
A Component-Based Approach to Integrated Modeling
in the Geosciences

Scott Peckham, Eric Hutton

CSDMS, University of Colorado, Boulder, CO, USA

Boyana Norris

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
USA

Abstract

1. Introduction1

The Community Surface Dynamics Modeling System (CSDMS) Project is2

an NSF-funded, international effort to develop a suite of modular numerical3

models able to simulate the evolution of landscapes and sedimentary basins, on4

time scales ranging from individual events to many millions of years. To enable5

simulation of complex scenarios, CSDMS provides comprehensive software and6

educational infrastructure that enables the independently developed models to7

be integrated into coupled numerical simulations. To achieve this, CSDMS has8

adopted a component software development model and created a suite of tools9

that make creation of components as automated and effortless as possible.10

The Community Surface Dynamics Modeling System (CSDMS) is commu-11

nity software project that is funded through a cooperative agreement with the12

National Science Foundation (NSF). A major goal of this project is to serve13

a diverse community of surface dynamics modelers by providing resources to14

promote the sharing and re-use of high-quality, open-source modeling software.15

In support of this goal, the CSDMS Integration Office maintains a searchable16

inventory of contributed models and employs state-of-the-art software tools that17

make it possible to convert stand-alone models into flexible, “plug-and-play com-18

ponents that can be assembled into larger applications. The CSDMS project19

also has a mandate from the NSF to provide a migration pathway for surface20

dynamics modelers towards high-performance computing (HPC) and provides21

a 720-core supercomputer for use by its members.22

The CSDMS project is happy to accept open-source code contributions from23

the modeling community in any programming language and in whatever form it24

happens to be in. One of our key goals is to create an inventory of what models25

are available. We use an online questionnaire to collect basic information about26

different open-source models and we make this information available to anyone27

Preprint submitted to Elsevier February 23, 2011

who visits our website at csdms.colorado.edu. We can also serve as a repository28

for model source code, but in many cases our website instead redirects visitors29

to another website which may be a website maintained by the model developer30

or a source code repository like SourceForge, JavaForge or Google Code. Online31

source code repositories (or project hosting sites) like these are free and provide32

developers with a number of useful tools for managing collaborative software33

development projects. CSDMS does not aim to compete with the services that34

these repositories provide (e.g. version control, issue tracking, wikis, online chat35

and web hosting).36

Another key goal of the CSDMS project is to create a collection of open-37

source, earth-science modeling components that are designed so that they are38

relatively easy to reuse in new modeling projects. CSDMS has studied this39

problem and has examined a number of different technologies for addressing it.40

We have learned that there are certain fundamental design principles that are41

common to all of these model-coupling technologies. That is, there is a certain42

minimum amount of code refactoring that is necessary in order for a model to43

be usable as a plug-and-play component.44

1.1. Component Programming Concepts45

Component-based programming is all about bringing the advantages of “plug46

and play” technology into the realm of software. When you buy a new peripheral47

for your computer, such as a mouse or printer, the goal is to be able to simply48

plug it into the right kind of port (e.g., a USB, serial or parallel port) and49

have it work, right out of the box. In order for this to be possible, however,50

there has to be some kind of published standard that the makers of peripheral51

devices can design against. For example, most computers nowadays have USB52

ports, and the USB (Universal Serial Bus) standard is well-documented. A53

computer’s USB port can always be expected to provide certain capabilities,54

such as the ability to transmit data at a particular speed and the ability to55

provide a 5-volt supply of power with a maximum current of 500 mA. The result56

of this “standardization” is that it is usually pretty easy to buy a new device,57

plug it into your computer’s USB port and start using it. Software “plug-ins”58

work in a similar manner, relying on the existence of certain types of “ports”59

that have certain, well-documented structure or capabilities. In software, as in60

hardware, the term component refers to a unit that delivers a particular type61

of functionality and that can be “plugged in”.62

Component programming builds upon the fundamental concepts of object-63

oriented programming, with the main difference being the introduction or pres-64

ence of a framework. Components are generally implemented as classes in an65

object-oriented language, and are essentially “black boxes” that encapsulate66

some useful bit of functionality. They are often present in the form of a library67

file, that is, a shared object (so file in Unix) or a dynamically linked library (dll68

file in Windows or dylib file in Mac OS X). The purpose of a framework is to69

provide an environment in which components can be linked together to form70

applications. The framework provides a number of services that are accessible71

to all components, such as the linking mechanism itself. Often, a framework will72

2

also provide a uniform method of trapping or handling exceptions (i.e., errors),73

keeping in mind that each component will throw exceptions according to the74

rules of the language that it is written in. In some frameworks, (e.g., CCA’s75

Ccaffeine) there is a mechanism by which any component can be promoted to76

a framework service. It is therefore preloaded by the framework so that it is77

available to all components without the need to explicitly “import” or “link” to78

the service component.79

One thing that often distinguishes components from ordinary subroutines,80

software modules or classes is that they are able to communicate with other81

components that may be written in a different programming language. This82

problem is referred to as language interoperability. In order for this to be pos-83

sible, the framework must provide some kind of language interoperability tool84

that can create the necessary “glue code” between the components. For a CCA-85

compliant framework, that tool is Babel, and the supported languages are C,86

C++, Fortran (all years), Java and Python. Babel is described in more detail in87

a subsequent section. For Microsoft’s .NET framework, that tool is CLR (Com-88

mon Language Runtime) which is an implementation of an open standard called89

CLI (Common Language Infrastructure), also developed by Microsoft. Some of90

the supported languages are C# (a spin-off of Java), Visual Basic, C++/CLI,91

IronLisp, IronPython and IronRuby. CLR runs a form of bytecode called CIL92

(Common Intermediate Language). Note that CLI does not appear to support93

Fortran, Java, standard C++ or standard Python. The Java-based frameworks94

used by Sun Microsystems are JavaBeans and Enterprise JavaBeans (EJB). In95

the words of Armstrong et al. [?]: “Neither JavaBeans nor EJB directly ad-96

dresses the issue of language interoperability, and therefore neither is appropri-97

ate for the scientific computing environment. Both JavaBeans and EJB assume98

that all components are written in the Java language. Although the Java Native99

Interface [34] library supports interoperability with C and C++, using the Java100

virtual machine to mediate communication between components would incur an101

intolerable performance penalty on every inter-component function call. While102

in recent years the performance of Java codes has improved steadily through103

just-in-time (JIT) compilation into native code, Java is not yet available on key104

high-performance platforms such as the IBM Blue Gene/L and Blue Gene/P105

supercomputers.106

Some key advantages of component-based programming are that compo-107

nents:108

• can be written in different languages and still communicate (via language109

interoperability).110

• can be replaced, added to or deleted from an application at run-time via111

dynamic linking (as precompiled units).112

• can easily be moved to a remote location (different address space) without113

recompiling other parts of the application (via RMI/RPC support).114

• can have multiple different interfaces and can “have state” or be “state-115

ful,” which simply means that data stored in the fields of an “component116

3

object” (class instance) retain their values between method calls for the117

lifetime of the object.118

• can be customized with configuration parameters when an application is119

built.120

• provide a clear specification of inputs needed from other components in121

the system.122

• have the potential to encapsulate parallelism better.123

• allow multicasting calls that do not need return values (i.e. sending data124

to multiple components simultaneously).125

• provide clean separation of functionality (for components, this is manda-126

tory vs. optional)127

• facilitate code re-use and rapid comparison of different implementations,128

etc.129

• facilitate efficient cooperation between groups, each doing what they do130

best.131

• promote economy of scale through development of community standards.132

2. Background133

2.1. The Common Component Architecture (CCA)134

Common Component Architecture (CCA) [?] is a component architecture135

standard adopted by federal agencies (largely the Department of Energy and its136

national labs) and academics to allow software components to be combined and137

integrated for enhanced functionality on high-performance computing systems.138

The CCA Forum is a grassroots organization that started in 1998 to promote139

component technology standards (and code re-use) for HPC. CCA defines stan-140

dards necessary for the interoperation of components developed in the context141

of different frameworks. That is, software components that adhere to these stan-142

dards can be ported with relative ease to another CCA-compliant framework.143

While there are a variety of other component architecture standards in the com-144

mercial sector (e.g., CORBA, COM, .Net, JavaBeans, etc.) CCA was created to145

fulfill the needs of scientific, high-performance, open-source computing that are146

unmet by these other standards. For example, scientific software needs full sup-147

port for complex numbers, dynamically dimensioned multidimensional arrays,148

Fortran (and other languages) and multiple processor systems. Armstrong et149

al. explain the motivation to create CCA by discussing the pros and cons of150

other component-based frameworks with regard to scientific, high-performance151

computing.152

There are a number of large DOE projects, many associated with the SciDAC153

program (Scientific Discovery through Advanced Computing), that are devoted154

4

to the development of component technology for high-performance computing155

systems. Most of these are heavily invested in the CCA standard (or are moving156

toward it) and employ computer scientists and applied mathematicians. Some157

examples include:158

• TASCS = The Center for Technology for Advanced Scientific Computing159

Software, which focuses on CCA and its associated tools [?]160

• CASC = Center for Applied Scientific Computing, which is home to CCA’s161

Babel tool [?]162

• ITAPS = The Interoperable Technologies for Advanced Petascale Sim-163

ulation [?], which focuses on meshing and discretization components,164

formerly TSTT165

• PERI = Performance Engineering Research Institute, which focuses on166

HPC quality of service and performance issues [?]167

• TOPS = Terascale Optimal PDE Solvers, which focuses on PDE solver168

components [?]169

• PETSc = Portable, Extensible Toolkit for Scientific Computation, which170

focuses on linear and nonlinear PDE solvers for HPC, using MPI [? ? ?]171

There are a variety of different frameworks that adhere to the CCA com-172

ponent architecture standard, such as Ccaffeine, CCAT/XCAT, SciRUN and173

Decaf. A framework can be CCA-compliant and still be tailored to the needs174

of a particular computing environment. For example, Ccaffeine was designed175

to support parallel computing and XCAT was designed to support distributed176

computing. Decaf was designed by the developers of Babel (Kumfert, 2003)177

primarily as a means of studying the technical aspects of the CCA standard it-178

self. The important thing is that each of these frameworks adheres to the same179

standard, which makes it much easier to re-use a (CCA) component in another180

computational setting. The key idea is to try to isolate the components them-181

selves, as much as possible, from the details of the computational environment182

in which they are deployed. If this is not done, then we fail to achieve one of183

the main goals of component programming, which is code re-use.184

CCA has been shown to be interoperable with ESMF [?] and MCT [? ? ?185

?]. CSDMS has also demonstrated that it is interoperable with a Java version186

of OpenMI. Many of the papers in our cited references have been written by187

CCA Forum members and are helpful for learning more about CCA. The CCA188

Forum has also prepared a set of tutorials called “A Hands-On Guide to the189

Common Component Architecture” [?].190

2.2. What is Babel?191

Babel is an open-source, language interoperability tool (and compiler) that192

automatically generates the “glue code” that is necessary in order for compo-193

nents written in different computer languages to communicate. As illustrated in194

5

Fig. ??, Babel currently supports C, C++, Fortran (77, 90, 95 and 2003), Java195

and Python. Babel is much more than a “least common denominator” solution;196

it even enables passing of variables with data types that may not normally be197

supported by the target language (e.g., objects, complex numbers). Babel was198

designed to support scientific, high-performance computing and is one of the199

key tools in the CCA tool chain. It won an R&D 100 design award in 2006 for200

“The world’s most rapid communication among many programming languages201

in a single application.” It has been shown to outperform similar technologies202

such as CORBA and Microsoft’s COM and .NET.203

In order to create the glue code that is needed in order for two compo-204

nents written in different programming languages to communicate (i.e. pass205

data between them), Babel only needs to know about the interfaces of the two206

components. It does not need any implementation details. Babel was therefore207

designed so that it can ingest a description of an interface in either of two fairly208

“language neutral” forms, XML (eXtensible Markup Language) or SIDL (Sci-209

entific Interface Definition Language). The SIDL language (somewhat similar210

to the CORBA’s IDL) was developed for the Babel project. Its sole purpose211

is to provide a concise description of a scientific software component interface.212

This interface description includes complete information about a component’s213

interface, such as the data types of all arguments and return values for each of214

the component’s methods (or member functions). SIDL has a complete set of215

fundamental data types to support scientific computing, from booleans to dou-216

ble precision complex numbers. It also supports more sophisticated data types217

such as enumerations, strings, objects, and dynamic multi-dimensional arrays.218

The syntax of SIDL is very similar to Java. A complete description of SIDL219

syntax and grammar can be found in “Appendix B: SIDL Grammar” in the220

Babel User’s Guide [?]. Complete details on how to represent a SIDL interface221

in XML are given in “Appendix C: Extensible Markup Language (XML)” of222

the same user’s guide.223

2.3. The Ccaffeine Framework224

Ccaffeine [?] is the most widely used CCA framework, providing the run-225

time environment for sequential or parallel components applications. Using226

Ccaffeine, component-based applications can run on a variety of platforms, in-227

cluding laptops, desktops, clusters, and leadership-class supercomputers. Ccaf-228

feine provides some rudimentary MPI communicator services, although individ-229

ual components are responsible for managing parallelism internally, e.g., com-230

municating data to and from other distributed components. A CCA framework231

provides so-called services, which include component instantiation and destruc-232

tion, connecting and disconnecting ports, handling of input parameters, and233

control of MPI communicators. Ccaffeine was primarily designed to support234

the single-component multiple-data (SCMD) programming style, although it235

can support multiple-component multiple-data (MCMD) applications that im-236

plement more dynamic management of parallel resources. The CCA specifica-237

tion also includes an event service description, but it is not fully implemented238

in Ccaffeine yet. Multiple interfaces to configuring and executing component239

6

Figure 1: Language interoperability provided by Babel.

applications within the Ccaffeine framework exist, including a simple scripting240

language, a graphical user interface, and the ability to take over some of the op-241

erations normally handled by the frameworks, such as component instantiation242

and port connections.243

A typical CCA component’s execution consists of the following steps:244

• The framework loads the dynamic library for the component. Static link-245

ing options are also available.246

• The component is instantiated. The framework calls the setServices247

method on the component, passing a handle to itself as an argument.248

• User-specified connections to other components’ ports are established by249

the framework.250

• If the component provides a gov.cca.ports.Go port (similar to a “main”251

subroutine), the go method can be invoked to start the main portion of252

the computation.253

• Connections can be made and broken throughout the life of the compo-254

nent.255

• All component ports are disconnected, and the framework calls release-256

Services prior to calling the component’s destructor.257

The handle to the framework services object, which all CCA components258

obtain shortly after instantiation can be used to access various framework ser-259

vices throughout the component’s execution. This represents the main differ-260

ence between a class and a component: a component dynamically accesses other261

component’s functionality through dynamically connecting ports (requiring the262

presence of a framework), while classes in OO languages call methods directly263

on instances of other classes.264

7

2.4. What is Bocca?265

Bocca [?] is a tool in the CCA tool chain that was designed to help266

users create, edit, and manage a set of SIDL-based entities, including CCA267

components and ports, that are associated with a particular project. Once268

you have prepared a set of CCA-compliant components and ports, you can269

then use a CCA-compliant framework like Ccaffeine (see above) to actually link270

components from this set together to create applications or composite models.271

Bocca was developed to address usability concerns and reduce the develop-272

ment effort required for implementing multi-language component applications.273

Bocca was specifically designed to free users from mundane, time-consuming,274

low-level tasks so they can focus on the scientific aspects of their applications.275

It can be viewed as a development environment tool that allows application276

developers to perform rapid component prototyping while maintaining robust277

software- engineering practices suitable to HPC environments. Bocca provides278

project management and a comprehensive build environment for creating and279

managing applications composed of CCA components. Bocca operates in a280

language-agnostic way by automatically invoking the lower-level Babel tool. A281

set of Bocca commands required to create a component project can be saved282

as a shell script, so that the project can be rapidly rebuilt, if necessary. Var-283

ious aspects of an existing component project can also be modified by typing284

Bocca commands interactively at a Unix command prompt. While Bocca au-285

tomatically generates dynamic libraries, a separate tool can be used to create286

stand-alone executables for projects by automatically bundling all required li-287

braries on a given platform. Examples of using Bocca are available in the set of288

tutorials called “A Hands-On Guide to the Common Component Architecture”,289

written by the CCA Forum members [?].290

2.5. Other Component-Based Modeling Projects291

• OMS (Object Modeling System)292

• OpenMI (Open Modeling Interface)293

• ESMF (Earth System Modeling Framework)294

• EPAs FRAMES ??295

• CUAHSI-HIS ?? (Consortium of Universities for the Advancement of296

Hydrologic Science, Inc. - Hydrologic Information System)297

• iemhub.org298

3. Problem Definition – Component-based, Plug-and-play Modeling299

3.1. Why is it Often Difficult to Link Models?300

Linking together models that were not specifically designed from the outset301

to be linkable is often surprisingly difficult and a brute force approach to the302

problem often requires a large time investment. The main reason for this is that303

8

there are a lot of ways in which two models may differ. The following list of304

possible differences helps to illustrate this point.305

• Written in different languages (conversion is time-consuming and error-306

prone).307

• The person doing the linking may not be the author of either model and308

the code is often not well-documented or easy to understand.309

• Models may have different dimensionality (1D, 2D or 3D)310

• Models may use different types of grids (e.g., rectangles, triangles,Voronoi311

cells)312

• Each model has its own time loop or ”clock”.313

• The numerical scheme may be either explicit or implicit.314

The type of coupling required poses its own challenges. Some common types315

of model coupling are:316

• Layered = A vertical stack of grids that may represent:317

different domains (e.g atm-ocean, atm-surf-subsurf, sat-unsat),318

subdivision of a domain (e.g stratified flow, stratigraphy),319

different processes (e.g., precip, snowmelt, infil, seepage, ET)320

A good example is a distributed hydrologic model.321

• Nested = Usually a high-resolution (and maybe 3D) model that is embed-322

ded within (and may be driven by) a lower-resolution model.323

(e.g., regional winds/waves driving coastal currents, or a 3D channel flow324

model within a landscape model)325

• Boundary-coupled = Model coupling across a natural (possibly moving)326

boundary, such as a coastline. Usually fluxes must be shared across the327

boundary.328

3.2. Attributes of Earth Surface Process Models329

The earth surface process modeling community has lots of models but it is330

difficult to couple or reconfigure them to solve new problems. This is because331

they are an inhomogeneous set in the sense that:332

• They are written in many different languages, some object-oriented, some333

procedural, some compiled, some interpreted, some proprietary, some334

open-source, etc. These languages dont all offer the same data types and335

other features, so special tools are required to create “glue code” necessary336

to make function calls across the language barrier.337

• They werent designed to “talk” to each other and dont follow any partic-338

ular set of conventions.339

9

• We cant rewrite all of them (rewriting/debugging is too costly)340

• Some models use explicit timestepping, some implicit.341

• Earth surface process models generally have a geographic context, and342

are therefore often used in conjunction with GIS (Geographic Information343

System) tools.344

• Models generally consist of one or more arrays (1D, 2D or 3D) that are345

being advanced in time according to differential equations or other rules.346

(i.e. we are not modeling molecular dynamics)347

• Models use different input and output file formats.348

• Many earth surface process models are open-source. Even many models349

that were originally sold commercially are now available as open-source350

code (e.g., Delt3D - Flow, Mor, etc.; EDF model code)351

3.3. Design Criteria352

Some of the “functional specs” or “technical goals” of component-based mod-353

eling are:354

• Support for multiple operating systems (especially Linux, Mac OS X and355

Windows)356

• Language interoperability to support code contributions written in C and357

Fortran as well as object-oriented languages (e.g., Java, C++, Python)358

• Support for both legacy code (non-protocol) and more structured code359

submissions (“procedural” and object-oriented)360

• Support for both structured and unstructured grids. As a result, there is361

a need for a spatial regridding tool.362

• Platform-independent GUIs and graphics where useful363

• Use well-established, open-source software standards whenever possible364

(e.g., CCA, SIDL, OGC, MPI, netCDF, OpenDAP, XUL, etc.)365

• Make use of open-source tools that are mature and have well-established366

communities. Avoid dependencies on proprietary software whenever pos-367

sible (e.g., Windows, C#, MatLab.368

• Model developers/contributors should not be required to make major369

changes to how they work. That is, to the extent possible, they should370

not be required to (1) convert to another programming language, (2) use371

invasive changes to their code (e.g., use specified data structures, libraries372

or classes). It is desirable for the author to retain “ownership” of the373

code, make continual improvements to it and for someone to be able to374

componentize future, improved versions with minimal additional effort.375

10

However, some degree of code refactoring (e.g., breaking code into func-376

tions or adding a few new functions) and ensuring that the code compiles377

with an open-source compiler are considered reasonable requirements. It is378

also expected that many developers will take advantage of various built-in379

tools if it is straight-forward and beneficial to do so.380

• Support for parallel computation (multi-processor, via MPI standard)381

• Interoperability with other coupling frameworks. Since code re-use is a382

fundamental tenet of component-based modeling, the effort required to383

use a component in another framework should be kept to a minimum.384

• The modeling system should be easy to maintain and as robust as possible.385

It is recognized that the system will have many software dependencies and386

that this software infrastructure will be updated on a regular basis.387

• If the modeling system runs on a multi-processor machine, it should strive388

to use tools that can take advantage of this. (e.g., VisIt, PETSc, ESMF389

regridding tool)390

3.4. Interface vs. Implementation391

The word interface may be the most overloaded word in computer science.392

In each case, however, it adheres to the standard, English meaning of the word393

that has to do with a boundary between two things and what happens at the394

boundary. The overloading has to do with the large numbers of pairs of things395

that we could be talking about. Many people hear the word interface and396

immediately think of the interface between a human and a computer program,397

which is typically either a command-line interface (CLI) or a graphical user398

interface (GUI). While this is a very interesting and complex subject in itself,399

this is usually not what computer scientists are talking about. Instead, they400

tend to be interested in other types of interface, such as the one between a pair401

of software components, or between a component and a framework, or between402

a developer and a set of utilities (i.e. an API or a software development kit403

(SDK)).404

Within the present context of component programming, we are primarily405

interested in the interfaces between components. In this context, the word406

interface has a very specific meaning, essentially the same as how it is used in the407

Java programming language. (You can therefore learn more about component408

interfaces in a Java textbook.) It is a user-defined entity/type, very similar to409

an abstract class. It does not have any data fields, but instead is a named set of410

methods or member functions, each defined completely with regard to argument411

types and return types but without any actual implementation. A CCA port412

is simply this type of interface. Interfaces are the name of the game when it413

comes to the question of re-usability or “plug and play”. Once an interface414

has been defined, one can then ask the question: Does this component have415

interface A? To answer the question we merely have to look at the methods416

(or member functions) that the component has with regard to their names,417

11

argument types and return types. If a component does “have” a given interface,418

then it is said to expose or implement that interface, meaning that it contains419

an actual implementation for each of those methods. It is perfectly fine if the420

component has additional methods beyond the ones that comprise a particular421

interface. Because of this, it is possible (and frequently useful) for a single422

component to expose multiple, different interfaces or ports. For example, this423

may allow it to be used in a greater variety of settings. There is a good analogy424

in computer hardware, where a computer or peripheral may actually have a425

number of different ports (e.g., USB, serial, parallel, ethernet) to enable them426

to communicate with a wider variety of other components.427

The distinction between interface and implementation is an important theme428

in computer science. The word pair declaration and definition is used in a similar429

way. A function (or class) declaration tells us what the function does (and how430

to interact with or use it) but not how it works. To see how the function actually431

works, we need to look at how it has been defined or implemented. C and C++432

programmers will be familiar with this idea, where variables, functions, classes,433

etc. are often declared in a header file with the filename extension .h or .hpp434

(that is, data types of all arguments and return values are given) whereas they435

are defined in a separate file with extension .c or .cpp. Of course, most of436

the gadgets that we use every day (from iPods to cars) are like this. We need437

to understand their interfaces in order to use them (and interfaces are often438

standardized across vendors), but often we have no idea what is happening439

inside or how they actually work, which may be quite complex.440

It is important to realize that the CCA standard and the tools in the CCA441

tool chain are powerful and quite general but they do not provide us with an442

interface for linking models. In CCA terminology, the term port is essentially443

a synonym for interface and a distinction is made between ports that a given444

component uses (uses ports) and those that it provides (provides ports) to other445

components. Each scientific modeling community that wishes to make use of446

the CCA tools is responsible for designing or selecting component interfaces (or447

ports) that are best suited to the kinds of models that they wish to link together.448

This is a big job in and of itself that involves social as well as technical issues449

and typically requires a significant time investment. In some disciplines, such as450

molecular biology or fusion research, the models may look quite different from451

ours. Ours tend to follow the pattern of a 1D, 2D or 3D array of values (often452

multiple, coupled arrays) advancing forward in time. However, our models can453

still be quite different from each other with regard to their dimensionality or the454

type of computational grid that they use (e.g., rectangles, triangles or polygons),455

or whether they are implicit or explicit in time.456

3.5. Granularity457

While components may represent any level of granularity from a simple458

function to a complete hydrologic model, the optimum level appears to be that459

of a particular physical process, such as infiltration, evaporation or snowmelt.460

It is at this level of granularity that researchers are most often interested in461

“swapping out one method of modeling a process for another. A simpler method462

12

of parameterizing a process may only apply to simplified special cases or may463

be used simply because there is insufficient input data to drive a more complex464

model. A different numerical method may solve the same governing equations465

with greater accuracy, stability or efficiency, and may or may not use multiple466

processors. Even the same method of modeling a given process may exhibit467

improved performance when coded in a different programming language. But468

the physical process level of granularity is also natural for other reasons. Specific469

physical processes often act within a domain that shares a physically important470

boundary with other domains (e.g., coastline, ocean-atmosphere) and the fluxes471

between these domains are often of key interest. In addition, experience shows472

that this level of granularity corresponds to GUIs and HTML help pages that473

are more manageable for users.474

A judgement call is frequently needed to decide whether a new feature should475

be provided in a separate component or as a configuration setting in an existing476

component. For example, a kinematic wave channel-routing component may477

provide both Mannings formula and the law of the wall as different options478

to parameterize frictional momentum loss. Each of these options requires is479

own set of input parameters (e.g., Mannings n or the roughness parameter,480

z0). We could even think of frictional momentum loss as a separate physi-481

cal process,under which we would have separate Manning and law of the wall482

components. Usually, the amount of code associated with the option and us-483

ability considerations (including user expectations) can be used to make these484

decisions.485

Some models are written in such a way that decomposing them into sep-486

arate process components is not really appropriate. This may be because of487

some special aspect of the models design or because doing so would result in488

an unacceptable loss of performance (e.g., speed, accuracy or stability). For489

example, multiphysics models — such as PIHM (Penn State? Integrated Hy-490

drologic Model) — represent many physical processes as one large, coupled set491

of ODEs that are then solved as a matrix problem on a supercomputer. Other492

models involve several physical processes that operate in the same domain and493

are relatively tightly coupled within the governing equations. ROMS (Regional494

Ocean Modeling System) is an example of such a model, in which it may not495

be practical to model processes such as tides, currents, passive scalar transport496

(e.g., T and S) and sediment transport within separate components. In such497

cases, however, it may still make sense to wrap the entire model as a compo-498

nent so that it may interact with other models (e.g., an atmospheric model, like499

WRF, or a wave model, like SWAN) or be used to drive another model (e.g., a500

Lagrangian transport model, like LTRANS).501

4. Designing a Modeling Interface502

While interface functions are often easy to implement, they allow a caller503

to have fine-grained control over our model, and therefore use it in clever ways504

as part of something bigger. In essence, this set of methods is like a handheld505

remote control for our model. Compiling models in this form as shared objects506

13

(.so, Unix) or dynamically-linked libraries (.dll, Windows) is one way that they507

can then be used as plug-ins.508

4.1. The “IRF” Interface Functions509

One “universal truth” of component-based programming is that in order for510

a model to be used as a component in another model, its interface must allow511

complete control to be handed to an external caller. Most earth-science models512

have to be initialized in some manner and then use time stepping or another513

form of stepping in order to compute a result. While time-stepping models514

are the most familiar, many other problems such as root-finding and relaxation515

methods employ some type of iteration or stepping. For maximum plug-and-516

play flexibility, it is necessary to make the actions that take place during a single517

step directly accessible to a caller.518

To see why this is so, consider two time-stepping models. Suppose that519

Model A melts snow, routes the runoff to a lake, and increases the depth of520

the lake while Model B computes lake-level lowering due to evaporative loss.521

Each model initializes the lake depth, has its own time loop and changes the522

lake depth. If each of these models is written in the traditional manner, then523

combining them into a single model means that whatever happens inside the524

time loop of Model A must be pasted into Model B’s time loop or vice versa.525

There can only be one time loop. This illustrates, in its simplest form, a very526

common problem that is encountered when linking models527

Now imagine that we restructure the source code of both models slightly528

so that they each have their own Initialize(), Run Until() and Finalize() sub-529

routines. The Initialize routine contains all of the code that came before the530

time loop in the original model, the Run Until() routine contains the code that531

was inside the time loop (and returns all updated variables) and the Finalize()532

routine contains the code that came after the time loop. We can also write one533

additional routine, perhaps called Run Model() or Main(), which simply calls534

Initialize(), starts a time loop which calls Run Until() and then calls Finalize().535

Calling Run Model() reproduces the functionality of the original model, so we536

have made a fairly simple, one-time change to our two models and yet retained537

the ability to use them in “stand-alone mode”. Future enhancements to the538

model simply insert new code into this new set of four subroutines. However,539

this simple change means that, in effect, we have converted each model into an540

object with a standard set of four member functions or methods. Now, it is541

trivial to write a new model that combines the computations of Model A and542

B. This new model first calls the Initialize() methods of Model A and B, then543

starts a time loop, then calls the Run Until() methods of Model A and B, and544

finally calls the Finalize() methods of Model A and B. For models written in an545

object-oriented language, these four subroutines would be methods (or member546

functions) of a class, but for other languages, like Fortran, it is enough to simply547

break the model into these subroutines.548

For lack of a better term, we refer to this Initialize(), Run Until(), Finalize()549

pattern as an “IRF interface”. All of the model coupling projects that we550

are aware of use this pattern as part of their component interface, including551

14

the Earth Surface Modeling Framework (ESMF), the Object Modeling System552

(OMS), the Open Modeling Interface (OpenMI) and the Community Surface553

Dynamics Modeling System (CSDMS). An IRF interface is also used as part of554

MPI (Message Passing Interface) for communication between processes in high-555

performance computers. However, these are really only the core functions of a556

model coupling interface. A complete interface will also require several other557

functions, such as ones that enable another component to request data from the558

component (a getter) or change data values (a setter) in the component. These559

are typically called within the Initialize() or Run Until() methods.560

4.2. The Getter and Setter Interface Functions561

The Get Value() and Set Value() methods can be general in terms of sup-562

porting different grid/mesh types, but it should be possible to bypass that gen-563

erality and use simple, raster-based grids to keep things simple and efficient564

when the generality is not needed.565

The Get Value() and Set Value() methods should optionally allow specifica-566

tion (via indices) of which individual elements within an array that are to be567

obtained or modified. We often need to manipulate just a few values and we568

dont want to transfer copies of entire arrays (which may be quite large) unless569

absolutely necessary.570

Each component should understand what variables will be requested from571

it and if those represent some function of its state variables (e.g., a sum or572

product) then that computation should be done by the component and offered573

as an output variable rather than passing several state variables that must then574

be combined in some way by the caller.575

To support dynamically-typed languages like Python, additional interface576

functions may be required in order to query whether the variable is currently a577

scalar or a vector (1D array) or a grid.578

4.3. Self-Descriptive Interface Functions579

It is also helpful to have two additional methods, perhaps called Get Input Exchange Item List()580

and Get Output Exchange Item List(), that a caller can use to query what type581

of data the component is able to use as input or compute as output.582

4.4. Framework Interface Functions583

In order for a component to be “CCA compliant,” it must implement some584

additional member functions that allow it to be instantiated by and communi-585

cate with a CCA-compliant framework. These are: init , getServices, releas-586

eServices, .587

4.5. The Auto-Connection Problem588

A key goal of component-based modeling is to create a collection of compo-589

nents that can be coupled together to create new and useful composite models.590

This particular goal is achieved by simply providing every component with the591

15

same interface, and this is the approach that is employed by OpenMI. A sec-592

ondary goal, however, is for the coupling process to be as automatic as possible,593

that is, to require as little input as possible from users. To achieve this goal,594

we need some way to group components into categories according to the func-595

tionality that they provide. This grouping must be readily apparent to both596

a user and the framework (or system) so that it is clear whether a particular597

pair of components are interchangeable or not. But what should it mean for598

two components to be interchangeable? Do they really need to use identical599

input variables and provide identical output variables? Our experience shows600

that this definition of interchangeable is unnecessarily strict. It also shows that601

the concept of interchangeability is closely related to the idea of granularity.602

To bring these issues into sharper focus, consider the physical process of603

infiltration which plays a key role in hydrologic models. As part of a larger604

hydrologic model, the main purpose of an infiltration component is to compute605

the infiltration rate at the surface because it represents a loss term in the overall606

hydrologic budget. If the domain of the infiltration component is restricted to607

the unsaturated zone, above the water table, then it may also need to provide a608

vertical flow rate at the water table boundary. So the main job of the infiltration609

component is to provide fluxes at the (top and bottom) boundaries of its domain.610

To do this job, it needs variables such as flow depth and rainfall rate that are611

outside of its domain and computed by another component. Hydrologists use a612

variety of different methods and approximations to compute surface infiltration613

rate. The Richards 3D method, for example, is a more rigorous approach that614

tracks four different state variables throughout the domain, while the Green-615

Ampt method, makes a number of simplifying assumptions so that it computes616

a smaller set of state variables and does not resolve the vertical flow dynamics617

to the same level of detail (i.e. piston flow, sharp wetting front). As a result, the618

Richards 3D and Green-Ampt infiltration components use a different set of input619

variables and provide a different set of output variables. Despite this, however,620

they both provide the surface infiltration rate as one of their outputs and can621

therefore be used “interchangeably in a hydrologic model as an “ infiltration622

component.623

The infiltration process example is a good one in that it illustrates several key624

points that are transferable to other situations. It is often the case that a model,625

such as a hydrologic model, breaks the larger problem domain into a set of sub-626

domains where one or more processes are relevant. The boundaries of these627

subdomains are often physical interfaces, such as surface/subsurface, unsatu-628

rated/saturated zone, atmosphere/ocean, ocean/seafloor, land/water. More-629

over, the variables that are of interest in the larger model often depend on the630

fluxes across these subdomain boundaries.631

Within a group of interchangeable components (e.g., infiltration compo-632

nents), there are many other implementation differences that a modeler may633

wish to explore, beyond just how a physical process is parameterized. For ex-634

ample, performance and accuracy often depend on things like (1) numerical635

scheme (explicit vs. implicit, order of accuracy, stability), (2) data types used636

(float vs. double) (3) number of processors (parallel vs. serial), (3) approxima-637

16

tions used, (4) the programming language or (5) coding errors.638

Auto-connection of components is important from a users point of view. It639

is common for components to require many input variables and produce many640

output variables. Users quickly become frustrated when they need to manually641

create all of these pairings/connections, especially when using more than just 2642

or 3 components at a time. The OpenMI project does not support the concept643

of auto-connection or interchangeable components. When using the graphical644

Configuration Editor provided in its SDK, users are presented with droplists of645

input and output variables and must select the ones to be paired. This requires646

expertise and is made more difficult because there is so far no ontological or647

semantic scheme that makes it clear whether two variable names actually refer648

to the same thing.649

The CSDMS project currently employs an approach to auto-connection that650

involves providing interfaces (i.e. CCA ports) with different names to reflect651

their intended use (or interchangeability), even though the interfaces are the652

same internally.653

5. The Current CSDMS Component Interface654

A concise definition, referring back to previous section655

5.1. The IRF Interface656

The body of a numerical model in divided into three sections: set up, execu-657

tion, and teardown. The set-up phase occurs before time stepping begins and658

initializes the model. The execution phase is the guts of the model and consists659

of everything within the main time loop of the model. The teardown phase660

occurs after time stepping completes and acts to clean up the model simulation.661

In the case of a time-independent model, the model calculations can be thought662

of as a time-stepping model with a single time step.663

5.1.1. Model handle664

For object-oriented languages (Python, C++, Java, for example), the model’s665

state is encapsulated as private data within a class, and the interface functions666

are member functions of that class. For languages that are not object-oriented,667

the model’s state is contained in a data structure that is exposed to the ap-668

plication programmer as an opaque object. The memory within the object is669

not directly accessible to the user but is accessed via a handle, which exists in670

user space. This handle is passed as the first argument to each of the interface671

functions so that they can operate on a particular instance of a model.672

In C, this handle could simply be a pointer to the object.673

Model handles are allocated and dellaocated through the initialize and final-674

ize interface functions, respectively. For allocate calls, the initialize functions675

are passed an OUT argument that will contain a valid reference to the object.676

In the case of deallocation, the finalize function accepts an INOUT variable that677

provides a reference to the object to be destroyed and sets the object to an678

invalid state.679

17

5.1.2. Initialize (Model Set Up)680

Before a model enters into its time-stepping loop, it will usually execute a681

set of commands necessary to set up the subsequent model simulation. This is682

the initialization step — the lines of code before the time loop. The initialize683

step puts a model into a valid state that is ready to be executed. Mostly this684

will be initializing variables or grids that will subsequently be used within the685

execution step. Temporary files that the execution step will read from or write686

to should also be opened here. Any user interface, whether it be graphical or687

command line, should be left outside of the initialization step. User interfaces688

should be kept outside of the IRF modeling interface and within the model689

application. This allows new application developers to attach their own user690

interface to their application and, more importantly, it avoids conflicting user691

interfaces competing with one another when multiple models are linked to one692

another within a single application.693

CMI INITIALIZE (handle, filename)694

OUT handle handle to the CMI object
IN filename path to configuration file

695

A typical interface for model initialization:696

int CMI_Initialize (CMI_Handle *handle, char *filename)697

The initialization function takes the name of a file as input and constructs698

an object that holds the state of the model. A null filename indicates that there699

is no input file, otherwise this is the main input file used by the model. Input700

file names or paths should not be hardcoded within the implementation of the701

initialize step. This is necessary to protect against the case where two models702

run in the same directory and are both looking for files of the same name.703

5.1.3. Run (Model Execution)704

A model’s execute step should run the model for a particular amount of705

simulation time. Generally speaking, this will be the lines of code that are706

within the time loop. The CMI RUN UNTIL interface function advances the707

model from its current state to a future state. For time-independent models the708

run step simply executes the model calculation and updates the model state so709

that future calls will not require executing the calculations again. Encapsulating710

the only the code within the time loop allows an application to run the model711

to an intermediate state. This is necessary to allow an application to query the712

model’s state for the purposes of (for instance) printing output or passing state713

data to another model.714

Many models contain code within the time loop that prints output files as715

the model advances in time. Ideally this code should be pulled out of the run716

step and be controlled by the application. However, in existing models this code717

18

is often deeply embedded within the model and would be difficult to extract.718

If this code is not removed, the application developer must be aware that by719

executing RUN UNTIL output files that they were not aware of may be generated720

and may conflict with output files from their application or another model’s run721

step. If not removed, the output files should be well documented and allow for722

a naming convention that will reduce the possiblility of naming conflicts. For723

example, output files could be written in a user-defined folder or have a name724

prefix that reflects the name of the model.725

CMI RUN UNTIL (handle, stop time)726

IN handle handle to the CMI object
IN stop time simulation time to run model until

727

Sample interface:728

int CMI_Run_until (CMI_Handle handle, double stop_time);729

5.1.4. Finalize (Model Termination)730

The finalize step cleans up after the model is no longer needed. The main731

purpose of this step to make sure that all resources your model acquired through732

its life have been freed. Most often this will be freeing allocated memory, but733

could also be freeing file or network handles. Following this step, the model734

should be left in an invalid state such that its run step can no longer be called735

until it has been initialized again.736

CMI FINALIZE (handle)737

INOUT handle handle to the CMI object738

Sample interface:739

int CMI_Finalize (CMI_Handle handle);740

5.2. Value Getters and Setters741

Although a model that exposes the IRF interface described above is of great742

use, there are still a couple of interface functions missing to make it even more743

useful in integrating with other models. For one model to meaningfully commu-744

nicate with other models, it must be able to exchange values with those other745

models. Furthermore, each model should provide a means for another model746

to change particular values of itself. One way of doing this is through a getter747

and setter interface. As we have seen, a barebones IRF interface is certainly748

valuable but augmenting this interface with getter and setter methods will make749

the model more useful in linking with others.750

19

5.2.1. Value Getters751

If an application wishes to access values from a model, the model should752

implement some kind of getter method (or methods). Limiting access to the753

model’s state to be through a set of functions allows control of what data the754

model shares with other programs and how it shares that data. There are two755

ways to transfer the data. The first is to give the calling program a copy of the756

data. The second is to give the actual data that is being used by the model (in C,757

this would mean passing a pointer to a value). The first has the advantage that758

it hides implementation details of the model from the calling program and also759

limits what the calling program can do to the model. However, the downside of760

the first method is that communication will be slower (and could be significantly761

so, depending on the size of the data being transferred).762

CMI Get Value() (handle, value str, buffer, count, datatype)763

IN handle handle to the CMI object
IN value str name of the value to get
OUT buffer initial address of the destination values
IN count number of elements in buffer
IN datatype data type of each buffer element

764

765

Sample interface:766

int CMI_Get_Value (CMI_Handle handle, char *value_str,767

void *buffer, int count, CMI_Datatype datatype);768

5.2.2. Value Setters769

For a program to be able to set data within a model, the interface should770

implement a setter for those values. Variables within a model should be accessed771

and changed through interface methods. This ensures that users of the interface772

are not able to change values that the interface implementor doesn’t want them773

to. This also detaches the programmer using your interface from your model774

implementation, thus freeing the model developer to change details of his or her775

model without an application programmer having to make any changes.776

The setter can also perform tasks other than just setting data. For instance,777

it might be useful if the setter checked to make sure that the new data is valid.778

After the setter method sets the data it should ensure that the model is still in779

a valid state.780

CMI Set Value() (handle, value str, buffer, count, datatype)781

20

IN handle handle to the CMI object
IN value str name of the value to get
IN buffer initial address of the source values
IN count number of elements in buffer
IN datatype data type of each buffer element

782

Sample interface:783

int CMI_Set_value (CMI_Handle handle, char* value_str,784

void* buffer, int count, CMI_Datatype datatype);785

6. Component Wrapping Issues786

6.1. Code Reuse and the Case for Wrapping787

Using computer models to simulate, predict and understand earth surface788

processes is not a new idea. This means that many models exist, some of789

which are fairly sophisticated, comprehensive and well-tested. The difficulty790

with reusing these models in new contexts or linking them to other models791

typically has less to do with how they are implemented and more to do with792

the interface through which they are called. (And to some extent, the language793

they are written in.) For a small or simple model, it may take little effort794

to rewrite the model in a preferred language and with a particular interface.795

However, rewriting large models is very time-consuming and error prone. In796

addition, most large models are under continual development and a rewritten797

version will not see the benefits of future improvements. Given these facts,798

it becomes clear that in order for code reuse to be practical, we need (1) a799

language interoperability tool, so that components dont need to be converted800

to a different language and (2) a wrapping procedure that allows us to provide801

existing code with a new calling interface. As suggested by its name, and the802

fact that it applies to the “outside (interface) of a component vs. its “inside803

(implementation), wrapping tends to be noninvasive and is a practical way to804

convert existing models into components.805

6.2. Wrapping for Object-Oriented Languages806

As mentioned previously, component-based programming is essentially object-807

oriented programming with the addition of a framework. If a model has been808

written as a class, then it is relatively straight-forward to modify the definition809

of this class so that it exposes a particular model-coupling interface. This could810

be done by adding new methods (member functions) that call existing ones or811

by modifying the existing methods. Each function in the interface has access812

to all of the state variables (data members) without passing them explicitly, as813

well as all of the other interface functions. In object-oriented languages it is814

common to distinguish between private methods that are intended for internal815

use by the model object and public methods that are to be used by callers and816

21

which may comprise one or more interfaces. (Some languages, like Java, make817

this part of a methods declaration.)818

In order for this model object to be used as a component in a CCA-compliant819

framework like Ccaffeine, it must also be “wrapped by a CCA implementation820

file (or IMPL file). The CCA tool chain has tools like Babel and Bocca (de-821

scribed previously) that are used to auto-generate an IMPL-file template. For a822

model that is written in an object-oriented and Babel-supported language (e.g.,823

C++, Python or Java), the IMPL file needs to do little more than add interface824

functions like setServices and releaseServices that allow the component to com-825

municate with and be instantiated by the framework. The interface functions826

that are used for inter-component communication (i.e. passing data and IRF)827

can simply be inherited from the model class. Inheritance is a standard mecha-828

nism in object-oriented languages that allows one interface (set of methods) to829

be extended or overridden by another. Note that the IMPL file may have its830

own Initialize() function that first gets the required CCA ports and then calls831

the Initialize() function in the models interface. But the function that gets the832

CCA ports can simply be another function in the models interface that is only833

used in this context. Similarly, the IMPL file may have a Finalize() function834

that calls the Finalize() function of the model and then calls a function to release835

the CCA ports that are no longer needed. It is desirable to keep the IMPL files836

as clean as possible, which means adding some CCA-specific functions to the837

models interface. For example, a CSDMS component would have (1) functions838

to get and release the required CCA ports, (2) a function to create a tabbed-839

dialog (using CCAs so-called parameter ports) and (3) a function that prints a840

language-specific traceback to stdout if an exception occurs during a model run.841

6.3. Wrapping for Procedural Languages842

Languages such as C or Fortran (up to 2003) do not provide object-oriented843

primitives for encapsulation of data and functionality. Because component-844

based programming requires such encapsulation, the CCA provides a means845

to produce object-oriented software even in languages that do not support it846

directly. We briefly overview the mechanism for creating components based on847

functionality implemented in a procedural language (e.g., an existing library or848

model).849

A class in OO terminology encapsulates some set of related functions and850

associated data. To wrap a set of library functions, one can create a SIDL in-851

terface or class that contains a set of methods whose implementations call the852

legacy functions. The new interface does not have to mirror existing functions853

exactly, presenting a nonintrusive opportunity for redesigning the publicly acces-854

sible interfaces presented by legacy software. The creation of class or component855

wrappers also enables the careful definition of namespaces, thus reducing po-856

tential conflicts when integrating with other classes or components. The SIDL857

definitions are processed by Babel to generate IMPL files in the language of the858

code being wrapped. The calls to the legacy library can then be added either859

manually or by a tool, depending on how closely the SIDL interface follows the860

original library interface.861

22

Function argument types that appear in the SIDL definition can be handled862

in two ways: by using a SIDL type or by specifying them as opaque. SIDL863

already supports most basic types and different kinds of arrays found in the864

target languages. Any user defined types (e.g., structs in C, derived types in865

Fortran) must have SIDL definitions or be passed as opaques. Because opaques866

are not accessible from components implemented in a different language, they867

are rarely used. Model state variables that must be shared among components868

can be handled in a couple of different ways. They can be encapsulated in a869

SIDL class and accessed through get/set methods (e.g., as described in Sec. ??.870

Recently Babel has added support for defining structs in SIDL, whose data871

members can be accessed directly from multiple languages.872

6.4. Automated Wrapping via Annotation873

Once a model has been written so that it provides entry points to its func-874

tionality (whether it be an IRF interface, or otherwise) it can be wrapped as a875

component to be used within a modeling framework. The precise steps needed876

to do this depend on the framework. However, if the model contains sufficiently877

descriptive metadata, it should be easily imported into a modeling framework.878

Because modeling frameworks may change over time, it is important to pro-879

vide metadata within a model so that it does not tie itself to any one framework.880

If a framework injects too much of itself into a model, the model becomes re-881

liant on that framework. It should be that the framework relies on its set of882

models, not the other way around. To help with this problem, a key step is to883

annotate the model source code so that the required metadata stays with the884

model. Using special keywords within comment blocks, a programmer is able to885

provide basic metadata for a model and its variables that is closely tied to the886

model but doesnt affect how the model itself is written. For example, metadata887

for a variable could follow its declaration in a comment that describes its units,888

valid range of values and whether it is used for input or output. Another an-889

notation could identify a particular function as being the models initialize, run,890

or finalize step. This type of annotation makes it possible to write utilities that891

parse the source code, extract the metadata and then automatically generate892

whatever component interface is required for compatibility with other models.893

In fact, this metadata could be automatically extracted and used for a wide894

range of purposes such as generating documentation, or providing an overview895

of the state of a communitys models.896

6.5. Guidelines for Model Developers897

There are several relatively simple things that developers can do so that it898

becomes much easier to create a reuseable, plug-and-play component from their899

model source code. Given the large number of models that are contributed to900

the CSDMS project, it is much more efficient for model developers to follow901

these guidelines and thereby “meet us halfway than for CSDMS staff to make902

these changes after code has been contributed. This can be thought of as a form903

of “load balancing.904

23

6.5.1. Programming Language and License905

• Write code in a Babel-supported language (C, C++, Fortran, Java, Python).906

• If code is in MatLab or IDL, use tools like I2PY to convert it to Python.907

Python (with the numpy, scipy and matplotlib packages) provides a free908

work-alike to MatLab with similar performance.909

• Make sure that code can be compiled with an open-source compiler (e.g.910

gcc, gfortran).911

• Specify what type of open-source license applies to your code. Rosen912

(2004) is a good, online and open-source book that explains open source li-913

censing in detail. CSDMS requires that contributions have an open source914

license type that is compliant with the standard set forth by the Open915

Source Initiative (OSI).916

6.5.2. Model Interface917

• Refactor the code to have the basic IRF interface (see above).918

• If code is in C or Fortran, add a model name prefix to all interface functions919

to establish a namespace (e.g. ROMS Initialize()) . C code can alternately920

be compiled as C++.921

• Write Initialize() and Run Until() functions that will work whether the922

component is used as a driver or nondriver.923

• Provide getter and setter functions (see above).924

• Provide functions that describe input and output exchange items (see925

above).926

• Use descriptive function names (e.g. Update This Variable).927

6.5.3. State Variables928

• Decide on an appropriate set of state variables to be maintained by the929

component and made available to callers.930

• Attempt to minimize data transfer between components (as discussed931

above).932

• Use descriptive variable names.933

• Carefully track each variables units.934

24

6.5.4. Input and Output Files935

• Do not hardwire configuration settings in the code; read them from a936

configuration file (text).937

• Do not use hardwired input filenames.938

• Read configuration settings from text files (often in Initialize()). Do not939

prompt for command-line input. If a model has a GUI, write code so it940

can be bypassed; use the GUI to create a configuration file.941

• Design code to allow separate input and output directories that are read942

from the configuration file. (This allows many users to use the same input943

data without making copies (e.g. test cases).) It is frequently helpful to944

include a case prefix (scenario) and a site prefix (geographic name) and945

use them to construct default output filenames.946

• Establish a namespace for configuration files (e.g. ROMS input.txt vs.947

input.txt).948

• If large arrays are to be stored in files, save them as binary vs. text. (e.g.949

this is the case with netCDF)950

• Provide self-test functions or unit tests and test data. One self-test could951

simply be a “sanity check that uses trivial (perhaps hard-coded) input952

data. When analytic solutions are available, these make excellent self-953

tests because they can also be used to check the accuracy and stability of954

the numerical methods.955

6.5.5. Documentation956

• Help CSDMS to provide a standardized, HTML help page.957

• Help CSDMS to provide a standaridized, tabbed-dialog GUI.958

• Make liberal use of comments in the code.959

7. The CSDMS Modeling Tool (CMT)960

As explained in section ??, Ccaffeine is a CCA-compliant framework for961

connecting components to create applications. From a users point of view,962

Ccaffeine itself is a low-level tool that executes a sequence of commands in963

a Ccaffeine script. The (natural language) commands in Caffeines scripting964

language are fairly straightforward so it is not difficult for a programmer to965

write one of these scripts. For many people, however, using a graphical user966

interface (GUI) is preferable because it means they dont have to learn the syntax967

of the scripting language. A GUI also provides users with a natural, visual968

representation of the connected components as boxes with buttons connected by969

wires. It can also prevent common scripting errors and offer a variety of other970

25

convenience features. The CCA Forum developed such a GUI, called Ccafe-971

GUI, that presented components as boxes in a palette that could be moved972

into an arena (workspace) and connected by wires. It also allowed component973

configurations and settings to be saved in BLD files and instantly reloaded974

later. Another key feature of this GUI is that, as a lightweight and platform-975

independent tool written in Java, it could be installed and used on any computer976

with Java support to create a Ccaffeine script. This script could then be sent977

to a remote, possibly high-performance computer for execution.978

While the Ccafe-GUI was certainly useful, the CSDMS project realized that979

it could be improved and extended it in numerous ways to make it more pow-980

erful and more user-friendly. In addition, these changes would not only serve981

the CSDMS community but could be shared back with the CCA community.982

That is, the new GUI works with any CCA-compliant components, not just983

CSDMS components. The new version is called CMT (CSDMS Modeling Tool).984

Significant new features of CMT 1.5 include:985

• Integration with a powerful visualization tool called VisIt (see below)986

• New, “wireless paradigm for connecting components (see below)987

• A login dialog that prompts users for remote server login information988

• Job management tools that are able to submit jobs to processors of a989

cluster990

• “Launch and go: launch a model run on a remote server, then shut down991

the GUI992

• New File menu entry: Import Example Configuration993

• A Help menu with numerous help documents and links to websites994

• Ability to submit bug reports to CSDMS995

• Ability to do file transfers to and from a remote server996

• Data transfer to and from remote server via SSH tunneling997

• A Help button in tabbed dialogs to launch component-specific HTML help998

• Support for droplists and mouse-over help in tabbed dialogs999

• Support for custom project lists (e.g. projects not yet ready for release)1000

• A separate “driver palette above the component palette1001

• Support for numerous user preferences, many relating to appearance1002

• Extensive cross-platform testing and “bulletproofing1003

26

As mentioned above, the CMT provides integrated visualization using VisIt.1004

VisIt (http://wci.llnl.gov/codes/visit) is an open-source, interactive, parallel vi-1005

sualization and graphical analysis tool for viewing scientific data. It was devel-1006

oped by the Department of Energy (DOE) Advanced Simulation and Comput-1007

ing Initiative (ASCI) to visualize and analyze the results of simulations ranging1008

from kilobytes to terabytes. VisIt was designed so that users can install a client1009

version on their PC that works together with a server version installed on a1010

high-performance computer or cluster. The server version makes use of multi-1011

ple processors to speed up rendering of large data sets and then sends graphical1012

output back to the client version. VisIt supports about five dozen file formats1013

and provides a rich set of visualization features, including the ability to make1014

movies from time-varying databases. The CMT provides help on using VisIt in1015

its Help menu. CSDMS uses a service component to provide other components1016

with the ability to write their output to netCDF files that can be visualized1017

with VisIt. Output can be 0D, 1D, 2D or 3D data evolving in time, such as1018

(1) a time series (e.g. a hydrograph), (2) a profile series (e.g. a soil moisture1019

profile), (3) a 2D grid stack (e.g. water depth), (4) a 3D cube stack or (5) a1020

scatter plot of XYZ triples.1021

Another innovative feature of CMT 1.5 is that it allows users to toggle1022

between the original, wired mode and a new wireless mode. CSDMS found1023

that displaying connections between components with the use of wires (i.e. red1024

lines) did not scale well to configurations that contained several components with1025

multiple ports. In wireless mode, a component that is dragged from the palette1026

to the arena appears to broadcast what it can provide (i.e. CCA provides ports)1027

to the other components in the arena (using a concentric circle animation). Any1028

components in the arena that need to use that kind of port get automatically1029

linked to the new one and this is indicated through the use of unique, matching1030

colors. In cases where two components in the arena have the same uses port1031

but need to be connected to different providers, wires can still be used.1032

CSDMS continues to make usability improvements to the CMT and used the1033

tool to teach a graduate-level course on surface process modeling at the Univer-1034

sity of Colorado, Boulder in 2010. Several features of the CMT make it ideal1035

for teaching, including (1) the ability to save prebuilt component configurations1036

and their settings in BLD files, (2) the File ¿¿ Import Example Configuration1037

feature, (3) a standardized, HTML help page for each component, (4) a uni-1038

form, tabbed-dialog GUI for each component, (5) rapid comparison of different1039

approaches by swapping one component for another, (6) the simple installation1040

procedure and (7) the ability to use remote resources.1041

8. Providing Components with a Uniform Help System and GUI1042

Beyond the usual software engineering definition of a component, a useful1043

component will be one that also comes bundled with metadata that that de-1044

scribes the component and the underlying model that it is build around. While1045

creating a component as described in the preceding sections is important, it is1046

27

figures/CMT_Tool_Screenshot.pdf

Figure 2: CMT screenshot.

of equal importance to have a well documented component that an end user is1047

able to easily use.1048

With a plug-and-play framework where users easily connect, interchange,1049

and run coupled models, there is a tendency for a user to treat components1050

as black boxes and ignore the details of the foundation that each component1051

was built upon. For instance, if a user is unaware of the assumptions that1052

underlie a model, that user may couple two components that do not make sense1053

coupling because of the physics of each model, or attempt to use a component1054

in a situation that it was not intended to be used in. To combat this problem1055

components are bundled with HTML help documents, which are easily accessible1056

through the CMT, that describe the component and the model that it wraps.1057

These documents include:1058

• an extended model description (along with references)1059

28

• listing and brief description of the components uses and provides ports1060

• the main equations of the model1061

• sample input and output1062

• acknowledgement of the model developer(s)1063

A complete component also comes with metadata supplied in a more struc-1064

tured format. Components include XML description files that describe their1065

user-editable input variables. These description files contain a series of XML1066

elements that contain detailed information about each variable including a de-1067

fault value, range of acceptable values, short and long descriptions, units, and1068

data type.1069

<entry name=velocity>1070

<label>River velocity</label>1071

<help>Depth-averaged velocity at the river mouth</help>1072

<default>2</default>1073

<type>Float</type>1074

<range>1075

<min>0</min>1076

<max>5</max>1077

</range>1078

<units>m/s</units>1079

</entry>1080

Using this XML description, the CMT automatically generates a graphical1081

user interface (in the form of tabbed dialogs) for each CSDMS component.1082

Despite each model’s input files being drastically different, this provides CMT1083

users with a uniform interface across all components. Furthermore, the GUI1084

checks user input for errors and provides easily accessible help within the same1085

environment — none of which is available in the batch interface of most models.1086

Nearly every model gathers initial settings from an input file and then runs1087

without user intervention. Ultimately, any user interface that wraps a model1088

must generate this input file for the component to read as part of its initialization1089

step. The above XML description along with a template input file allows this1090

to happen. Once input is gathered from the user, a model-specific input file1091

is created based upon a template input file provided with each component. A1092

valid input file is created based on $-based substitutions in this template file.1093

Instead of actual values, the template file contains substitution placeholders of1094

the form $identifier. Each identifier corresponds to an entry name in the1095

XML description file and, upon substitution, is replaced by the value gathered1096

from an external user interface (the CMT GUI, for instance).1097

29

9. Framework Services: “Built-in” Tools That Any Component Can1098

Use1099

There are certain low-level tools or utilities that developers (e.g., CSDMS1100

staff) may wish to make available so that any component (or component devel-1101

oper) can use them without requiring any action from a user. These tools can be1102

encapsulated within special components called service components that are au-1103

tomatically instantiated by a CCA framework on startup. The services/methods1104

provided by these components are then called framework services. Unlike other1105

components, which users may assemble graphically into larger applications,1106

users do not interact with service components directly. However, a component1107

developer can make calls to the methods of service components through service1108

ports. The use of service components allows developers to maintain code for a1109

shared functionality in a single place and to make that functionality available1110

to all components regardless of the language they are written in (or which ad-1111

dress space they are in). CSDMS uses service components for tasks such as (1)1112

providing component output variables in a form needed by another component1113

(e.g., spatial regridding, interpolation in time, unit conversion) and (2) writing1114

component output to a standard format such as netCDF.1115

Any CCA component can be “promoted to a service component. A developer1116

simply needs to add lines to its setServices() method that register it as a frame-1117

work service. CCA provides a special port for this called gov.cca.ports.ServiceRegistry1118

with three methods called: addService(), addSingletonService() and removeSer-1119

vice(). If a developer then wants another component to be able to use this1120

framework service, a call to the gov.cca.Services.getPort() method must be1121

added within its setServices() method. (A similar call must be added in order1122

to use CCA parameter ports and ports provided by other types of components.)1123

Note that the setServices() method is defined as part of the gov.cca.Component1124

interface.1125

CCA components are designed for use within a CCA-compliant framework1126

(like Ccaffeine) and may make use of service components. But what if we1127

want to use these components outside of a CCA framework? One option is to1128

encapsulate a set of functionality (e.g., a service component) in a SIDL class1129

and then “promote this class to (SIDL) component status through inheritance1130

and by adding only framework-specific methods like setServices(). (Note that a1131

CCA framework is the entity that calls a components setServices() method as1132

described in Sec. ??.) This approach can be used to provide both component1133

and non-component versions of the class. Compiling the non-component version1134

within a bocca project generates a library file that we can link against or, in1135

the case of Python, a module that we can import.1136

10. Conclusions1137

• Optimal granularity is the physical process level.1138

• Advantages of “community cloud” approach1139

30

• Advantages of Python support1140

Bocca, VisIt, ArcGIS scripting, Matlab work-alike, etc.1141

• Pros and cons of building on open-source1142

• CCA need not be invasive1143

• Use of standards like netCDF, XML (or XUL), CCA, SIDL, HTML, etc.1144

Mention Ugrid Interoperability group working on a netCDF standard for1145

unstructured grids (ugrids)1146

Mention OGC, GDAL, CUAHSI-HIS (& WML), etc. ?1147

• Using toolkits like PETSc whenever possible1148

• Multiple paths to parallelism1149

• Components that retrieve data from web services (cite other paper, this1150

issue)1151

• Automated wrapping via annotation ?1152

Acknowledgements1153

CSDMS gratefully acknowledges major funding through a cooperative agree-1154

ment with the National Science Foundation (EAR 0621695). Additional work1155

was supported by the Office of Advanced Scientific Computing Research, Office1156

of Science, U.S. Dept. of Energy, under Contracts DE-AC02-06CH11357 and1157

DE-FC-0206-ER-25774.1158

31

