the code’s developer in the annotation process.
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