#include "cppdefs.h" SUBROUTINE def_rst (ng) ! !svn $Id: def_rst.F 331 2009-03-12 00:34:51Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine creates restart NetCDF file, it defines its ! ! dimensions, attributes, and variables. ! ! ! #if defined PERFECT_RESTART && defined WRITE_WATER && defined MASKING ! Currently, perfect restart is not compatible with writing ! ! only water points. ! ! ! #endif !======================================================================= ! USE mod_param USE mod_parallel #ifdef FOUR_DVAR USE mod_fourdvar #endif USE mod_iounits USE mod_ncparam USE mod_netcdf USE mod_scalars #if defined SEDIMENT || defined BBL_MODEL USE mod_sediment #endif ! USE def_var_mod, ONLY : def_var ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! logical :: Ldefine, got_var(NV) integer, parameter :: Natt = 25 integer :: i, j, nvd3, nvd4, nvd5 integer :: recdim, status, varid integer :: DimIDs(31) integer :: r2dgrd(4), ru2dgrd(4), rv2dgrd(4) integer :: sr2dgrd(3), su2dgrd(3), sv2dgrd(3) integer :: sr3dgrd(4), su3dgrd(4), sv3dgrd(4) integer :: t2dgrd(4), u2dgrd(4), v2dgrd(4) integer :: Vsize(4) integer :: def_dim #ifdef SOLVE3D integer :: itrc integer :: k3dgrd(5), t3dgrd(5) integer :: r3dgrd(4), ru3dgrd(5), rv3dgrd(5) integer :: u3dgrd(5), v3dgrd(5), w3dgrd(4) #endif real(r8) :: Aval(6) character (len=80) :: Vinfo(Natt) character (len=80) :: fname, ncname ! SourceFile='def_rst.F' ! !======================================================================= ! Create a new restart NetCDF file. !======================================================================= ! ! Activate creation of restart NetCDF file. Create a new restart ! file if during a restart run, the restart filename "RSTname" ! is different than the initial filename "INIname". ! IF (exit_flag.ne.NoError) RETURN ncname=RSTname(ng) Ldefine=.FALSE. IF (((nrrec(ng).eq.0).and.(iic(ng).eq.ntstart(ng))).or. & & ((nrrec(ng).ne.0).and. & & (TRIM(ncname).ne.TRIM(INIname(ng))))) THEN Ldefine=.TRUE. END IF ! DEFINE : IF (Ldefine) THEN CALL netcdf_create (ng, iNLM, TRIM(ncname), ncRSTid(ng)) IF (exit_flag.ne.NoError) THEN IF (Master) WRITE (stdout,10) TRIM(ncname) RETURN END IF ! !----------------------------------------------------------------------- ! Define file dimensions. !----------------------------------------------------------------------- ! DimIDs=0 ! status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xi_rho', & & IOBOUNDS(ng)%xi_rho, DimIDs( 1)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xi_u', & & IOBOUNDS(ng)%xi_u, DimIDs( 2)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xi_v', & & IOBOUNDS(ng)%xi_v, DimIDs( 3)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xi_psi', & & IOBOUNDS(ng)%xi_psi, DimIDs( 4)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'eta_rho', & & IOBOUNDS(ng)%eta_rho, DimIDs( 5)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'eta_u', & & IOBOUNDS(ng)%eta_u, DimIDs( 6)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'eta_v', & & IOBOUNDS(ng)%eta_v, DimIDs( 7)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'eta_psi', & & IOBOUNDS(ng)%eta_psi, DimIDs( 8)) IF (exit_flag.ne.NoError) RETURN #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xy_rho', & & IOBOUNDS(ng)%xy_rho, DimIDs(17)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xy_u', & & IOBOUNDS(ng)%xy_u, DimIDs(18)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xy_v', & & IOBOUNDS(ng)%xy_v, DimIDs(19)) IF (exit_flag.ne.NoError) RETURN #endif #ifdef SOLVE3D # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xyz_rho', & & IOBOUNDS(ng)%xy_rho*N(ng), DimIDs(20)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xyz_u', & & IOBOUNDS(ng)%xy_u*N(ng), DimIDs(21)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xyz_v', & & IOBOUNDS(ng)%xy_v*N(ng), DimIDs(22)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xyz_w', & & IOBOUNDS(ng)%xy_rho*(N(ng)+1), DimIDs(23)) IF (exit_flag.ne.NoError) RETURN # endif status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'N', & & N(ng), DimIDs( 9)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 's_rho', & & N(ng), DimIDs( 9)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 's_w', & & N(ng)+1, DimIDs(10)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'tracer', & & NT(ng), DimIDs(11)) IF (exit_flag.ne.NoError) RETURN # ifdef SEDIMENT status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'Nbed', & & Nbed, DimIDs(16)) IF (exit_flag.ne.NoError) RETURN # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'xybed', & & IOBOUNDS(ng)%xy_rho*Nbed, DimIDs(24)) IF (exit_flag.ne.NoError) RETURN # endif # endif # ifdef ECOSIM status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'Nphy', & & Nphy, DimIDs(25)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'Nbac', & & Nbac, DimIDs(26)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'Nfec', & & Nfec, DimIDs(28)) IF (exit_flag.ne.NoError) RETURN # endif #endif status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'boundary', & & 4, DimIDs(14)) IF (exit_flag.ne.NoError) RETURN #ifdef FOUR_DVAR status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'Nstate', & & NstateVar(ng), DimIDs(29)) IF (exit_flag.ne.NoError) RETURN #endif #ifdef PERFECT_RESTART status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'two', & & 2, DimIDs(30)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iNLM, ncRSTid(ng), ncname, 'three', & & 3, DimIDs(31)) IF (exit_flag.ne.NoError) RETURN #endif status=def_dim(ng, iNLM, ncRSTid(ng), ncname, & & TRIM(ADJUSTL(Vname(5,idtime))), & & nf90_unlimited, DimIDs(12)) IF (exit_flag.ne.NoError) RETURN recdim=DimIDs(12) ! ! Set number of dimensions for output variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) nvd3=2 nvd4=2 nvd5=2 #else nvd3=3 nvd4=4 nvd5=5 #endif ! ! Define dimension vectors for staggered tracer type variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) t2dgrd(1)=DimIDs(17) t2dgrd(2)=DimIDs(12) sr2dgrd(1)=DimIDs(17) sr2dgrd(2)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs(20) t3dgrd(2)=DimIDs(12) r3dgrd(1)=DimIDs(20) r3dgrd(2)=DimIDs(12) # endif #else t2dgrd(1)=DimIDs( 1) t2dgrd(2)=DimIDs( 5) sr2dgrd(1)=DimIDs( 1) sr2dgrd(2)=DimIDs( 5) sr2dgrd(3)=DimIDs(12) # ifdef PERFECT_RESTART t2dgrd(3)=DimIDs(31) t2dgrd(4)=DimIDs(12) # else t2dgrd(3)=DimIDs(12) # endif # ifdef SOLVE3D t3dgrd(1)=DimIDs( 1) t3dgrd(2)=DimIDs( 5) t3dgrd(3)=DimIDs( 9) r3dgrd(1)=DimIDs( 1) r3dgrd(2)=DimIDs( 5) r3dgrd(3)=DimIDs( 9) # ifdef PERFECT_RESTART t3dgrd(4)=DimIDs(30) t3dgrd(5)=DimIDs(12) # else t3dgrd(4)=DimIDs(12) # endif r3dgrd(4)=DimIDs(12) # endif #endif ! ! Define dimension vectors for staggered u-momemtum type variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) u2dgrd(1)=DimIDs(18) u2dgrd(2)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs(21) u3dgrd(2)=DimIDs(12) # endif #else u2dgrd(1)=DimIDs( 2) u2dgrd(2)=DimIDs( 6) # ifdef PERFECT_RESTART u2dgrd(3)=DimIDs(31) u2dgrd(4)=DimIDs(12) # else u2dgrd(3)=DimIDs(12) # endif # ifdef SOLVE3D u3dgrd(1)=DimIDs( 2) u3dgrd(2)=DimIDs( 6) u3dgrd(3)=DimIDs( 9) # ifdef PERFECT_RESTART u3dgrd(4)=DimIDs(30) u3dgrd(5)=DimIDs(12) # else u3dgrd(4)=DimIDs(12) # endif # endif #endif ! ! Define dimension vectors for staggered v-momemtum type variables. ! #if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) v2dgrd(1)=DimIDs(19) v2dgrd(2)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs(22) v3dgrd(2)=DimIDs(12) # endif #else v2dgrd(1)=DimIDs( 3) v2dgrd(2)=DimIDs( 7) # ifdef PERFECT_RESTART v2dgrd(3)=DimIDs(31) v2dgrd(4)=DimIDs(12) # else v2dgrd(3)=DimIDs(12) # endif # ifdef SOLVE3D v3dgrd(1)=DimIDs( 3) v3dgrd(2)=DimIDs( 7) v3dgrd(3)=DimIDs( 9) # ifdef PERFECT_RESTART v3dgrd(4)=DimIDs(30) v3dgrd(5)=DimIDs(12) # else v3dgrd(4)=DimIDs(12) # endif # endif #endif #ifdef PERFECT_RESTART ! ! Define dimension vectors for RHS free-surface equation. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) r2dgrd(1)=DimIDs(17) r2dgrd(2)=DimIDs(12) # else r2dgrd(1)=DimIDs( 1) r2dgrd(2)=DimIDs( 5) r2dgrd(3)=DimIDs(30) r2dgrd(4)=DimIDs(12) # endif ! ! Define dimension vectors for RHS u-momemtum equation. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) ru2dgrd(1)=DimIDs(18) ru2dgrd(2)=DimIDs(12) # ifdef SOLVE3D ru2dgrd(1)=DimIDs(21) ru2dgrd(2)=DimIDs(12) # endif # else ru2dgrd(1)=DimIDs( 2) ru2dgrd(2)=DimIDs( 6) ru2dgrd(3)=DimIDs(30) ru2dgrd(4)=DimIDs(12) # ifdef SOLVE3D ru3dgrd(1)=DimIDs( 2) ru3dgrd(2)=DimIDs( 6) ru3dgrd(3)=DimIDs(10) ru3dgrd(4)=DimIDs(30) ru3dgrd(5)=DimIDs(12) # endif # endif ! ! Define dimension vectors for RHS v-momemtum equation. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) rv2dgrd(1)=DimIDs(19) rv2dgrd(2)=DimIDs(12) # ifdef SOLVE3D rv3dgrd(1)=DimIDs(22) rv3dgrd(2)=DimIDs(12) # endif # else rv2dgrd(1)=DimIDs( 3) rv2dgrd(2)=DimIDs( 7) rv2dgrd(3)=DimIDs(30) rv2dgrd(4)=DimIDs(12) # ifdef SOLVE3D rv3dgrd(1)=DimIDs( 3) rv3dgrd(2)=DimIDs( 7) rv3dgrd(3)=DimIDs(10) rv3dgrd(4)=DimIDs(30) rv3dgrd(5)=DimIDs(12) # endif # endif #endif #ifdef SOLVE3D ! ! Define dimension vector for staggered w-momemtum type variables. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) w3dgrd(1)=DimIDs(23) w3dgrd(2)=DimIDs(12) # ifdef PERFECT_RESTART k3dgrd(1)=DimIDs(23) k3dgrd(2)=DimIDs(12) # endif # else w3dgrd(1)=DimIDs( 1) w3dgrd(2)=DimIDs( 5) w3dgrd(3)=DimIDs(10) w3dgrd(4)=DimIDs(12) # ifdef PERFECT_RESTART k3dgrd(1)=DimIDs( 1) k3dgrd(2)=DimIDs( 5) k3dgrd(3)=DimIDs(10) k3dgrd(4)=DimIDs(30) k3dgrd(5)=DimIDs(12) # endif # endif ! ! Define dimension vector for sediment, radiation stress variables. ! # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) su2dgrd(1)=DimIDs(18) su2dgrd(2)=DimIDs(12) sv2dgrd(1)=DimIDs(19) sv2dgrd(2)=DimIDs(12) sr3dgrd(1)=DimIDs(24) sr3dgrd(2)=DimIDs(12) su3dgrd(1)=DimIDs(21) su3dgrd(2)=DimIDs(12) sv3dgrd(1)=DimIDs(22) sv3dgrd(2)=DimIDs(12) # else su2dgrd(1)=DimIDs( 2) su2dgrd(2)=DimIDs( 6) su2dgrd(3)=DimIDs(12) sv2dgrd(1)=DimIDs( 3) sv2dgrd(2)=DimIDs( 7) sv2dgrd(3)=DimIDs(12) sr3dgrd(1)=DimIDs( 1) sr3dgrd(2)=DimIDs( 5) sr3dgrd(3)=DimIDs(16) sr3dgrd(4)=DimIDs(12) su3dgrd(1)=DimIDs( 2) su3dgrd(2)=DimIDs( 6) su3dgrd(3)=DimIDs( 9) su3dgrd(4)=DimIDs(12) sv3dgrd(1)=DimIDs( 3) sv3dgrd(2)=DimIDs( 7) sv3dgrd(3)=DimIDs( 9) sv3dgrd(4)=DimIDs(12) # endif #endif ! ! Initialize unlimited time record dimension. ! tRSTindx(ng)=0 ! ! Initialize local information variable arrays. ! DO i=1,Natt DO j=1,LEN(Vinfo(1)) Vinfo(i)(j:j)=' ' END DO END DO DO i=1,6 Aval(i)=0.0_r8 END DO ! !----------------------------------------------------------------------- ! Define time-recordless information variables. !----------------------------------------------------------------------- ! CALL def_info (ng, iNLM, ncRSTid(ng), ncname, DimIDs) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! Define time-varying variables. !----------------------------------------------------------------------- #ifdef PERFECT_RESTART ! ! Define time-stepping indices. ! # ifdef SOLVE3D Vinfo( 1)='nstp' Vinfo( 2)='3D equations time level index, nstp' status=def_var(ng, iNLM, ncRSTid(ng), varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)='nrhs' Vinfo( 2)='3D equations time level index, nrhs' status=def_var(ng, iNLM, ncRSTid(ng), varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)='nnew' Vinfo( 2)='3D equations time level index, nnew' status=def_var(ng, iNLM, ncRSTid(ng), varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN # endif Vinfo( 1)='kstp' Vinfo( 2)='3D equations time level index, kstp' status=def_var(ng, iNLM, ncRSTid(ng), varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)='krhs' Vinfo( 2)='3D equations time level index, krhs' status=def_var(ng, iNLM, ncRSTid(ng), varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)='knew' Vinfo( 2)='3D equations time level index, knew' status=def_var(ng, iNLM, ncRSTid(ng), varid, nf90_int, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN #endif ! ! Define model time. ! Vinfo( 1)=Vname(1,idtime) Vinfo( 2)=Vname(2,idtime) IF (INT(time_ref).eq.-2) THEN Vinfo( 3)='seconds since 1968-05-23 00:00:00 GMT' Vinfo( 4)='gregorian' ELSE IF (INT(time_ref).eq.-1) THEN Vinfo( 3)='seconds since 0001-01-01 00:00:00' Vinfo( 4)='360_day' ELSE IF (INT(time_ref).eq.0) THEN Vinfo( 3)='seconds since 0001-01-01 00:00:00' Vinfo( 4)='julian' ELSE IF (time_ref.gt.0.0_r8) THEN WRITE (Vinfo( 3),'(a,1x,a)') 'seconds since', TRIM(r_text) Vinfo( 4)='gregorian' END IF Vinfo(14)=Vname(4,idtime) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idtime,ng), & & NF_TYPE, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN #ifdef WET_DRY ! ! Define wet/dry mask on RHO-points. ! Vinfo( 1)=Vname(1,idRwet) Vinfo( 2)=Vname(2,idRwet) Vinfo( 3)=Vname(3,idRwet) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(14)=Vname(4,idRwet) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRwet,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idRwet,ng), & & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN ! ! Define wet/dry mask on U-points. ! Vinfo( 1)=Vname(1,idUwet) Vinfo( 2)=Vname(2,idUwet) Vinfo( 3)=Vname(3,idUwet) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(14)=Vname(4,idUwet) Vinfo(16)=Vname(1,idtime) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUwet,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idUwet,ng), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN ! ! Define wet/dry mask on V-points. ! Vinfo( 1)=Vname(1,idVwet) Vinfo( 2)=Vname(2,idVwet) Vinfo( 3)=Vname(3,idVwet) Vinfo(14)=Vname(4,idVwet) Vinfo(16)=Vname(1,idtime) Vinfo( 9)='land' Vinfo(10)='water' Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVwet,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVwet,ng), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN #endif #if defined SEDIMENT && defined SED_MORPH ! ! Define time-varying bathymetry. ! Vinfo( 1)=Vname(1,idbath) Vinfo( 2)=Vname(2,idbath) Vinfo( 3)=Vname(3,idbath) Vinfo(14)=Vname(4,idbath) Vinfo(16)=Vname(1,idtime) # if !defined PERFECT_RESTART && \ (defined WRITE_WATER && defined MASKING) Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idbath,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idbath,ng), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN #endif ! ! Define free-surface. ! Vinfo( 1)=Vname(1,idFsur) Vinfo( 2)=Vname(2,idFsur) Vinfo( 3)=Vname(3,idFsur) Vinfo(14)=Vname(4,idFsur) Vinfo(16)=Vname(1,idtime) #if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif #endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) #ifdef PERFECT_RESTART status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idFsur,ng), & # ifdef WET_DRY & NF_FRST, nvd4, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) # else & NF_FRST, nvd4, t2dgrd, Aval, Vinfo, ncname) # endif #else status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idFsur,ng), & # ifdef WET_DRY & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) # else & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif #endif IF (exit_flag.ne.NoError) RETURN #ifdef PERFECT_RESTART ! ! Define RHS of free-surface equation. ! Vinfo( 1)=Vname(1,idRzet) Vinfo( 2)=Vname(2,idRzet) Vinfo( 3)=Vname(3,idRzet) Vinfo(14)=Vname(4,idRzet) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idRzet,ng), & & NF_FRST, nvd4, r2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN #endif ! ! Define 2D momentum in the XI-direction. ! Vinfo( 1)=Vname(1,idUbar) Vinfo( 2)=Vname(2,idUbar) Vinfo( 3)=Vname(3,idUbar) Vinfo(14)=Vname(4,idUbar) Vinfo(16)=Vname(1,idtime) #if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif #endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbar,ng),r8) #ifdef PERFECT_RESTART status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idUbar,ng), & & NF_FRST, nvd4, u2dgrd, Aval, Vinfo, ncname) #else status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idUbar,ng), & & NF_FRST, nvd3, u2dgrd, Aval, Vinfo, ncname) #endif IF (exit_flag.ne.NoError) RETURN #ifdef PERFECT_RESTART ! ! Define RHS of 2D momentum equation in the XI-direction. ! Vinfo( 1)=Vname(1,idRu2d) Vinfo( 2)=Vname(2,idRu2d) Vinfo( 3)=Vname(3,idRu2d) Vinfo(14)=Vname(4,idRu2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRu2d,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idRu2d,ng), & & NF_FRST, nvd4, ru2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN #endif ! ! Define 2D momentum in the ETA-direction. ! Vinfo( 1)=Vname(1,idVbar) Vinfo( 2)=Vname(2,idVbar) Vinfo( 3)=Vname(3,idVbar) Vinfo(14)=Vname(4,idVbar) Vinfo(16)=Vname(1,idtime) #if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif #endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbar,ng),r8) #ifdef PERFECT_RESTART status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVbar,ng), & & NF_FRST, nvd4, v2dgrd, Aval, Vinfo, ncname) #else status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVbar,ng), & & NF_FRST, nvd3, v2dgrd, Aval, Vinfo, ncname) #endif IF (exit_flag.ne.NoError) RETURN #ifdef PERFECT_RESTART ! ! Define RHS of 2D momentum equation in the ETA-direction. ! Vinfo( 1)=Vname(1,idRv2d) Vinfo( 2)=Vname(2,idRv2d) Vinfo( 3)=Vname(3,idRv2d) Vinfo(14)=Vname(4,idRv2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRv2d,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idRv2d,ng), & & NF_FRST, nvd4, rv2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN #endif #ifdef SOLVE3D ! ! Define 3D momentum component in the XI-direction. ! Vinfo( 1)=Vname(1,idUvel) Vinfo( 2)=Vname(2,idUvel) Vinfo( 3)=Vname(3,idUvel) Vinfo(14)=Vname(4,idUvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUvel,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idUvel,ng), & & NF_FRST, nvd5, u3dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idUvel,ng), & & NF_FRST, nvd4, u3dgrd, Aval, Vinfo, ncname) # endif IF (exit_flag.ne.NoError) RETURN # ifdef PERFECT_RESTART ! ! Define RHS of 3D momentum equation in the XI-direction. ! Vinfo( 1)=Vname(1,idRu3d) Vinfo( 2)=Vname(2,idRu3d) Vinfo( 3)=Vname(3,idRu3d) Vinfo(14)=Vname(4,idRu3d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRu3d,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idRu3d,ng), & & NF_FRST, nvd5, ru3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif ! ! Define 3D momentum component in the ETA-direction. ! Vinfo( 1)=Vname(1,idVvel) Vinfo( 2)=Vname(2,idVvel) Vinfo( 3)=Vname(3,idVvel) Vinfo(14)=Vname(4,idVvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvel,ng),r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVvel,ng), & & NF_FRST, nvd5, v3dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVvel,ng), & & NF_FRST, nvd4, v3dgrd, Aval, Vinfo, ncname) # endif IF (exit_flag.ne.NoError) RETURN # ifdef PERFECT_RESTART ! ! Define RHS of 3D momentum equation in the ETA-direction. ! Vinfo( 1)=Vname(1,idRv3d) Vinfo( 2)=Vname(2,idRv3d) Vinfo( 3)=Vname(3,idRv3d) Vinfo(14)=Vname(4,idRv3d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idRv3d,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idRv3d,ng), & & NF_FRST, nvd5, rv3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif ! ! Define tracer type variables. ! DO itrc=1,NT(ng) Vinfo( 1)=Vname(1,idTvar(itrc)) Vinfo( 2)=Vname(2,idTvar(itrc)) Vinfo( 3)=Vname(3,idTvar(itrc)) Vinfo(14)=Vname(4,idTvar(itrc)) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),20) 1000.0_r8*Sd50(i,ng) END IF END DO # endif # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) # ifdef PERFECT_RESTART status=def_var(ng, iNLM, ncRSTid(ng), rstTid(itrc,ng), & & NF_FRST, nvd5, t3dgrd, Aval, Vinfo, ncname) # else status=def_var(ng, iNLM, ncRSTid(ng), rstTid(itrc,ng), & & NF_FRST, nvd4, t3dgrd, Aval, Vinfo, ncname) # endif IF (exit_flag.ne.NoError) RETURN END DO ! ! Define density anomaly. ! Vinfo( 1)=Vname(1,idDano) Vinfo( 2)=Vname(2,idDano) Vinfo( 3)=Vname(3,idDano) Vinfo(14)=Vname(4,idDano) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idDano,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idDano,ng), & & NF_FRST, nvd4, r3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef LMD_SKPP ! ! Define depth of surface boundary layer. ! Vinfo( 1)=Vname(1,idHsbl) Vinfo( 2)=Vname(2,idHsbl) Vinfo( 3)=Vname(3,idHsbl) Vinfo(14)=Vname(4,idHsbl) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHsbl,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idHsbl,ng), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # ifdef LMD_BKPP ! ! Define depth of bottom boundary layer. ! Vinfo( 1)=Vname(1,idHbbl) Vinfo( 2)=Vname(2,idHbbl) Vinfo( 3)=Vname(3,idHbbl) Vinfo(14)=Vname(4,idHbbl) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idHbbl,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idHbbl,ng), & & NF_FRST, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # if defined BVF_MIXING || defined LMD_MIXING || \ defined GLS_MIXING || defined MY25_MIXING ! ! Define vertical viscosity coefficient. ! Vinfo( 1)=Vname(1,idVvis) Vinfo( 2)=Vname(2,idVvis) Vinfo( 3)=Vname(3,idVvis) Vinfo(14)=Vname(4,idVvis) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvis,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVvis,ng), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define vertical diffusion coefficient for potential temperature. ! Vinfo( 1)=Vname(1,idTdif) Vinfo( 2)=Vname(2,idTdif) Vinfo( 3)=Vname(3,idTdif) Vinfo(14)=Vname(4,idTdif) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTdif,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idTdif,ng), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef SALINITY ! ! Define vertical diffusion coefficient for salinity. ! Vinfo( 1)=Vname(1,idSdif) Vinfo( 2)=Vname(2,idSdif) Vinfo( 3)=Vname(3,idSdif) Vinfo(14)=Vname(4,idSdif) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSdif,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idSdif,ng), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # endif # if defined PERFECT_RESTART && \ (defined GLS_MIXING || defined MY25_MIXING) ! ! Define turbulent kinetic energy. ! Vinfo( 1)=Vname(1,idMtke) Vinfo( 2)=Vname(2,idMtke) Vinfo( 3)=Vname(3,idMtke) Vinfo(14)=Vname(4,idMtke) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idMtke,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idMtke,ng), & & NF_FRST, nvd5, k3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define turbulent kinetic energy time length scale. ! Vinfo( 1)=Vname(1,idMtls) Vinfo( 2)=Vname(2,idMtls) Vinfo( 3)=Vname(3,idMtls) Vinfo(14)=Vname(4,idMtls) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idMtls,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idMtls,ng), & & NF_FRST, nvd5, k3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define vertical mixing turbulent length scale. ! Vinfo( 1)=Vname(1,idVmLS) Vinfo( 2)=Vname(2,idVmLS) Vinfo( 3)=Vname(3,idVmLS) Vinfo(14)=Vname(4,idVmLS) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmLS,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVmLS,ng), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define turbulent kinetic energy vertical diffusion coefficient. ! Vinfo( 1)=Vname(1,idVmKK) Vinfo( 2)=Vname(2,idVmKK) Vinfo( 3)=Vname(3,idVmKK) Vinfo(14)=Vname(4,idVmKK) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmKK,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVmKK,ng), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef GLS_MIXING ! ! Define turbulent length scale vertical diffusion coefficient. ! Vinfo( 1)=Vname(1,idVmKP) Vinfo( 2)=Vname(2,idVmKP) Vinfo( 3)=Vname(3,idVmKP) Vinfo(14)=Vname(4,idVmKP) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmKP,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVmKP,ng), & & NF_FRST, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # endif # ifdef SEDIMENT # ifdef BEDLOAD ! ! Define Bedload U-direction. ! DO i=1,NST Vinfo( 1)=Vname(1,idUbld(i)) Vinfo( 2)=Vname(2,idUbld(i)) Vinfo( 3)=Vname(3,idUbld(i)) Vinfo(14)=Vname(4,idUbld(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbld(i),ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idUbld(i),ng), & & NF_FRST, nvd3, su2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define Bedload V-direction. ! Vinfo( 1)=Vname(1,idVbld(i)) Vinfo( 2)=Vname(2,idVbld(i)) Vinfo( 3)=Vname(3,idVbld(i)) Vinfo(14)=Vname(4,idVbld(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbld(i),ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idVbld(i),ng), & & NF_FRST, nvd3, sv2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END DO # endif ! ! Define sediment fraction of each size class in each bed layer. ! DO i=1,NST Vinfo( 1)=Vname(1,idfrac(i)) Vinfo( 2)=Vname(2,idfrac(i)) Vinfo( 3)=Vname(3,idfrac(i)) Vinfo(14)=Vname(4,idfrac(i)) Vinfo(16)=Vname(1,idtime) WRITE (Vinfo(19),20) 1000.0_r8*Sd50(i,ng) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idfrac(i),ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idfrac(i),ng), & & NF_FRST, nvd4, sr3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END DO ! ! Define sediment mass of each size class in each bed layer. ! DO i=1,NST Vinfo( 1)=Vname(1,idBmas(i)) Vinfo( 2)=Vname(2,idBmas(i)) Vinfo( 3)=Vname(3,idBmas(i)) Vinfo(14)=Vname(4,idBmas(i)) Vinfo(16)=Vname(1,idtime) WRITE (Vinfo(19),20) 1000.0_r8*Sd50(i,ng) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idBmas(i),ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idBmas(i),ng), & & NF_FRST, nvd4, sr3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END DO ! ! Define sediment properties in each bed layer. ! DO i=1,MBEDP Vinfo( 1)=Vname(1,idSbed(i)) Vinfo( 2)=Vname(2,idSbed(i)) Vinfo( 3)=Vname(3,idSbed(i)) Vinfo(14)=Vname(4,idSbed(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSbed(i),ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idSbed(i),ng), & & NF_FRST, nvd4, sr3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END DO # endif # if defined SEDIMENT || defined BBL_MODEL ! ! define exposed sediment layer properties. Notice that only the ! first four properties (mean grain diameter, mean grain density, ! mean settling velocity, mean critical erosion stress, ! ripple length and ripple height) are written. ! DO i=1,6 Vinfo( 1)=Vname(1,idBott(i)) Vinfo( 2)=Vname(2,idBott(i)) Vinfo( 3)=Vname(3,idBott(i)) Vinfo(14)=Vname(4,idBott(i)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_rho' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idBott(i),ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idBott(i),ng), & & NF_FRST, nvd3, sr2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END DO # endif #endif #ifdef NEARSHORE_MELLOR ! ! Define 2D u-stokes velocity. ! Vinfo( 1)=Vname(1,idU2Sd) Vinfo( 2)=Vname(2,idU2Sd) Vinfo( 3)=Vname(3,idU2Sd) Vinfo(14)=Vname(4,idU2Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idU2Sd,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idU2Sd,ng), & & NF_FRST, nvd3, su2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define 2D v-stokes velocity. ! Vinfo( 1)=Vname(1,idV2Sd) Vinfo( 2)=Vname(2,idV2Sd) Vinfo( 3)=Vname(3,idV2Sd) Vinfo(14)=Vname(4,idV2Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idV2Sd,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idV2Sd,ng), & & NF_FRST, nvd3, sv2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef SOLVE3D ! ! Define 3D u-stokes velocity. ! Vinfo( 1)=Vname(1,idU3Sd) Vinfo( 2)=Vname(2,idU3Sd) Vinfo( 3)=Vname(3,idU3Sd) Vinfo(14)=Vname(4,idU3Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_u' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idU3Sd,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idU3Sd,ng), & & NF_FRST, nvd4, su3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define 3D v-stokes velocity. ! Vinfo( 1)=Vname(1,idV3Sd) Vinfo( 2)=Vname(2,idV3Sd) Vinfo( 3)=Vname(3,idV3Sd) Vinfo(14)=Vname(4,idV3Sd) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING # if defined PERFECT_RESTART Vinfo(24)='_FillValue' Aval(6)=spval # else Vinfo(20)='mask_v' # endif # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idV3Sd,ng),r8) status=def_var(ng, iNLM, ncRSTid(ng), rstVid(idV3Sd,ng), & & NF_FRST, nvd4, sv3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif #endif ! !----------------------------------------------------------------------- ! Leave definition mode. !----------------------------------------------------------------------- ! CALL netcdf_enddef (ng, iNLM, ncname, ncRSTid(ng)) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! Write out time-recordless, information variables. !----------------------------------------------------------------------- ! CALL wrt_info (ng, iNLM, ncRSTid(ng), ncname) IF (exit_flag.ne.NoError) RETURN END IF DEFINE ! !======================================================================= ! Open an existing restart file, check its contents, and prepare for ! appending data. !======================================================================= ! QUERY : IF (.not.Ldefine) THEN ncname=RSTname(ng) ! ! Inquire about the dimensions and check for consistency. ! CALL netcdf_check_dim (ng, iNLM, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Inquire about the variables. ! CALL netcdf_inq_var (ng, iNLM, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Open restart file for read/write. ! CALL netcdf_open (ng, iNLM, ncname, 1, ncRSTid(ng)) IF (exit_flag.ne.NoError) THEN WRITE (stdout,30) TRIM(ncname) RETURN END IF ! ! Initialize logical switches. ! DO i=1,NV got_var(i)=.FALSE. END DO ! ! Scan variable list from input NetCDF and activate switches for ! restart variables. Get variable IDs. ! DO i=1,n_var IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idtime))) THEN got_var(idtime)=.TRUE. rstVid(idtime,ng)=var_id(i) #if defined SEDIMENT && defined SED_MORPH ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idbath))) THEN got_var(idbath)=.TRUE. rstVid(idbath,ng)=var_id(i) #endif #if defined WET_DRY ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRwet))) THEN got_var(idRwet)=.TRUE. rstVid(idRwet,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUwet))) THEN got_var(idUwet)=.TRUE. rstVid(idUwet,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVwet))) THEN got_var(idVwet)=.TRUE. rstVid(idVwet,ng)=var_id(i) #endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idFsur))) THEN got_var(idFsur)=.TRUE. rstVid(idFsur,ng)=var_id(i) #ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRzet))) THEN got_var(idRzet)=.TRUE. rstVid(idRzet,ng)=var_id(i) #endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbar))) THEN got_var(idUbar)=.TRUE. rstVid(idUbar,ng)=var_id(i) #ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRu2d))) THEN got_var(idRu2d)=.TRUE. rstVid(idRu2d,ng)=var_id(i) #endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbar))) THEN got_var(idVbar)=.TRUE. rstVid(idVbar,ng)=var_id(i) #ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRv2d))) THEN got_var(idRv2d)=.TRUE. rstVid(idRv2d,ng)=var_id(i) #endif #ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUvel))) THEN got_var(idUvel)=.TRUE. rstVid(idUvel,ng)=var_id(i) # ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRu3d))) THEN got_var(idRu3d)=.TRUE. rstVid(idRu3d,ng)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvel))) THEN got_var(idVvel)=.TRUE. rstVid(idVvel,ng)=var_id(i) # ifdef PERFECT_RESTART ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRv3d))) THEN got_var(idRv3d)=.TRUE. rstVid(idRv3d,ng)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idDano))) THEN got_var(idDano)=.TRUE. rstVid(idDano,ng)=var_id(i) # ifdef LMD_SKPP ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHsbl))) THEN got_var(idHsbl)=.TRUE. rstVid(idHsbl,ng)=var_id(i) # endif # ifdef LMD_BKPP ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idHbbl))) THEN got_var(idHbbl)=.TRUE. rstVid(idHbbl,ng)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvis))) THEN got_var(idVvis)=.TRUE. rstVid(idVvis,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTdif))) THEN got_var(idTdif)=.TRUE. rstVid(idTdif,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSdif))) THEN got_var(idSdif)=.TRUE. rstVid(idSdif,ng)=var_id(i) # if defined PERFECT_RESTART && \ (defined GLS_MIXING || defined MY25_MIXING) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idMtke))) THEN got_var(idMtke)=.TRUE. rstVid(idMtke,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idMtls))) THEN got_var(idMtls)=.TRUE. rstVid(idMtls,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmLS))) THEN got_var(idVmLS)=.TRUE. rstVid(idVmLS,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmKK))) THEN got_var(idVmKK)=.TRUE. rstVid(idVmKK,ng)=var_id(i) # ifdef GLS_MIXING ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmKP))) THEN got_var(idVmKP)=.TRUE. rstVid(idVmKP,ng)=var_id(i) # endif # endif #endif #if defined NEARSHORE_MELLOR ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idU2Sd))) THEN got_var(idU2Sd)=.TRUE. rstVid(idU2Sd,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idV2Sd))) THEN got_var(idV2Sd)=.TRUE. rstVid(idV2Sd,ng)=var_id(i) # ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idU3Sd))) THEN got_var(idU3Sd)=.TRUE. rstVid(idU3Sd,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idV3Sd))) THEN got_var(idV3Sd)=.TRUE. rstVid(idV3Sd,ng)=var_id(i) # endif #endif END IF #ifdef SOLVE3D DO itrc=1,NT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTvar(itrc)))) THEN got_var(idTvar(itrc))=.TRUE. rstTid(itrc,ng)=var_id(i) END IF END DO # ifdef SEDIMENT DO itrc=1,NST IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idfrac(itrc)))) THEN got_var(idfrac(itrc))=.TRUE. rstVid(idfrac(itrc),ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idBmas(itrc)))) THEN got_var(idBmas(itrc))=.TRUE. rstVid(idBmas(itrc),ng)=var_id(i) # ifdef BEDLOAD ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idUbld(itrc)))) THEN got_var(idUbld(itrc))=.true. rstVid(idUbld(itrc),ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idVbld(itrc)))) THEN got_var(idVbld(itrc))=.true. rstVid(idVbld(itrc),ng)=var_id(i) # endif END IF END DO DO itrc=1,MBEDP IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSbed(itrc)))) THEN got_var(idSbed(itrc))=.TRUE. rstVid(idSbed(itrc),ng)=var_id(i) END IF END DO # endif # if defined SEDIMENT || defined BBL_MODEL DO itrc=1,6 IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idBott(itrc)))) THEN got_var(idBott(itrc))=.TRUE. rstVid(idBott(itrc),ng)=var_id(i) END IF END DO # endif #endif END DO ! ! Check if initialization variables are available in input NetCDF ! file. ! IF (.not.got_var(idtime)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idtime)), & & TRIM(ncname) exit_flag=3 RETURN END IF #if defined SEDIMENT && defined SED_MORPH IF (.not.got_var(idbath)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idbath)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #if defined WET_DRY IF (.not.got_var(idRwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVwet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVwet)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif IF (.not.got_var(idFsur)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idFsur)), & & TRIM(ncname) exit_flag=3 RETURN END IF #ifdef PERFECT_RESTART IF (.not.got_var(idRzet)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRzet)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif IF (.not.got_var(idUbar)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF #ifdef PERFECT_RESTART IF (.not.got_var(idRu2d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRu2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif IF (.not.got_var(idVbar)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF #ifdef PERFECT_RESTART IF (.not.got_var(idRv2d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRv2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF #endif #ifdef SOLVE3D IF (.not.got_var(idUvel)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef PERFECT_RESTART IF (.not.got_var(idRu3d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRu3d)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idVvel)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef PERFECT_RESTART IF (.not.got_var(idRv3d)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idRv3d)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idDano)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idDano)), & & TRIM(ncname) exit_flag=3 RETURN END IF # if defined PERFECT_RESTART && \ (defined GLS_MIXING || defined MY25_MIXING) IF (.not.got_var(idMtke)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idMtke)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idMtls)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idMtls)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVmLS)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVmLS)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVmKK)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVmKK)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef GLS_MIXING IF (.not.got_var(idVmKP)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVmKP)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # endif #endif #if defined NEARSHORE_MELLOR IF (.not.got_var(idU2Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idU2Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idV2Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idV2Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef SOLVE3D IF (.not.got_var(idU3Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idU3Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idV3Sd)) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idV3Sd)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif #endif #ifdef SOLVE3D DO itrc=1,NT(ng) IF (.not.got_var(idTvar(itrc))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idTvar(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # ifdef SEDIMENT DO i=1,NST IF (.not.got_var(idfrac(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idfrac(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idBmas(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idBmas(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef BEDLOAD IF (.not.got_var(idUbld(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idUbld(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbld(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idVbld(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif END DO DO i=1,MBEDP IF (.not.got_var(idSbed(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idSbed(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # endif # if defined SEDIMENT || defined BBL_MODEL DO i=1,6 IF (.not.got_var(idBott(i))) THEN IF (Master) WRITE (stdout,40) TRIM(Vname(1,idBott(i))), & & TRIM(ncname) exit_flag=3 RETURN END IF END DO # endif #endif ! ! Set unlimited time record dimension to current value. ! IF (LcycleRST(ng)) THEN tRSTindx(ng)=0 ELSE tRSTindx(ng)=rec_size END IF END IF QUERY ! 10 FORMAT (/,' DEF_RST - unable to create restart NetCDF file: ',a) 20 FORMAT (1pe11.4,1x,'millimeter') 30 FORMAT (/,' DEF_RST - unable to open restart NetCDF file: ',a) 40 FORMAT (/,' DEF_RST - unable to find variable: ',a,2x, & & ' in restart NetCDF file: ',a) RETURN END SUBROUTINE def_rst