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Abstract

The development of scientific modeling software increasingly requires the

coupling of multiple independently developed models. Component-based

software engineering enables the integration of plug-and-play components,

but significant additional challenges must be addressed in any specific do-

main in order to produce a usable development and simulation environment

that is also going to encourage contributions and adoption by entire com-

munities. In this paper we describe the challenges in creating a coupling

environment for Earth-surface process modeling and how we approach them

in our integration efforts at the Community Surface Dynamics Modeling Sys-

tem.
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1. Introduction

The Community Surface Dynamics Modeling System (CSDMS) project (CS-

DMS, 2011) is an NSF-funded, international effort to develop a suite of mod-

ular numerical models able to simulate a wide variety of Earth-surface pro-

cesses, on time scales ranging from individual events to many millions of

years. CSDMS maintains a large, searchable inventory of contributed mod-

els and promotes the sharing, reuse, and integration of open-source modeling

software. It has adopted a component-based software development model

and has created a suite of tools that make the creation of plug-and-play com-

ponents from stand-alone models as automated and effortless as possible.

Models or process modules that have been converted to component form

are much more flexible and can be rapidly assembled into new configura-

tions to solve a wider variety of scientific problems. The ease with which

one component can be replaced by another also makes it easy to experiment

with different approaches to providing a particular type of functionality. The

CSDMS project also has a mandate from the NSF to provide a migration

pathway for surface dynamics modelers toward high-performance computing

(HPC) and provides a 720-core supercomputer for use by its members. In

addition, CSDMS provides educational infrastructure related to physically

based modeling.

The main purpose of this paper is to present in some detail the key issues

and design criteria for a component-based, integrated modeling system and

then describe the design choices adopted by the CSDMS project to address

these criteria. CSDMS was not developed in isolation: it builds on and

extends proven, open-source technology. The CSDMS project also maintains
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close collaborations with several other integrated modeling projects and seeks

to evaluate different approaches in pursuit of those that are optimal. As with

any design problem, myriad factors must be considered in determining what

is optimal, including how various choices affect users and developers. Other

key factors are performance, ease of maintenance, ease of use, flexibility,

portability, stability, encapsulation, and future proofing.

1.1. Component Programming Concepts

Component-based programming is all about bringing the advantages of

“plug and play” technology into the realm of software. When one buys a

new peripheral for a computer, such as a mouse or printer, the goal is to

be able to simply plug it into the right kind of port (e.g., a USB, serial,

or parallel port) and have it work, right out of the box. For this situation

to be possible, however, some kind of published standard is needed that

the makers of peripheral devices can design against. For example, most

computers have universal serial bus (USB) ports, and the USB standard is

well documented. A computer’s USB port can always be expected to provide

certain capabilities, such as the ability to transmit data at a particular speed

and the ability to provide a 5-volt supply of power with a maximum current

of 500 mA. The result of this standardization is that one can usually buy a

new device, plug it into a computer’s USB port, and start using it. Software

“plug-ins” work in a similar manner, relying on interfaces (ports) that have

well-documented structure or capabilities. In software, as in hardware, the

term component refers to a unit that delivers a particular type of functionality

and that can be “plugged in.”

Component programming build on the fundamental concepts of object-
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oriented programming, with the main difference being the introduction or

presence of a runtime framework. Components are generally implemented as

classes in an object-oriented language, and are essentially “black boxes” that

encapsulate some useful bit of functionality.

The purpose of a framework is to provide an environment in which com-

ponents can be linked together to form applications. The framework provides

a number of services that are accessible to all components, such as the link-

ing mechanism itself. Often, a framework will also provide a uniform method

of trapping or handling exceptions (i.e., errors), keeping in mind that each

component will throw exceptions according to the rules of the language that

it is written in. In some frameworks (e.g., CCA’s Ccaffeine (Allan et al.,

2010)), there is a mechanism by which any component can be promoted to

a framework service, as explained in a later section.

One feature that often distinguishes components from ordinary subrou-

tines, software modules, or classes is that they are able to communicate with

other components that may be written in a different programming language.

This capability is referred to as language interoperability. In order for this to

be possible, the framework must provide a language interoperability tool that

can create the necessary “glue code” between the components. For a CCA-

compliant framework, that tool is Babel (Dahlgren et al., 2007; Lawrence

Livermore National Laboratory, 2011), and the supported languages are C,

C++, Fortran (77-2003), Java, and Python. Babel is described in more detail

in a later section. For Microsoft’s .NET framework (NET, 2011), that tool is

CLR (Common Language Runtime), which is an implementation of an open

standard called CLI (Common Language Infrastructure), also developed by
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Microsoft. Some of the supported languages are C# (a spin-off of Java),

Visual Basic, C++/CLI, IronLisp, IronPython, and IronRuby. CLR runs a

form of bytecode called CIL (Common Intermediate Language). Note that

CLI does not support Fortran, Java, standard C++, or standard Python.

The Java-based frameworks used by Sun Microsystems are JavaBeans and

Enterprise JavaBeans (EJB) (EJB, 2011). In the words of Armstrong et al.

(1999):

Neither JavaBeans nor EJB directly addresses the issue of lan-

guage interoperability, and therefore neither is appropriate for

the scientific computing environment. Both JavaBeans and EJB

assume that all components are written in the Java language. Al-

though the Java Native Interface library supports interoperabil-

ity with C and C++, using the Java virtual machine to mediate

communication between components would incur an intolerable

performance penalty on every inter-component function call.

While in recent years the performance of Java codes has improved steadily

through just-in-time (JIT) compilation into native code, Java is not yet avail-

able on key high-performance platforms such as the IBM Blue Gene/L and

Blue Gene/P supercomputers.

Key advantages of component-based programming include the following.

• Components can be written in different languages and still communi-

cate (via language interoperability).

• Components can be replaced, added to, or deleted from an application

at runtime via dynamic linking (as precompiled units).
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• Components can easily be moved to a remote location (different ad-

dress space) without recompiling other parts of the application (via

RMI/RPC support).

• Components can have multiple different interfaces.

• Components can be “stateful”; that is, data encapsulated in the com-

ponent is retained between method calls over its lifetime.

• Components can be customized at runtime with configuration param-

eters.

• Components provide a clear specification of inputs needed from other

components in the system.

• Components allow multicasting calls that do not need return values

(i.e., send data to multiple components simultaneously).

• Components provide clean separation of functionality (for components,

this is mandatory vs. optional).

• Components facilitate code reuse and rapid comparison of different

implementations.

• Components facilitate efficient cooperation between groups, each doing

what it does best.

• Components promote economy of scale through development of com-

munity standards.
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2. Background

We briefly overview the component methodology used in CSDMS and

the associated tools that support component development and application

execution.

2.1. The Common Component Architecture

The Common Component Architecture (CCA) (Armstrong et al., 1999)

is a component architecture standard adopted by federal agencies (largely the

Department of Energy and its national laboratories) and academics to allow

software components to be combined and integrated for enhanced function-

ality on high-performance computing systems. The CCA Forum is a grass-

roots organization that started in 1998 to promote component technology

standards (and code reuse) for HPC. CCA defines standards necessary for

the interoperation of components developed in different frameworks. Soft-

ware components that adhere to these standards can be ported with relative

ease to another CCA-compliant framework. While a variety of other com-

ponent architecture standards exist in the commercial sector (e.g., CORBA,

COM, .Net, and JavaBeans), CCA was created to fulfill the needs of sci-

entific, high-performance, open-source computing that are unmet by these

other standards. For example, scientific software needs full support for com-

plex numbers, dynamically dimensioned multidimensional arrays, Fortran

(and other languages), and multiple processor systems. Armstrong et al.

(1999) explain the motivation for creating CCA by discussing the pros and

cons of other component-based frameworks with regard to scientific, high-

performance computing. A number of DOE projects, many associated with
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the Scientific Discovery through Advanced Computing (SciDAC) (United

States Department of Energy, 2011) program, are devoted to the development

of component technology for high-performance computing systems. Several

of these are heavily invested in the CCA standard (or are moving toward

it) and involve computer scientists and applied mathematicians. Examples

include the following.

• TASCS: The Center for Technology for Advanced Scientific Computing

Software, which focused on CCA and its associated tools (Bernholdt

D. (PI), 2010).

• CASC: Center for Applied Scientific Computing, which is home to

CCA’s Babel tool (Lawrence Livermore National Laboratory, 2011).

• ITAPS: The Interoperable Technologies for Advanced Petascale Simu-

lation (Diachin L. (PI), 2011), which focuses on meshing and discretiza-

tion components, formerly TSTT.

• PERI: Performance Engineering Research Institute, which focuses on

HPC quality of service and performance issues (Lucas R. (PI), 2011).

• TOPS: Terascale Optimal PDE Solvers, which focuses on PDE solver

components (Keyes D. (PI), 2011).

• PETSc: Portable, Extensible Toolkit for Scientific Computation, which

focuses on linear and nonlinear PDE solvers for HPC, using MPI (Balay

et al., 2010, 2011, 1997).

A variety of different frameworks, such as Ccaffeine (Allan et al., 2010),

CCAT/XCAT (Krishnan and Gannon, 2004), SciRUN (de St. Germain et al.,
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2002) and Decaf (Kumfert, 2003), adhere to the CCA component architec-

ture standard. A framework can be CCA-compliant and still be tailored to

the needs of a particular computing environment. For example, Ccaffeine was

designed to support parallel computing, and XCAT was designed to support

distributed computing. Decaf (Kumfert, 2003) was designed by the develop-

ers of Babel primarily as a means of studying the technical aspects of the

CCA standard itself. The important point is that each of these frameworks

adheres to the same standard, thus facilitating reuse of a (CCA) component

in another computational setting. The key idea is to isolate the components

themselves, as much as possible, from the details of the computational en-

vironment in which they are deployed. If this is not done, then we fail to

achieve one of the main goals of component programming: code reuse.

CCA has been shown to be interoperable with Earth System Modeling

Framework (ESMF) (Hill et al., 2004) and Model Coupling Toolkit (MCT) (Lar-

son, 2009; Larson and Norris, 2007; Ong et al., 2008; The MCT Development

Team, 2006). CSDMS has also demonstrated that it is interoperable with a

Java version of Open Modeling Interface (OpenMI) (The OpenMI Associa-

tion, 2011). Many of the papers in our cited references have been written

by CCA Forum members and are helpful for learning more about CCA. The

CCA Forum has also prepared a set of tutorials called “A Hands-On Guide

to the Common Component Architecture” (CCA Forum, 2010).

2.2. Language Interoperability with Babel

Babel (Lawrence Livermore National Laboratory, 2011; Dahlgren et al.,

2007) is an open-source, language interoperability tool (consisting of a com-

piler and runtime) that automatically generates the “glue code” necessary
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Figure 1: Language interoperability provided by Babel.

for components written in different computer languages to communicate. As

illustrated in Fig. 1, Babel currently supports C, C++, Fortran (77, 90, 95,

and 2003), Java and Python. Babel is much more than a “least common de-

nominator” solution; it even enables passing of variables with data types that

may not normally be supported by the target language (e.g., objects and com-

plex numbers). Babel was designed to support scientific, high-performance

computing and is one of the key tools in the CCA tool chain. It won an R&D

100 design award in 2006 for “The world’s most rapid communication among

many programming languages in a single application.” It has been shown to

outperform similar technologies such as CORBA and Microsoft’s COM and

.NET.

In order to create the glue code needed for two components written in

different programming languages to exchange information, Babel needs to
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know only about the interfaces of the two components. It does not need any

implementation details. Babel was therefore designed so that it can ingest a

description of an interface in either of two fairly “language-neutral” forms,

XML (eXtensible Markup Language) or SIDL (Scientific Interface Definition

Language). The SIDL language (somewhat similar to CORBA’s IDL) was de-

veloped for the Babel project. Its sole purpose is to provide a concise descrip-

tion of a scientific software component interface. This interface description in-

cludes complete information about a component’s interface, such as the data

types of all arguments and return values for each of the component’s methods

(or member functions). SIDL has a complete set of fundamental data types

to support scientific computing, from Booleans to double-precision complex

numbers. It also supports more sophisticated data types such as enumera-

tions, strings, objects, structs,and dynamic multi-dimensional arrays. The

syntax of SIDL is similar to that of Java. A complete description of SIDL

syntax and grammar can be found in “Appendix B: SIDL Grammar” in the

Babel User’s Guide (Dahlgren et al., 2007). Complete details on how to

represent a SIDL interface in XML are given in “Appendix C: Extensible

Markup Language (XML)” of the same guide.

2.3. The Ccaffeine Framework

Ccaffeine (Allan et al., 2010) is the most widely used CCA framework,

providing the runtime environment for sequential or parallel components ap-

plications. Using Ccaffeine, component-based applications can run on di-

verse platforms, including laptops, desktops, clusters, and leadership-class

supercomputers. Ccaffeine provides some rudimentary MPI communicator

services, although individual components are responsible for managing par-
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allelism internally (e.g., communicating data to and from other distributed

components). A CCA framework provides services, which include compo-

nent instantiation and destruction, connecting and disconnecting of ports,

handling of input parameters, and control of MPI communicators. Ccaf-

feine was designed primarily to support the single-component multiple-data

(SCMD) programming style, although it can support multiple-component

multiple-data (MCMD) applications that implement more dynamic manage-

ment of parallel resources. The CCA specification also includes an event

service description, but it is not fully implemented in Ccaffeine yet. Multiple

interfaces to configuring and executing component applications within the

Ccaffeine framework exist, including a simple scripting language, a graphical

user interface, and the ability to take over some of the operations normally

handled by the frameworks, such as component instantiation and port con-

nections.

A typical CCA component’s execution consists of the following steps:

• The framework loads the dynamic library for the component. Static

linking options are also available.

• The component is instantiated. The framework calls the setServices

method on the component, passing a handle to itself as an argument.

• User-specified connections to other components’ ports are established

by the framework.

• If the component provides a gov.cca.ports.Go port (similar to a

“main” subroutine), its go() method can be invoked to start the main

portion of the computation.
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• Connections can be made and broken throughout the life of the com-

ponent.

• All component ports are disconnected, and the framework calls re-

leaseServices prior to calling the component’s destructor.

The handle to the framework services object, which all CCA components

obtain shortly after instantiation, can be used to access various framework

services throughout the component’s execution. This represents the main

difference between a class and a component: a component dynamically ac-

cesses another component’s functionality through dynamically connecting

ports (requiring the presence of a framework), whereas classes in object-

oriented languages call methods directly on instances of other classes.

2.4. Component Development with Bocca

Bocca (Allan et al., 2008) is a tool in the CCA tool chain that was de-

signed to help users create, edit, and manage a set of SIDL-based entities,

including CCA components and ports, that are associated with a particu-

lar project. Once a set of CCA-compliant components and ports has been

prepared, one can use a CCA-compliant framework such as Ccaffeine to link

components from this set together to create applications or composite mod-

els.

Bocca was developed to address usability concerns and reduce the de-

velopment effort required for implementing multilanguage component appli-

cations. Bocca was designed specifically to free users from mundane, time-

consuming, low-level tasks so they can focus on the scientific aspects of their
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applications. It can be viewed as a development environment tool that al-

lows application developers to perform rapid component prototyping while

maintaining robust software- engineering practices suitable to HPC envi-

ronments. Bocca provides project management and a comprehensive build

environment for creating and managing applications composed of CCA com-

ponents. Bocca operates in a language-agnostic way by automatically in-

voking the Babel compiler. A set of Bocca commands required to create a

component project can be saved as a shell script, so that the project can

be rapidly rebuilt, if necessary. Various aspects of an existing component

project can also be modified by typing Bocca commands interactively at a

Unix command prompt.

While Bocca automatically generates dynamic libraries, a separate tool

can be used to create stand-alone executables for projects by automatically

bundling all required libraries on a given platform. Examples of using Bocca

are available in the set of tutorials called “A Hands-On Guide to the Com-

mon Component Architecture,” written by the CCA Forum members (CCA

Forum, 2010).

2.5. Other Component-Based Modeling Projects

We briefly discuss several other component-based projects in the area of

Earth system-related modeling.

• The Object Modeling System (OMS) (OMP, 2011) is a pure Java,

object-oriented framework for component-based agro-environmental mod-

eling.

• The Open Modeling Interface (OpenMI) (The OpenMI Association,
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2011) is an open-source software-component interface standard for the

computational core of numerical models. Model components that com-

ply with this standard can be configured without programming to ex-

change data during computation (at runtime). Similar to the CCA

component model, the OpenMI standard supports two-way links be-

tween components so that the involved models can mutually depend

on calculation results from each other. Linked models may run asyn-

chronously with respect to time steps, and data represented on different

geometries (grids) can be exchanged by using built-in tools for inter-

polating in space and time. OpenMI was designed primarily for use

on PCs, using either the .NET or Java framework. CSDMS has exper-

imented with OpenMI version 1.4 (version 2.0 was recently released)

but currently uses a simpler component interface.

• The Earth System Modeling Framework (ESMF) (ESMF Joint Speci-

fication Team, 2011; Hill et al., 2004) is software for building and cou-

pling weather, climate, and related models written in Fortran. ESMF

defines data structures, parallel data redistribution, and other utilities

to enable the composition of multimodel high-performance simulations.

• The Framework for Risk Analysis of Multi-Media Environmental Sys-

tems (FRAMES) (FRAMES, 2011) is developed by the U.S. Environ-

mental Protection Agency to provide models and modeling tools (e.g.,

data retrieval and analysis) for simulating different environmental pro-

cesses.
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3. Problem Definition – Component-based Plug-and-Play Model-

ing

Next we discuss the challenges that we faced in tackling the problem

of creating plug-and-play modeling capabilities that can be extended and

actively used by the CSDMS community.

3.1. Attributes of Earth Surface Process Models

The Earth surface process modeling community has numerous models,

but it is difficult to couple or reconfigure them to solve new problems. The

reason is that they are a heterogeneous set.

• The models are written in many different languages, which may be

object-oriented or procedural, compiled or interpreted, proprietary or

open-source, etc. Languages do not all offer the same data types and

features, so special tools are required to create “glue code” necessary

to make function calls across the language barrier.

• The models typically are not designed to “talk” to each other and do

not follow any particular set of conventions.

• The models generally have a geographic context and are often used in

conjunction with GIS (Geographic Information System) tools.

• The generally consist of one or more arrays (1D, 2D, or 3D) that are

being advanced in time according to differential equations or other rules

(i.e., we are not modeling molecular dynamics).

• The models use different input and output file formats.
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• The models are often open source. Even many models that were orig-

inally sold commercially are now available as open-source code, for

example parts of Delt3D from Deltares and many EDF (Energie du

Francais) models.

3.2. Difficulties in Linking Models

Linking together models that were not specifically designed from the out-

set to be linkable is often surprisingly difficult, and a brute-force approach to

the problem often requires a significant investment of time and effort. The

main reason is that two models may differ in may ways. The following list

of possible differences illustrates this point.

• The models are written in different languages, making conversion time-

consuming and error-prone.

• The person doing the linking may not be the author of either model,

and the code is often not well-documented or easy to understand.

• Models may have different dimensionality (1D, 2D, or 3D).

• Models may use different types of grids (e.g., rectangles, triangles, and

Voronoi cells).

• Each model has its own time loop or “clock.”

• The numerical scheme may be either explicit or implicit.

3.3. Design Criteria

The technical goals of a component-based modeling system include the

following.
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• Support for multiple operating systems (especially Linux, Mac OS X,

and Windows).

• Language interoperability to support code contributions written in pro-

cedural languages (e.g., C or Fortran) as well as object-oriented lan-

guages (e.g., Java, C++, and Python).

• Support for both structured and unstructured grids, requiring a spatial

regridding tool.

• Platform-independent GUIs and graphics where useful.

• Use of well-established, open-source software standards whenever pos-

sible (e.g., CCA, SIDL, OGC, MPI, NetCDF, OpenDAP, and XUL).

• Use of open-source tools that are mature and have well-established com-

munities, avoiding dependencies on proprietary software whenever pos-

sible (e.g., Windows, C#, and Matlab).

• Support for parallel computation (multiprocessor, via MPI standard).

• Interoperability with other coupling frameworks. Since code reuse is a

fundamental tenet of component-based modeling, the effort required to

use a component in another framework should be kept to a minimum.

• Robustness and ease of maintainenance. It will clearly have many soft-

ware dependencies, and this software infrastructure will need to be

updated on a regular basis.
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• Use of HPC tools and libraries. If the modeling system runs on HPC

architectures, it should strive to use parallel tools and models (e.g.,

VisIt, PETSc, and the ESMF regridding tool).

• Familiarity. Model developers and contributors should not be required

to make major changes to how they work.

Expanding the last bullet, developers should not be required to convert

to another programming language or use invasive changes to their code (e.g.,

use specified data structures, libraries, or classes). They should be able to

retain “ownership” of the code and make continual improvements to it; some-

one should be able to componentize future, improved versions with minimal

additional effort. The developer will likely want to continue to use the code

outside the framework. However, some degree of code refactoring (e.g., break-

ing code into functions or adding a few new functions) and ensuring that the

code compiles with an open-source compiler are considered reasonable re-

quirements. It is also expected that many developers will take advantage of

various built-in tools if doing so is straightforward and beneficial.

3.4. Interface vs. Implementation

The word interface may be the most overloaded word in computer science.

In each case, however, it adheres to the standard, English meaning of the

word that has to do with a boundary between two items and what happens

at the boundary.

Many people hear the word interface and immediately think of the in-

terface between a human and a computer program, which is typically either
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a command-line interfaceor a graphical user interface (GUI). While such in-

terfaces are an interesting and complex subject, this is usually not what

computer scientists are talking about. Instead, they tend to be interested

in other types of interface, such as the one between a pair of software com-

ponents, or between a component and a framework, or between a developer

and a set of utilities (i.e., an API or a software development kit).

Within the present context of component programming, we are interested

primarily in the interfaces between components. In this context, the word

interface has a specific meaning, essentially the same as in the Java pro-

gramming language. An interface is a user-defined entity/type, similar to

an abstract class. It does not have any data fields, but instead is a named

set of methods or member functions, each defined completely with regard to

argument types and return types but without any actual implementation. A

CCA port is simply this type of interface. Interfaces are the name of the

game when it comes to the question of reusability or “plug and play.” Once

an interface has been defined, one can ask the question: Does this compo-

nent have interface A? To answer the question, we merely have to look at the

methods (or member functions) that the component has with regard to their

names, argument types, and return types. If a component does have a given

interface, then it is said to expose or implement that interface, meaning that

it contains an actual implementation for each of those methods. It is fine

if the component has additional methods beyond the ones that constitute a

particular interface. Thus, it is possible (and frequently useful) for a single

component to expose multiple, different interfaces or ports. For example,

multiple interfaces may allow a component to be used in a greater variety
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of settings. An analogy exists in computer hardware, where a computer or

peripheral may actually have a number of different ports (e.g., USB, serial,

parallel, and ethernet) to enable it to communicate with a wider variety of

other components.

The distinction between interface and implementation is an important

theme in computer science. The word pair declaration and definition is used

in a similar way. A function (or class) declaration tells what the function

does (and how to interact with or use it) but not how it works. To see how

the function actually works, we need to look at how it has been defined or

implemented. C and C++ programmers are familiar with this idea, which

is similar to declaring variables, functions, classes, and other data types in a

header file with the file name extension .h or .hpp, and then defining their

implementations in a separate file with extension .c or .cpp.

Of course, most of the gadgets that we use every day (from iPods to cars)

are like this. We need to understand their interfaces in order to use them

(and interfaces are often standardized across vendors), but often we have no

idea what is happening inside or how they actually work, which may be quite

complex.

While the tools in the CCA tool chain are powerful and general, they do

not provide a ready interface for linking geoscience models (or any domain-

specific models). In CCA terminology, port is essentially a synonym for

interface and a distinction is made between ports that a given component uses

(uses ports), and those that it provides (provides ports) to other components.

Note that this model provides a means of bidirectional information exchange

between components, unlike dataflow-based approaches (e.g., OpenMI) that
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support unidirectional links between components (i.e., the data produced by

one component is consumed by another component).

Each scientific modeling community that wishes to make use of the CCA

tools is responsible for designing or selecting component interfaces (or ports)

that are best suited to the kinds of models they wish to link together. This is

a big job that involves social as well as technical issues and typically requires

a significant time investment. In some disciplines, such as molecular biology

or fusion research, the models may look quite different from ours. Ours tend

to follow the pattern of a 1D, 2D or 3D array of values (often multiple,

coupled arrays) advancing in time. However, our models can still be quite

different from each other with regard to their dimensionality or the type

of computational grid they use (e.g., rectangles, triangles or polygons), or

whether they are implicit or explicit in time.

3.5. Granularity

While components may represent any level of granularity, from a simple

function to a complete hydrologic model, the optimum level appears to be

that of a particular physical process, such as infiltration, evaporation, or

snowmelt. At this level of granularity researchers are most often interested

in swapping out one method of modeling a process for another. A simpler

method of parameterizing a process may apply only to simplified special cases

or may be used simply because there is insufficient input data to drive a more

complex model. A different numerical method may solve the same governing

equations with greater accuracy, stability, or efficiency and may or may not

use multiple processors. Even the same method of modeling a given process

may exhibit improved performance when coded in a different programming
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language. But the physical process level of granularity is also natural for

other reasons. Specific physical processes often act within a domain that

shares a physically important boundary with other domains (e.g., coastline

and ocean-atmosphere), and the fluxes between these domains are often of

key interest. In addition, experience shows that this level of granularity

corresponds to GUIs and HTML help pages that are more manageable for

users.

A judgment call is frequently needed to decide whether a new feature

should be provided in a separate component or as a configuration setting

in an existing component. For example, a kinematic wave channel-routing

component may provide both Manning’s formula and the law of the wall as

different options to parameterize frictional momentum loss. Each of these

options requires its own set of input parameters (e.g., Manning’s n or the

roughness parameter, z0). We could even think of frictional momentum loss

as a separate physical process, under which we would have a separate Man-

ning’s formula and law of the wall components. Usually, the amount of code

associated with the option and usability considerations can be used to make

these decisions.

Some models are written in such a way that decomposing them into sep-

arate process components is not really appropriate, because of some special

aspect of the model’s design or because decomposition would result in an

unacceptable loss of performance (e.g., speed, accuracy, or stability). For

example, multiphysics models—such as Penn State Integrated Hydrologic

Model (PIHM)—represent many physical processes as one large, coupled set

of ODEs that are then solved as a matrix problem on a supercomputer.
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Other models involve several physical processes that operate in the same do-

main and are relatively tightly coupled within the governing equations. The

Regional Ocean Modeling System (ROMS) is an example of such a model,

in which it may not be practical to model processes such as tides, currents,

passive scalar transport (e.g., T and S), and sediment transport within sep-

arate components. In such cases, however, it may still make sense to wrap

the entire model as a component so that it may interact with other models

(e.g., an atmospheric model, such as WRF, or a wave model, such as SWAN)

or be used to drive another model (e.g., a Lagrangian transport model, such

as LTRANS).

4. Designing a Modeling Interface

A component interface is simply a named set of functions (called meth-

ods) that have been defined completely in terms of their names, arguments

and return values. The purpose of this section is to explain the types of

functions that are required and why. The functions that define an interface

are somewhat analogous to the buttons on a handheld remote control—they

provide a caller with fine-grained control of the model component.

4.1. The “IRF” Interface Functions

Most Earth-science models initialize a set of state variables (often as 1D,

2D, or 3D arrays) and then execute of series of timesteps that advance the

variables forward in time according to physical laws (e.g., mass conservation)

or some other set of rules. Hence, the underlying source code tends to follow

a standard pattern that consists of three main parts. The first part consists

of all source code prior to the start of the time loop and serves to set up
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or initialize the model. The second part consists of all source code within

the time loop and is the guts of the model where state variables are updated

with each time step. The third part consists of all source code after the

end of the time loop and serves to tear down or finalize the model. Note

that root-finding and relaxation algorithms follow a similar pattern even if

the iterations do not represent timestepping. A time-independent model

can also be thought of as a time-stepping model with a single time step.

For maximum plug-and-play flexibility, each of these three parts must be

encapsulated in a separate function that is accessible to a caller. It turns out

that we get more flexibility if the function for the middle phase is written to

accept the start time and end time as arguments.

For lack of a better term, we refer to this Initialize(), Run Until(), Fi-

nalize() pattern as an IRF interface . All of the model coupling projects

that we are aware of use this pattern as part of their component interface,

including CSDMS, ESMF, OMF, and OpenMI. An IRF interface is also used

as part of the Message Passing Interface (MPI) for communication between

processes in high-performance computers.

To see how an IRF interface is used when coupling models, consider two

models, Models A and B, that do not have this interface. To combine them

into a single model, where one uses the output of the other during its time

loop, we would need to cut the code from within Model A’s time loop and

paste it into Model B, or vice versa. The reason is that both models were

designed to control the time loop and cannot reliquish this control.
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4.1.1. Initialize (Model Setup)

The initialize step puts a model into a valid state that is ready to be

executed. Mostly this involves initializing variables or grids that will be used

within the execution step. Temporary files that the execution step will read

from or write to should also be opened here.

4.1.2. Run Until (Model Execution)

The run step advances the model from its current state to a future state.

For time-independent models the run step simply executes the model cal-

culation and updates the model state so that future calls will not require

executing the calculations again. Encapsulating only the code within the

time loop allows an application to run the model to intermediate states.

This is necessary to allow an application to query the model’s state for the

purposes of (for instance) printing output or passing state data to another

model.

4.1.3. Finalize (Model Termination)

The finalize step cleans up after the model is no longer needed. The main

purpose of this step to make sure that all resources a model acquired through

its life have been freed. Most often this will be freeing allocated memory,

but it could also be freeing file or network handles. Following this step, the

model should be left in an invalid state such that its run step can no longer

be called until it has been initialized again.

4.2. Getter and Setter Interface Functions

A basic IRF interface, while important, really provides only the core

functionality of a model coupling interface. A complete interface will also
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require functions that enable another component to request data from the

component (a getter) or change data values (a setter) in the component.

These are typically called within the Initialize() or Run Until() methods.

4.2.1. Value Getters

Limiting access to the model’s state to be through a set of functions

allows control of what data the model shares with other programs and how

it shares that data. The data may be transferred in two ways. The first is

to give the calling program a copy of the data. The second is to give the

actual data that is being used by the model (in C, this would mean passing a

pointer to a value). The first has the advantage that it hides implementation

details of the model from the calling program and limits what the calling

program can do to the model. However, the downside of the first method is

that communication will be slower (and could be significantly so, depending

on the size of the data being transferred).

4.2.2. Value Setters

Variables in a model should be accessed and changed only through in-

terface methods. This approach ensures that users of the interface are not

able to change values that the interface implementor does not want them

to change. This also detaches the programmer using the interface from the

model implementation, thus freeing the model developer to change details of

the model without an application programmer having to make any changes.

The setter can also perform tasks other than just setting data. For in-

stance, it might be useful if the setter checked to make sure that the new

data is valid. After the setter method sets the data, it should ensure that
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the model is still in a valid state.

The Get Value() and Set Value() methods can be general in terms of

supporting different grid or mesh types, but it should be possible to bypass

that generality and use simple, raster-based grids to keep things simple and

efficient when the generality is not needed.

CSDMS has wrapped two open-source regridding tools that can act as

services (see Section 9) that other components can use when communicating

with one another (an example regridding scenario is shown in Figure 2). The

first is from the ESMF project. It is implemented in Fortran and is designed

to use multiple processors on a distributed memory system. It supports

sophisticated options such as mass-conservative interpolation. The second

tool is the multithreaded tool included in the Java SDK for OpenMI.

The Get Value() and Set Value() methods should optionally allow spec-

ification (via indices) of which individual elements within an array that are

to be obtained or modified. We often need to manipulate just a few values,

and we don’twant to transfer copies of entire arrays (which may be large)

unless necessary.

Each component should understand what variables will be requested from

it; and if those represent some function of its state variables (e.g., a sum

or product), then that computation should be done by the component and

offered as an output variable rather than passing several state variables that

must then be combined in some way by the caller.

In order to support dynamically typed languages like Python, additional

interface functions may be required in order to query whether the variable is

currently a scalar or a vector (1D array) or a grid.
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(a) Voronoi cells. (b) Intersecting raster and Voronoi cells.

(c) Voronoi cells before regridding. (d) After regridding to raster cells.

Figure 2: Regridding example.

4.3. Self-Descriptive Interface Functions

Two additional methods for a modeling interface would enable a caller to

query what type of data the component is able to use as input or compute

as output. These would typically not require arguments and would simply

return the names of all the possible input or output variables as an array of

strings, for example Get Input Item List() and Get Output Item List(). An-
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other type of self-descriptive function would be a function like Get Status()

that returns the component’s current status as a string from a standardized

list.

4.4. Framework Interface Functions

A component typically needs some additional methods that allow it to

be instantiated by and communicate with a component-coupling framework.

For example, a component must implement methods called init (), getSer-

vices(), and releaseServices() in order to be used within a CCA-compliant

framework.

4.5. Autoconnection Problem

A key goal of component-based modeling is to create a collection of com-

ponents that can be coupled together to create new and useful composite

models. This goal can be achieved by providing every component with the

same interface, and this is the approach used by OpenMI. A secondary goal,

however, is for the coupling process to be as automatic as possible, that is,

to require as little input as possible from users. To achieve this goal, we need

some way to group components into categories according to the functionality

they provide. This grouping must be readily apparent to both a user and the

framework (or system) so that it is clear whether a particular pair of compo-

nents are interchangeable. But what should it mean for two components to

be interchangeable? Do they really need to use identical input variables and

provide identical output variables? Our experience shows that this definition

of interchangeable is unnecessarily strict.
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To bring these issues into sharper focus, consider the physical process of

infiltration, which plays a key role in hydrologic models. As part of a larger

hydrologic model, the main purpose of an infiltration component is to com-

pute the infiltration rate at the surface, because it represents a loss term in

the overall hydrologic budget. If the domain of the infiltration component

is restricted to the unsaturated zone, above the water table, then it may

also need to provide a vertical flow rate at the water table boundary. Thus,

the main job of the infiltration component is to provide fluxes at the (top

and bottom) boundaries of its domain. To do this job, it needs variables

such as flow depth and rainfall rate that are outside its domain and com-

puted by another component. Hydrologists use a variety of different methods

and approximations to compute surface infiltration rate. The Richards 3D

method, for example, is a more rigorous approach that tracks four state vari-

ables throughout the domain; on the other hand, the Green-Ampt method

makes a number of simplifying assumptions so that it computes a smaller

set of state variables and does not resolve the vertical flow dynamics to the

same level of detail (i.e., piston flow, sharp wetting front). As a result, the

Richards 3D and Green-Ampt infiltration components use a different set of

input variables and provide a different set of output variables. Nevertheless,

they both provide the surface infiltration rate as one of their outputs and can

therefore be used “interchangeably” in a hydrologic model as an “infiltration

component.”

The infiltration example illustrates several key points that are transfer-

able to other situations. Often a model, such as a hydrologic model, breaks

the larger problem domain into a set of subdomains where one or more pro-
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cesses are relevant. The boundaries of these subdomains are often physical

interfaces, such as surface/subsurface, unsaturated/saturated zone, atmo-

sphere/ocean, ocean/seafloor, or land/water. Moreover, the variables that

are of interest in the larger model often depend on the fluxes across these

subdomain boundaries.

Within a group of interchangeable components (e.g., infiltration compo-

nents), there are many other implementation differences that a modeler may

wish to explore, beyond just how a physical process is parameterized. For

example, performance and accuracy often depend on the numerical scheme

(explicit vs. implicit, order of accuracy, stability), data types used (float vs.

double), number of processors (parallel vs. serial), approximations used, the

programming language, or coding errors.

Autoconnection of components is important from a user’s point of view.

Components typically require many input variables and produce many out-

put variables. Users quickly become frustrated when they need to manually

create all these pairings/connections, especially when using more than just

two or three components at a time. The OpenMI project does not support

the concept of auto-connection or interchangeable components. When using

the graphical Configuration Editor provided in its SDK, users are presented

with droplists of input and output variables and must select the ones to be

paired. Doing so requires expertise and is made more difficult because there

is so far no ontological or semantic scheme to clarify whether two variable

names refer to the same item.

The CSDMS project currently employs an approach to autoconnection

that involves providing interfaces (i.e. ,CCA ports) with different names to
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reflect their intended use (or interchangeability), even though the interfaces

are the same internally.

5. Current CSDMS Component Interface

This section contains a concise list of the current CSDMS IRF and get-

ter/setter interfaces, which must be implemented by any compliant compo-

nents.

5.1. The IRF Interface

The following methods comprise the IRF interface described in more de-

tail in Section 4.1.

CMI INITIALIZE (handle, filename)

OUT handle handle to the CMI object

IN filename path to configuration file

CMI RUN UNTIL (handle, stop time)

IN handle handle to the CMI object

IN stop time simulation time to run model until

CMI FINALIZE (handle)

INOUT handle handle to the CMI object

5.2. Value Getters and Setters

The following methods comprise the CSDMS getter/setter interface dis-

cussed in Section 4.2.
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CMI GRID DIMEN (handle, value str, dimen)

IN handle handle to the CMI object

IN value str name of the value to get

OUT dimen length of each grid dimension

CMI GRID RES (handle, value str, res)

IN handle handle to the CMI object

IN value str name of the value to get

OUT res grid spacing for each dimension

CMI GET GRID DOUBLE (handle, value str, buffer)

IN handle handle to the CMI object

IN value str name of the value to get

OUT buffer initial address of the destination values

CMI SET GRID DOUBLE (handle, value str, buffer, dimen)

IN handle handle to the CMI object

IN value str name of the value to get

IN buffer initial address of the source values

IN dimen grid dimension

CMI GET TIME SPAN (handle, span)

IN handle handle to the CMI object

OUT span start and end times for the simulation

CMI GET ELEMENT SET (handle, value str, element set)

IN handle handle to the CMI object

IN value str name of the value to get

OUT buffer model ElementSet
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CMI GET VALUE SET (handle, value str, value set)

IN handle handle to the CMI object

IN value str name of the value to get

OUT buffer model ValueSet

CMI SET VALUE SET (handle, value str, value set)

IN handle handle to the CMI object

IN value str name of the value to get

IN buffer model ValueSet

6. Component Wrapping Issues

In this section we discuss several methods for creating components based

on existing codes by using an approach often referred to as wrapping.

6.1. Code Reuse and the Case for Wrapping

Using computer models to simulate, predict, and understand Earth sur-

face processes is not a new idea. Many models exist, some of which are fairly

sophisticated, comprehensive, and well tested. The difficulty with reusing

these models in new contexts or linking them to other models typically has

less to do with how they are implemented and more to do with the interface

through which they are called (and to some extent, the implementation lan-

guage.) For a small or simple model, little effort may be needed to rewrite

the model in a preferred language and with a particular interface. Rewriting

large models, however, is both time-consuming and error prone. In addition,

most large models are under continual development, and a rewritten version

will not see the benefits of future improvements. Thus, for code reuse to be

practical, we need a language interoperability tool, so that components dont
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need to be converted to a different language, and a wrapping procedure that

allows us to provide existing code with a new calling interface. As suggested

by its name, and the fact that it applies to the “outside” (interface) of a com-

ponent vs. its “inside” (implementation), wrapping tends to be noninvasive

and is a practical way to convert existing models into components.

6.2. Wrapping for Object-Oriented Languages

Component-based programming is essentially object-oriented program-

ming with the addition of a framework. If a model has been written as a

class, then it is relatively straightforward to modify the definition of this

class so that it exposes a particular model-coupling interface. Specifically,

one could add new methods (member functions) that call existing methods,

or one could modify the existing methods. Each function in the interface

has access to all of the state variables (data members) without passing them

explicitly; it also has access to all the other interface functions. In object-

oriented languages one commonly distinguishes between private methods that

are intended for internal use by the model object and public methods that are

to be used by callers and that may comprise one or more interfaces. (Some

languages, like Java, make this part of a method’s declaration.)

In order for this model object to be used as a component in a CCA-

compliant framework like Ccaffeine, it must also be “wrapped” by a CCA

implementation file (or IMPL file). The CCA tool chain has tools such as

Babel and Bocca that are used to autogenerate an IMPL-file template. For

a model that is written in an object-oriented and Babel-supported language

(e.g., C++, Python, or Java), the IMPL file needs to do little more than

add interface functions like setServices and releaseServices that allow the
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component to communicate with and be instantiated by the framework. The

interface functions used for intercomponent communication (i.e., passing data

and IRF) can simply be inherited from the model class. Inheritance is a

standard mechanism in object-oriented languages that allows one interface

(set of methods) to be extended or overridden by another. Note that the

IMPL file may have its own Initialize() function that first gets the required

CCA ports and then calls the Initialize() function in the model’s interface.

But the function that gets the CCA ports can simply be another function

in the model’s interface that is used only in this context. Similarly, the

IMPL file may have a Finalize() function that calls the Finalize() function

of the model and then calls a function to release the CCA ports that are no

longer needed. It is desirable to keep the IMPL files as clean as possible,

which means adding some CCA-specific functions to the model’s interface.

For example, a CSDMS component would have (1) functions to get and

release the required CCA ports, (2) a function to create a tabbed-dialog

(using CCA’s so-called parameter ports), and (3) a function that prints a

language-specific traceback to stdout if an exception occurs during a model

run.

6.3. Wrapping for Procedural Languages

Languages such as C or Fortran (up to 2003) do not provide object-

oriented primitives for encapsulating data and functionality. Because component-

based programming requires such encapsulation, the CCA provides a means

to produce object-oriented software even in languages that do not support it

directly. We briefly describe the mechanism for creating components based

on functionality implemented in a procedural language (e.g., an existing li-
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brary or model).

A class in object-oriented terminology encapsulates some set of related

functions and associated data. To wrap a set of library functions, one can

create a SIDL interface or class that contains a set of methods whose im-

plementations call the legacy functions. The new interface does not have to

mirror existing functions exactly, presenting a nonintrusive opportunity for

redesigning the publicly accessible interfaces presented by legacy software.

The creation of class or component wrappers also enables the careful defini-

tion of namespaces, thus reducing potential conflicts when integrating with

other classes or components. The SIDL definitions are processed by Babel to

generate IMPL files in the language of the code being wrapped. The calls to

the legacy library can then be added either manually or by a tool, depending

on how closely the SIDL interface follows the original library interface.

Function argument types that appear in the SIDL definition can be han-

dled in two ways: by using a SIDL type or by specifying them as opaque.

SIDL already supports most basic types and different kinds of arrays found

in the target languages. Any user-defined types (e.g., structs in C or de-

rived types in Fortran) must have SIDL definitions or be passed as opaques.

Because opaques are not accessible from components implemented in a dif-

ferent language, they are rarely used. Model state variables that must be

shared among components can be handled in a couple of ways. They can

be encapsulated in a SIDL class and accessed through get/set methods (e.g.,

as described in Section 4.2). Recently Babel has added support for defining

structs in SIDL, whose data members can be accessed directly from multiple

languages.
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SIDL supports namespacing of symbols through the definition of packages

whose syntax and semantics are similar to Java’s packages. In languages that

do not support object orientation natively, symbols (e.g., function names)

are prefixed with the names of all enclosing packages and parent class. This

approach greatly reduces the potential build-, link-, or runtime name conflicts

that can result when multiple components define the same interfaces (e.g.,

the initialize, run, and finalize methods). These naming conventions can be

applied to any code, not only SIDL-based components.

Implementors working in non object-oriented languages should encapsu-

late their model’s state data in an object that is opaque to the application

programmer. Memory within the object is not directly accessible by the user

but can be accessed through an opaque handle, which exists in user space.

This handle is passed as the first argument to each of the interface functions

so that they can operate on a particular instance of a model. For example,

in C, this handle could simply be a pointer to the object and in Fortran, the

handle could be an index into a table of opaque objects in a system table.

Model handles are allocated and deallaocated in the initialize and finalize

interface functions, respectively. For allocate calls, the initialize functions are

passed an OUT argument that will contain a valid reference to the object. For

deallocation, the finalize function accepts an INOUT variable that provides

a reference to the object to be destroyed and sets the object to an invalid

state.

6.4. Guidelines for Model Developers

Developers can follow several relatively simple follow so that it becomes

much easier to create a reusable, plug-and-play component from their model
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source code. Given the large number of models that are contributed to the

CSDMS project, it is much more efficient for model developers to follow

these guidelines and thereby “meet us halfway” than for CSDMS staff to

make these changes after code has been contributed. This can be thought of

as a form of load balancing.

6.4.1. Programming Language and License

• Write code in a Babel-supported language (C, C++, Fortran, Java,

Python).

• If code is in Matlab or IDL, use tools like I2PY to convert it to Python.

Python (with the numpy, scipy, and matplotlib packages) provides a

free work-alike to Matlab with similar performance.

• Make sure that code can be compiled with an open-source compiler

(e.g., gcc and gfortran).

• Specify what type of open-source license applies to your code. Rosen

(2004) provides a good, online, and open-source book that explains

open-source licensing in detail. CSDMS requires that contributions

have an open source license type that is compliant with the standard

set forth by the Open Source Initiative.

6.4.2. Model Interface

• Refactor the code to have the basic IRF interface (5.1).

• If code is in C or Fortran, add a model name prefix to all interface

functions to establish a namespace (e.g., ROMS Initialize()). C code

can alternatively be compiled as C++.
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• Write Initialize() and Run Until() functions that will work whether the

component is used as a driver or nondriver.

• Provide getter and setter functions (4.2.1).

• Provide functions that describe input and output exchange items (4.2.1).

• Use descriptive function names (e.g., Update This Variable).

• Remove user interfaces, whether graphical, command line or otherwise,

from your interface implementation. This avoids incompatible user

interfaces competing with one another.

6.4.3. State Variables

• Decide on an appropriate set of state variables to be maintained by the

component and made available to callers.

• Attempt to minimize data transfer between components (as discussed

above).

• Use descriptive variable names.

• Carefully track each variable’s units.

6.4.4. Input and Output Files

• Do not hardwire configuration settings in the code; read them from a

configuration file (text).

• Do not use hardwired input filenames.
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• Read configuration settings from text files (often in Initialize()). Do

not prompt for command-line input. If a model has a GUI, write code

so it can be bypassed; use the GUI to create a configuration file.

• Design code to allow separate input and output directories that are

read from the configuration file. This approach allows many users to

use the same input data without making copies (e.g., test cases). It is

frequently helpful to include a case prefix (scenario) and a site prefix

(geographic name) and use them to construct default output filenames.

• Establish a namespace for configuration files (e.g., ROMS input.txt vs.

input.txt).

• If large arrays are to be stored in files, save them as binary vs. text.

(e.g., this is the case with NetCDF)

• Provide self-test functions or unit tests and test data. One self-test

could simply be a “sanity check” that uses trivial (perhaps hard-coded)

input data. When analytic solutions are available, these make excellent

self-tests because they can also be used to check the accuracy and

stability of the numerical methods.

• Do not create and write to output files within the interface implementa-

tion. If this is not possible, output files should be well documented and

allow for a naming convention that reduces the possibility of naming

conflicts.

6.4.5. Documentation

• Help CSDMS to provide a standardized, HTML help page.
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• Help CSDMS to provide a standaridized, tabbed-dialog GUI.

• Make liberal use of comments in the code.

7. The CSDMS Modeling Tool (CMT)

As explained in Section 2.3, Ccaffeine is a CCA-compliant framework

for connecting components to create applications. From a user’s point of

view, Ccaffeine is a low-level tool that executes a sequence of commands in a

Ccaffeine script. The (natural language) commands in the Ccaffeine scripting

language are fairly straightforward, so it is not difficult for a programmer to

write one of these scripts. For many people, however, using a graphical

user interface (GUI) is preferable because they don’thave to learn the syntax

of the scripting language. A GUI also provides users with a natural, visual

representation of the connected components as boxes with buttons connected

by wires. It can also prevent common scripting errors and offer a variety of

other convenient features. The CCA Forum developed such a GUI, called

Ccafe-GUI, that presented components as boxes in a palette that can be

moved into an arena (workspace) and connected by wires. It also allows

component configurations and settings to be saved in BLD files and instantly

reloaded later. Another key feature of this GUI is that, as a lightweight and

platform-independent tool written in Java, it can be installed and used on

any computer with Java support to create a Ccaffeine script. This script can

then be sent to a remote, possibly high-performance computer for execution.

While the Ccafe-GUI was certainly useful, the CSDMS project realized

that it could be improved and extended in numerous ways to make it more

powerful and more user-friendly. In addition, these changes would serve not
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only the CSDMS community but could be shared back with the CCA com-

munity. That is, the new GUI works with any CCA-compliant components,

not just CSDMS components. The new version is called CMT (CSDMS

Modeling Tool). Significant new features of CMT 1.5 include the following.

• Integration with a powerful visualization tool called VisIt (see below).

• New, “wireless” paradigm for connecting components (see below).

• A login dialog that prompts users for remote server login information.

• Job management tools that are able to submit jobs to processors of a

cluster.

• “Launch and go”: launch a model run on a remote server and then

shut down the GUI (the model continues running remotely).

• New File menu entry: “Import Example Configuration.”

• A Help menu with numerous help documents and links to websites.

• Ability to submit bug reports to CSDMS.

• Ability to do file transfers to and from a remote server.

• Help button in tabbed dialogs to launch component-specific HTML

help.

• Support for droplists and mouse-over help in tabbed dialogs.

• Support for custom project lists (e.g., projects not yet ready for re-

lease).
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• A separate “driver palette” above the component palette.

• Support for numerous user preferences, many relating to appearance.

• Extensive cross-platform testing and “bulletproofing.”

The CMT provides integrated visualization by using VisIt. VisIt (VisIt,

2011) is an open-source, interactive, parallel visualization and graphical anal-

ysis tool for viewing scientific data. It was developed by the U.S. Department

of Energy Advanced Simulation and Computing Initiative to visualize and

analyze the results of simulations ranging from kilobytes to terabytes. VisIt

was designed so that users can install a client version on their PC that works

together with a server version installed on a high-performance computer or

cluster. The server version uses multiple processors to speed rendering of

large data sets and then sends graphical output back to the client version.

VisIt supports about five dozen file formats and provides a rich set of vi-

sualization features, including the ability to make movies from time-varying

databases. The CMT provides help on using VisIt in its Help menu. CS-

DMS uses a service component to provide other components with the ability

to write their output to NetCDF files that can be visualized with VisIt. Out-

put can be 0D, 1D, 2D, or 3D data evolving in time, such as a time series

(e.g., a hydrograph), a profile series (e.g., a soil moisture profile), a 2D grid

stack (e.g., water depth), a 3D cube stack, or a scatter plot of XYZ triples.

Another innovative feature of CMT 1.5 is that it allows users to toggle

between the original, wired mode and a new wireless mode. CSDMS found

that displaying connections between components with the use of wires (i.e.,

red lines) did not scale well to configurations that contained several compo-
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nents with multiple ports. In wireless mode, a component that is dragged

from the palette to the arena appears to broadcast what it can provide (i.e.,

CCA provides ports) to the other components in the arena (using a con-

centric circle animation). Any components in the arena that need to use

that kind of port get automatically linked to the new one; this is indicated

through the use of unique, matching colors. In cases where two components

in the arena have the same uses port but need to be connected to different

providers, wires can still be used.

CSDMS continues to make usability improvements to the CMT and used

the tool to teach a graduate-level course on surface process modeling at the

University of Colorado, Boulder, in 2010. Several features of the CMT make

it ideal for teaching, including (1) the ability to save prebuilt component

configurations and their settings in BLD files, (2) the File >> Import Ex-

ample Configuration feature, (3) a standardized HTML help page for each

component, (4) a uniform, tabbed-dialog GUI for each component, (5) rapid

comparison of different approaches by swapping one component for another,

(6) the simple installation procedure, and (7) the ability to use remote re-

sources.

8. Providing Components with a Uniform Help System and GUI

Beyond the usual software engineering definition of a component, a useful

component will be one that also comes bundled with metadata that describes

the component and the underlying model that it is built around. While

creating a component as described in the preceding sections is important, it

is of equal importance to have a well-documented component that an end
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Figure 3: CMT screenshot.

user is able to easily use.

With a plug-and-play framework where users easily connect, interchange,

and run coupled models, there is a tendency for a user to treat components

as black boxes and ignore the details of the foundation that each component

was built upon. For instance, if a user is unaware of the assumptions that

underlie a model, that user may couple two components for which coupling

does not make sense because of the physics of each model. The user may

attempt to use a component in a situation where it was not intended to

be used. To combat this problem, components are bundled with HTML

help documents, which are easily accessible through the CMT, and describe

the component and the model that it wraps. These documents include the

following.
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• Extended model description (along with references)

• Listing and brief description of the component’s uses and provides ports

• Main equations of the model

• Sample input and output

• Acknowledgment of the model developer(s)

A complete component also comes with metadata supplied in a more

structured format. Components include XML description files that describe

their user-editable input variables. These description files contain a series of

XML elements that contain detailed information about each variable includ-

ing a default value, range of acceptable values, short and long descriptions,

units, and data type.

<entry name=velocity>

<label>River velocity</label>

<help>Depth-averaged velocity at the river mouth</help>

<default>2</default>

<type>Float</type>

<range>

<min>0</min>

<max>5</max>

</range>

<units>m/s</units>

</entry>
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Using this XML description, the CMT automatically generates a graphical

user interface (in the form of tabbed dialogs) for each CSDMS component.

Despite each model’s input files being significantly different, this provides

CMT users with a uniform interface across all components. Furthermore, the

GUI checks user input for errors and provides easily accessible help within

the same environment—none of which is available in the batch interface of

most models. A special type of CCA provides port called a parameter port

is also used in the creation of the tabbed dialogs.

Nearly every model gathers initial settings from an input file and then

runs without user intervention. Ultimately, any user interface that wraps a

model must generate this input file for the component to read as part of its

initialization step. The above XML description along with a template input

file allows this to happen. Once input is gathered from the user, a model-

specific input file is created based on a template input file provided with each

component. A valid input file is created based on $-based substitutions in this

template file. Instead of actual values, the template file contains substitution

placeholders of the form $identifier. Each identifier corresponds to an

entry name in the XML description file and, upon substitution, is replaced

by the value gathered from an external user interface (the CMT GUI, for

instance).

9. Framework Services: “Built-in” Tools That Any Component

Can Use

Developers (e.g., CSDMS staff) may wish to make certain low-level tools

or utilities available so that any component (or component developer) can use
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them without requiring any action from a user. These tools can be encapsu-

lated in special components called service components that are automatically

instantiated by a CCA framework on startup. The services or methods pro-

vided by these components are then called framework services. Unlike other

components, which users may assemble graphically into larger applications,

users do not interact with service components directly. However, a compo-

nent developer can make calls to the methods of service components through

service ports. The use of service components allows developers to maintain

code for a shared functionality in a single place and to make that function-

ality available to all components regardless of the language they are written

in (or which address space they are in). CSDMS uses service components for

tasks such as (1) providing component output variables in a form needed by

another component (e.g., spatial regridding, interpolation in time, and unit

conversion) and (2) writing component output to a standard format such as

NetCDF.

Any CCA component can be “promoted” to a service component. A de-

veloper simply needs to add lines to its setServices() method that register it as

a framework service. CCA provides a special port for this, gov.cca.ports.Ser-

viceRegistry, with three methods: addService(), addSingletonService(), and

removeService(). If a developer then wants another component to be able to

use this framework service, a call to the gov.cca.Services.getPort() method

must be added within its setServices() method. (A similar call must be added

in order to use CCA parameter ports and ports provided by other types of

components.) Note that the setServices() method is defined as part of the

gov.cca.Component interface.
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CCA components are designed for use within a CCA-compliant frame-

work (like Ccaffeine) and may make use of service components. But what if

we want to use these components outside of a CCA framework? One option

is to encapsulate a set of functionality (e.g., a service component) in a SIDL

class and then “promote” this class to (SIDL) component status through in-

heritance and by adding only framework-specific methods like setServices().

(Note that a CCA framework is the entity that calls a component’s setSer-

vices() method as described in Section 2.3.) This approach can be used to

provide both component and noncomponent versions of the class. Compiling

the noncomponent version in a Bocca project generates a library file that we

can link against or, in the case of Python, a module that we can import.

10. Current Contents of the CSDMS Component Repository

At the time of this publication the CSDMS model repository contains

more than 160 models and tools. Of those, 50 have been converted into

components as described in this paper and can be used in coupled modeling

scenarios with the CMT or through the component composition interfaces

supported by Ccaffeine. An up-to-date list is maintained at the CSDMS

webiste. As with the model repository as a whole, CSDMS components

cover the breadth of surface dynamics systems. Hydrologic components cover

various scales ranging from basin-scale (the entire TopoFlow (?) suite of

models consists of 15 components that cover infiltration, meteorology, and

channel dynamics; HydroTrend (??)) to reach-scale (the one-dimensional

sediment transport models of ?). Terrestrial components include models of

landscape evolution (Erode, and CHILD (?)), geodynamics (Subside (?))
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and cryospherics (GC2D (?)). Coastal and marine models include Ashton-

Murray Coastal Evolution Model (??), Avulsion (?), and the stratigraphic

model sedflux (?). The component repository also contains modeling tools

such as the ESMF and OpenMI SDK grid mappers, and file readers and

writers for standard file formats (NetCDF, VTK, for example).

11. Conclusions

CSDMS uses a component-based approach to integrated modeling and

draws on the combined power of many different open-source tools such as

Babel, Bocca, Ccaffeine, the ESMF regridding tool, and the VisIt visualiza-

tion tool. CSDMS also draws on the combined knowledge and creative effort

of a large community of Earth-surface dynamics modelers and computer sci-

entists. Using a variety of tools, standards, and protocols, CSDMS converts

a heterogeneous set of open-source, user-contributed models into a suite of

plug-and-play modeling components that can be reused in many different

contexts. Components that encapsulate a physical process usually repre-

sent an optimal level of granularity. Standards that CSDMS has adopted

and promotes include CCA, NetCDF (NetCDF, 2011), HTML, OGC (Open

Geospatial Consortium) (Open Geospatial Consortium, 2011), MPI (Message

Passing Interface) (Message Passing Interface Forum, 1998) and XML (XML,

2011).

All the software that underlies CSDMS is installed and maintained on its

high-performance cluster. CSDMS members have accounts on this cluster

and access its resources using a lightweight, Java-based client application

called the CSDMS Modeling Tool (CMT) that runs on virtually any desktop
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or laptop computer. This approach can be thought of as a type of community

cloud since it provides remote access to numerous resources. This centralized

cloud approach offers many advantages including (1) simplified maintenance,

(2) more reliable performance, (3) automated backups, (4) remote storage

and computation (user’s PC remains free), (5) ability for many components

(such as ROMS) and tools (such as VisIt and ESMF’s regridder) to use

parallel computation, (6) requiring to install only a lightweight client on their

PC, (7) little technical support needed by users, and (8) ability to submit

and run multiple jobs.

Babel’s support of the Python language has proven very useful. Python

is a modern, open-source, object-oriented language with source code that

is easy to write, read and maintain. It runs on virtually any platform. It

is useful for system administration, model integration, rapid prototyping,

high-level tool development, visualization (via the matplotlib package) and

numerical modeling (via the numpy package). Bocca is written in Python,

the VisIt visualization package has a powerful Python API, and ESRI’s Ar-

cGIS software now uses Python as its scripting language ((Buttler, 2005)).

Many third-party geographic information system (GIS) tools implemented in

Python are also available. With the numpy, scipy, and matplotlib packages,

Python provides a work-alike to commercial languages like Matlab with sim-

ilar performance. Other Python packages that CSDMS has found useful are

suds (for SOAP-based web services) and PyNIO (an API for working with

NetCDF files).

Several exciting opportunities exist for further streamlining and expand-

ing the capabilities of CSDMS. One area of particular interest is how CS-
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DMS can provide its members with multiple paths to parallel computation.

Software may be designed from the outset to use multiple processors, or be

refactored to do so, often using MPI or OpenMP. But this is not easy and

typically requires a multiyear investment. Another way to harness the power

of parallelism is to modify code to take advantage of numerical toolkits such

as PETSc (Portable Extensible Toolkit for Scientific Computation) (Balay

et al., 2010, 2011, 1997) that contain parallel solvers for many of the differ-

ential equations that are used in physically based models. A third way is

to for models written in array-based languages such as IDL, Matlab (Math-

Works, 2011) and Python/NumPy (T. Oliphant et al., 2011) to use array-

based functions and operators that have been parallelized. This approach,

although available only in commercial packages at present, is attractive for

several reasons: (1) developers in these languages already know to avoid

spatial loops and use the array-based functions whenever possible for good

performance, (2) most of these array-based functions are straightforward to

parallelize, and (3) developers need only import a different package to take

advantage of the parallelized functions.

Web services provide many additional opportunities. Peckham and Goodall

(2011) have demonstrated how CSDMS components can use CUAHSI-HIS (CUAHSI,

2011) web services to retrieve hydrologic data, but CSDMS components could

also offer their capabilities as web services.

CSDMS is also interested in automated component wrapping, which can

be achieved by adding special annotation keywords within comments in the

source code. If the code is sufficiently annotated, it is possible to write a flex-

ible tool to wrap the component with any desired interface. Unfortunately,
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most existing code has not been annotated in this way, and it is typically

necessary to involve the code’s developer in the annotation process.
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