#include "cppdefs.h" #if defined TANGENT || defined TL_IOMS SUBROUTINE tl_def_his (ng, ldef) ! !svn $Id: tl_def_his.F 352 2009-05-29 20:57:39Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine creates tangent linear history NetCDF file, it defines ! ! its dimensions, attributes, and variables. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel # ifdef FOUR_DVAR USE mod_fourdvar # endif USE mod_iounits USE mod_ncparam USE mod_netcdf USE mod_scalars # if defined SEDIMENT_NOT_YET || defined BBL_MODEL_NOT_YET USE mod_sediment # endif ! USE def_var_mod, ONLY : def_var ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng logical, intent(in) :: ldef ! ! Local variable declarations. ! logical :: got_var(NV) integer, parameter :: Natt = 25 integer :: i, j, ifield, itrc, nvd3, nvd4 integer :: recdim, status, varid # ifdef ADJUST_BOUNDARY integer :: IorJdim, brecdim # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS integer :: frecdim # endif integer :: DimIDs(31), t2dgrd(3), u2dgrd(3), v2dgrd(3) # ifdef ADJUST_BOUNDARY integer :: t2dobc(4) # endif integer :: Vsize(4) integer :: def_dim # ifdef SOLVE3D integer :: t3dgrd(4), u3dgrd(4), v3dgrd(4), w3dgrd(4) # ifdef ADJUST_BOUNDARY integer :: t3dobc(5) # endif # ifdef ADJUST_STFLUX integer :: t3dfrc(4) # endif # endif # ifdef ADJUST_WSTRESS integer :: u3dfrc(4), v3dfrc(4) # endif real(r8) :: Aval(6) character (len=80) :: ncname character (len=120) :: Vinfo(Natt) ! SourceFile='tl_def_his.F' ! !----------------------------------------------------------------------- ! Set and report file name. !----------------------------------------------------------------------- ! IF (exit_flag.ne.NoError) RETURN ncname=TLMname(ng) ! IF (Master) THEN IF (ldef) THEN WRITE (stdout,10) TRIM(ncname) ELSE WRITE (stdout,20) TRIM(ncname) END IF END IF ! !======================================================================= ! Create a new tangent linear history file. !======================================================================= ! DEFINE : IF (ldef) THEN CALL netcdf_create (ng, iTLM, TRIM(ncname), ncTLMid(ng)) IF (exit_flag.ne.NoError) THEN IF (Master) WRITE (stdout,30) TRIM(ncname) RETURN END IF ! !----------------------------------------------------------------------- ! Define file dimensions. !----------------------------------------------------------------------- ! DimIDs=0 ! status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xi_rho', & & IOBOUNDS(ng)%xi_rho, DimIDs( 1)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xi_u', & & IOBOUNDS(ng)%xi_u, DimIDs( 2)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xi_v', & & IOBOUNDS(ng)%xi_v, DimIDs( 3)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xi_psi', & & IOBOUNDS(ng)%xi_psi, DimIDs( 4)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'eta_rho', & & IOBOUNDS(ng)%eta_rho, DimIDs( 5)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'eta_u', & & IOBOUNDS(ng)%eta_u, DimIDs( 6)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'eta_v', & & IOBOUNDS(ng)%eta_v, DimIDs( 7)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'eta_psi', & & IOBOUNDS(ng)%eta_psi, DimIDs( 8)) IF (exit_flag.ne.NoError) RETURN # ifdef ADJUST_BOUNDARY status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'IorJ', & & IOBOUNDS(ng)%IorJ, IorJdim) IF (exit_flag.ne.NoError) RETURN # endif # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xy_rho', & & IOBOUNDS(ng)%xy_rho, DimIDs(17)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xy_u', & & IOBOUNDS(ng)%xy_u, DimIDs(18)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xy_v', & & IOBOUNDS(ng)%xy_v, DimIDs(19)) IF (exit_flag.ne.NoError) RETURN # endif # ifdef SOLVE3D # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xyz_rho', & & IOBOUNDS(ng)%xy_rho*N(ng), DimIDs(20)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xyz_u', & & IOBOUNDS(ng)%xy_u*N(ng), DimIDs(21)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xyz_v', & & IOBOUNDS(ng)%xy_v*N(ng), DimIDs(22)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xyz_w', & & IOBOUNDS(ng)%xy_rho*(N(ng)+1), DimIDs(23)) IF (exit_flag.ne.NoError) RETURN # endif status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'N', & & N(ng), DimIDs( 9)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 's_rho', & & N(ng), DimIDs( 9)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 's_w', & & N(ng)+1, DimIDs(10)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'tracer', & & NT(ng), DimIDs(11)) IF (exit_flag.ne.NoError) RETURN # ifdef SEDIMENT_NOT_YET status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'Nbed', & & Nbed, DimIDs(16)) IF (exit_flag.ne.NoError) RETURN # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'xybed', & & IOBOUNDS(ng)%xy_rho*Nbed, DimIDs(24)) IF (exit_flag.ne.NoError) RETURN # endif # endif # ifdef ECOSIM status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'Nphy', & & Nphy, DimIDs(25)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'Nbac', & & Nbac, DimIDs(26)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (exit_flag.ne.NoError) RETURN status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'Nfec', & & Nfec, DimIDs(28)) IF (exit_flag.ne.NoError) RETURN # endif # endif status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'boundary', & & 4, DimIDs(14)) IF (exit_flag.ne.NoError) RETURN # ifdef FOUR_DVAR status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'Nstate', & & NstateVar(ng), DimIDs(29)) IF (exit_flag.ne.NoError) RETURN # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'frc_adjust', & & Nfrec(ng), DimIDs(30)) IF (exit_flag.ne.NoError) RETURN # endif # ifdef ADJUST_BOUNDARY status=def_dim(ng, iTLM, ncTLMid(ng), ncname, 'obc_adjust', & & Nbrec(ng), DimIDs(31)) IF (exit_flag.ne.NoError) RETURN # endif status=def_dim(ng, iTLM, ncTLMid(ng), ncname, & & TRIM(ADJUSTL(Vname(5,idtime))), & & nf90_unlimited, DimIDs(12)) IF (exit_flag.ne.NoError) RETURN recdim=DimIDs(12) # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS frecdim=DimIDs(30) # endif # ifdef ADJUST_BOUNDARY brecdim=DimIDs(31) # endif ! ! Set number of dimensions for output variables. ! # if defined WRITE_WATER && defined MASKING nvd3=2 nvd4=2 # else nvd3=3 nvd4=4 # endif ! ! Define dimension vectors for staggered tracer type variables. ! # if defined WRITE_WATER && defined MASKING t2dgrd(1)=DimIDs(17) t2dgrd(2)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs(20) t3dgrd(2)=DimIDs(12) # endif # else t2dgrd(1)=DimIDs( 1) t2dgrd(2)=DimIDs( 5) t2dgrd(3)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs( 1) t3dgrd(2)=DimIDs( 5) t3dgrd(3)=DimIDs( 9) t3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_STFLUX t3dfrc(1)=DimIDs( 1) t3dfrc(2)=DimIDs( 5) t3dfrc(3)=frecdim t3dfrc(4)=DimIDs(12) # endif # endif # ifdef ADJUST_BOUNDARY t2dobc(1)=IorJdim t2dobc(2)=DimIDs(14) t2dobc(3)=brecdim t2dobc(4)=DimIDs(12) # ifdef SOLVE3D t3dobc(1)=IorJdim t3dobc(2)=DimIDs( 9) t3dobc(3)=DimIDs(14) t3dobc(4)=brecdim t3dobc(5)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered u-momemtum type variables. ! # if defined WRITE_WATER && defined MASKING u2dgrd(1)=DimIDs(18) u2dgrd(2)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs(21) u3dgrd(2)=DimIDs(12) # endif # else u2dgrd(1)=DimIDs( 2) u2dgrd(2)=DimIDs( 6) u2dgrd(3)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs( 2) u3dgrd(2)=DimIDs( 6) u3dgrd(3)=DimIDs( 9) u3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS u3dfrc(1)=DimIDs( 2) u3dfrc(2)=DimIDs( 6) u3dfrc(3)=frecdim u3dfrc(4)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered v-momemtum type variables. ! # if defined WRITE_WATER && defined MASKING v2dgrd(1)=DimIDs(19) v2dgrd(2)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs(22) v3dgrd(2)=DimIDs(12) # endif # else v2dgrd(1)=DimIDs( 3) v2dgrd(2)=DimIDs( 7) v2dgrd(3)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs( 3) v3dgrd(2)=DimIDs( 7) v3dgrd(3)=DimIDs( 9) v3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS v3dfrc(1)=DimIDs( 3) v3dfrc(2)=DimIDs( 7) v3dfrc(3)=frecdim v3dfrc(4)=DimIDs(12) # endif # endif # ifdef SOLVE3D ! ! Define dimension vector for staggered w-momemtum type variables. ! # if defined WRITE_WATER && defined MASKING w3dgrd(1)=DimIDs(23) w3dgrd(2)=DimIDs(12) # else w3dgrd(1)=DimIDs( 1) w3dgrd(2)=DimIDs( 5) w3dgrd(3)=DimIDs(10) w3dgrd(4)=DimIDs(12) # endif # endif ! ! Initialize unlimited time record dimension. ! tTLMindx(ng)=0 ! ! Initialize local information variable arrays. ! DO i=1,Natt DO j=1,LEN(Vinfo(1)) Vinfo(i)(j:j)=' ' END DO END DO DO i=1,6 Aval(i)=0.0_r8 END DO ! !----------------------------------------------------------------------- ! Define time-recordless information variables. !----------------------------------------------------------------------- ! CALL def_info (ng, iTLM, ncTLMid(ng), ncname, DimIDs) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! Define time-varying variables. !----------------------------------------------------------------------- ! ! Define model time. ! Vinfo( 1)=Vname(1,idtime) Vinfo( 2)=Vname(2,idtime) IF (INT(time_ref).eq.-2) THEN Vinfo( 3)='seconds since 1968-05-23 00:00:00 GMT' Vinfo( 4)='gregorian' ELSE IF (INT(time_ref).eq.-1) THEN Vinfo( 3)='seconds since 0001-01-01 00:00:00' Vinfo( 4)='360_day' ELSE IF (INT(time_ref).eq.0) THEN Vinfo( 3)='seconds since 0001-01-01 00:00:00' Vinfo( 4)='365.25_day' ELSE IF (time_ref.gt.0.0_r8) THEN WRITE (Vinfo( 3),'(a,1x,a)') 'seconds since', TRIM(r_text) Vinfo( 4)='standard' END IF Vinfo(14)=Vname(4,idtime) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idtime,ng), & & NF_TYPE, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN # ifdef PROPAGATOR ! ! Define Ritz eigenvalues and Ritz eigenvectors Euclidean norm. ! Vinfo( 1)='Ritz_rvalue' Vinfo( 2)='real Ritz eigenvalues' status=def_var(ng, iTLM, ncTLMid(ng), varid, NF_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN # if defined FT_EIGENMODES Vinfo( 1)='Ritz_ivalue' Vinfo( 2)='imaginary Ritz eigenvalues' status=def_var(ng, iTLM, ncTLMid(ng), varid, NF_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN # endif Vinfo( 1)='Ritz_norm' Vinfo( 2)='Ritz eigenvectors Euclidean norm' status=def_var(ng, iTLM, ncTLMid(ng), varid, NF_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (exit_flag.ne.NoError) RETURN # endif # ifdef ADJUST_WSTRESS ! ! Define surface U-momentum stress. Notice that the stress has its ! own fixed time-dimension (of size Nfrec) to allow 4DVAR adjustments ! at other times in addition to initialization time. ! Vinfo( 1)=Vname(1,idUsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUsms)) Vinfo( 3)='meter2 second-2' Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUsms,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idUsms,ng), & & NF_FOUT, nvd4, u3dfrc, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Define surface V-momentum stress. ! Vinfo( 1)=Vname(1,idVsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVsms)) Vinfo( 3)='meter2 second-2' Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVsms,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVsms,ng), & & NF_FOUT, nvd4, v3dfrc, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # if defined ADJUST_STFLUX && defined SOLVE3D ! ! Define surface net heat flux. Notice that different tracer fluxes ! are written at their own fixed time-dimension (of size Nfrec) to ! allow 4DVAR adjustments at other times in addition to initial time. ! DO itrc=1,NT(ng) IF (Lstflux(itrc,ng)) THEN Vinfo( 1)=Vname(1,idTsur(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTsur(itrc))) IF (itrc.eq.itemp) THEN Vinfo( 3)='Celsius meter second-1' Vinfo(11)='upward flux, cooling' Vinfo(12)='downward flux, heating' ELSE IF (itrc.eq.isalt) THEN Vinfo( 3)='meter second-1' Vinfo(11)='upward flux, freshening (net precipitation)' Vinfo(12)='downward flux, salting (net evaporation)' END IF Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTsur(itrc),ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), & & tlmVid(idTsur(itrc),ng), NF_FOUT, & & nvd4, t3dfrc, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF END DO # endif ! ! Define free-surface. ! IF (Hout(idFsur,ng)) THEN Vinfo( 1)=Vname(1,idFsur) WRITE (Vinfo( 2),40) TRIM(Vname(2,idFsur)) Vinfo( 3)=Vname(3,idFsur) Vinfo(14)=Vname(4,idFsur) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idFsur,ng), & # ifdef WET_DRY & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) # else & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname) # endif IF (exit_flag.ne.NoError) RETURN # if defined FORWARD_WRITE && defined FORWARD_RHS Vinfo( 1)=Vname(1,idRzet) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRzet)) Vinfo( 3)=Vname(3,idRzet) Vinfo(14)=Vname(4,idRzet) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(r2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRzet,ng), & & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif END IF # ifdef ADJUST_BOUNDARY ! ! Define free-surface open boundaries. ! IF (ANY(Lobc(:,isFsur,ng))) THEN ifield=idSbry(isFsur) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(ifield,ng), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN END IF # endif ! ! Define 2D U-momentum component. ! IF (Hout(idUbar,ng)) THEN Vinfo( 1)=Vname(1,idUbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUbar)) Vinfo( 3)=Vname(3,idUbar) Vinfo(14)=Vname(4,idUbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbar,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idUbar,ng), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef FORWARD_WRITE # ifdef FORWARD_RHS Vinfo( 1)=Vname(1,idRu2d) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRu2d)) Vinfo( 3)=Vname(3,idRu2d) Vinfo(14)=Vname(4,idRu2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(u2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRu2d,ng), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # ifdef SOLVE3D # ifdef FORWARD_RHS Vinfo( 1)=Vname(1,idRuct) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRuct)) Vinfo( 3)=Vname(3,idRuct) Vinfo(14)=Vname(4,idRuct) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(u2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRuct,ng), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif Vinfo( 1)=Vname(1,idUfx1) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUfx1)) Vinfo( 3)=Vname(3,idUfx1) Vinfo(14)=Vname(4,idUfx1) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(u2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idUfx1,ng), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)=Vname(1,idUfx2) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUfx2)) Vinfo( 3)=Vname(3,idUfx2) Vinfo(14)=Vname(4,idUfx2) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(u2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idUfx2,ng), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # endif END IF # ifdef ADJUST_BOUNDARY ! ! Define 2D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUbar,ng))) THEN ifield=idSbry(isUbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(ifield,ng), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN END IF # endif ! ! Define 2D V-momentum component. ! IF (Hout(idVbar,ng)) THEN Vinfo( 1)=Vname(1,idVbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVbar)) Vinfo( 3)=Vname(3,idVbar) Vinfo(14)=Vname(4,idVbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbar,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVbar,ng), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef FORWARD_WRITE # ifdef FORWARD_RHS Vinfo( 1)=Vname(1,idRv2d) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRv2d)) Vinfo( 3)=Vname(3,idRv2d) Vinfo(14)=Vname(4,idRv2d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(v2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRv2d,ng), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # ifdef SOLVE3D # ifdef FORWARD_RHS Vinfo( 1)=Vname(1,idRvct) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRvct)) Vinfo( 3)=Vname(3,idRvct) Vinfo(14)=Vname(4,idRvct) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(v2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRvct,ng), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif Vinfo( 1)=Vname(1,idVfx1) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVfx1)) Vinfo( 3)=Vname(3,idVfx1) Vinfo(14)=Vname(4,idVfx1) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(v2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVfx1,ng), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)=Vname(1,idVfx2) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVfx2)) Vinfo( 3)=Vname(3,idVfx2) Vinfo(14)=Vname(4,idVfx2) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(v2dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVfx2,ng), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif # endif END IF # ifdef ADJUST_BOUNDARY ! ! Define 2D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVbar,ng))) THEN ifield=idSbry(isVbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(ifield,ng), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN END IF # endif # ifdef SOLVE3D ! ! Define 3D U-momentum component. ! IF (Hout(idUvel,ng)) THEN Vinfo( 1)=Vname(1,idUvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUvel)) Vinfo( 3)=Vname(3,idUvel) Vinfo(14)=Vname(4,idUvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUvel,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idUvel,ng), & & NF_FOUT, nvd4, u3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # if defined FORWARD_WRITE && defined FORWARD_RHS Vinfo( 1)=Vname(1,idRu3d) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRu3d)) Vinfo( 3)=Vname(3,idRu3d) Vinfo(14)=Vname(4,idRu3d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(22)='coordinates' Aval(5)=REAL(u3dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRu3d,ng), & & NF_FOUT, nvd4, u3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif END IF # ifdef ADJUST_BOUNDARY ! ! Define 3D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUvel,ng))) THEN ifield=idSbry(isUvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(ifield,ng), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN END IF # endif ! ! Define 3D V-momentum component. ! IF (Hout(idVvel,ng)) THEN Vinfo( 1)=Vname(1,idVvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVvel)) Vinfo( 3)=Vname(3,idVvel) Vinfo(14)=Vname(4,idVvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvel,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVvel,ng), & & NF_FOUT, nvd4, v3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # if defined FORWARD_WRITE && defined FORWARD_RHS Vinfo( 1)=Vname(1,idRv3d) WRITE (Vinfo( 2),40) TRIM(Vname(2,idRv3d)) Vinfo( 3)=Vname(3,idRv3d) Vinfo(14)=Vname(4,idRv3d) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(22)='coordinates' Aval(5)=REAL(v3dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idRv3d,ng), & & NF_FOUT, nvd4, v3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif END IF # ifdef ADJUST_BOUNDARY ! ! Define 3D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVvel,ng))) THEN ifield=idSbry(isVvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(ifield,ng), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN END IF # endif ! ! Define tracer type variables. ! DO itrc=1,NT(ng) IF (Hout(idTvar(itrc),ng)) THEN Vinfo( 1)=Vname(1,idTvar(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTvar(itrc))) Vinfo( 3)=Vname(3,idTvar(itrc)) Vinfo(14)=Vname(4,idTvar(itrc)) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT_NOT_YET DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmTid(itrc,ng), & & NF_FOUT, nvd4, t3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF END DO # ifdef ADJUST_BOUNDARY ! ! Define tracer type variables open boundaries. ! DO itrc=1,NT(ng) IF (ANY(Lobc(:,isTvar(itrc),ng))) THEN ifield=idSbry(isTvar(itrc)) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)=Vname(3,ifield) Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(ifield,ng), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (exit_flag.ne.NoError) RETURN END IF END DO # endif ! ! Define density anomaly. ! IF (Hout(idDano,ng)) THEN Vinfo( 1)=Vname(1,idDano) WRITE (Vinfo( 2),40) TRIM(Vname(2,idDano)) Vinfo( 3)=Vname(3,idDano) Vinfo(14)=Vname(4,idDano) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idDano,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idDano,ng), & & NF_FOUT, nvd4, t3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF # if defined FORWARD_MIXING && \ (defined BVF_MIXING || defined GLS_MIXING || \ defined LMD_MIXING || defined MY25_MIXING) ! ! Define vertical viscosity coefficient. ! IF (Hout(idVvis,ng)) THEN Vinfo( 1)=Vname(1,idVvis) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVvis)) Vinfo( 3)=Vname(3,idVvis) Vinfo(14)=Vname(4,idVvis) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvis,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVvis,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF ! ! Define vertical diffusion coefficient for potential temperature. ! IF (Hout(idTdif,ng)) THEN Vinfo( 1)=Vname(1,idTdif) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTdif)) Vinfo( 3)=Vname(3,idTdif) Vinfo(14)=Vname(4,idTdif) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idTdif,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idTdif,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF # ifdef SALINITY ! ! Define vertical diffusion coefficient for salinity. ! IF (Hout(idSdif,ng)) THEN Vinfo( 1)=Vname(1,idSdif) WRITE (Vinfo( 2),40) TRIM(Vname(2,idSdif)) Vinfo( 3)=Vname(3,idSdif) Vinfo(14)=Vname(4,idSdif) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idSdif,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idSdif,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF # endif # if defined GLS_MIXING_NOT_YET || defined MY25_MIXING_NOT_YET ! ! Define turbulent kinetic energy. ! IF (Hout(idMtke,ng)) THEN Vinfo( 1)=Vname(1,idMtke) WRITE (Vinfo( 2),40) TRIM(Vname(2,idMtke)) Vinfo( 3)=Vname(3,idMtke) Vinfo(14)=Vname(4,idMtke) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idMtke,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idMtke,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)=Vname(1,idVmKK) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVmKK)) Vinfo( 3)=Vname(3,idVmKK) Vinfo(14)=Vname(4,idVmKK) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmKK,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVmKK,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN END IF ! ! Define turbulent kinetic energy time length scale. ! IF (Hout(idMtls,ng)) THEN Vinfo( 1)=Vname(1,idMtls) WRITE (Vinfo( 2),40) TRIM(Vname(2,idMtls)) Vinfo( 3)=Vname(3,idMtls) Vinfo(14)=Vname(4,idMtls) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idMtls,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idMtls,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN Vinfo( 1)=Vname(1,idVmLS) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVmLS)) Vinfo( 3)=Vname(3,idVmLS) Vinfo(14)=Vname(4,idVmLS) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmLS,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVmLS,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # ifdef GLS_MIXING_NOT_YET Vinfo( 1)=Vname(1,idVmKP) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVmKP)) Vinfo( 3)=Vname(3,idVmKP) Vinfo(14)=Vname(4,idVmKP) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVmKP,ng),r8) status=def_var(ng, iTLM, ncTLMid(ng), tlmVid(idVmKP,ng), & & NF_FOUT, nvd4, w3dgrd, Aval, Vinfo, ncname) IF (exit_flag.ne.NoError) RETURN # endif END IF # endif # endif # endif ! !----------------------------------------------------------------------- ! Leave definition mode. !----------------------------------------------------------------------- ! CALL netcdf_enddef (ng, iTLM, ncname, ncTLMid(ng)) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! Write out time-recordless, information variables. !----------------------------------------------------------------------- ! CALL wrt_info (ng, iTLM, ncTLMid(ng), ncname) IF (exit_flag.ne.NoError) RETURN END IF DEFINE ! !======================================================================= ! Open an existing tangent file, check its contents, and prepare for ! appending data. !======================================================================= ! QUERY : IF (.not.ldef) THEN ncname=TLMname(ng) ! ! Inquire about the dimensions and check for consistency. ! CALL netcdf_check_dim (ng, iTLM, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Inquire about the variables. ! CALL netcdf_inq_var (ng, iTLM, ncname) IF (exit_flag.ne.NoError) RETURN ! ! Open tangent linear history file for read/write. ! CALL netcdf_open (ng, iTLM, ncname, 1, ncTLMid(ng)) IF (exit_flag.ne.NoError) THEN WRITE (stdout,60) TRIM(ncname) RETURN END IF ! ! Initialize logical switches. ! DO i=1,NV got_var(i)=.FALSE. END DO ! ! Scan variable list from input NetCDF and activate switches for ! tangent variables. Get variable IDs. ! DO i=1,n_var IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idtime))) THEN got_var(idtime)=.TRUE. tlmVid(idtime,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idFsur))) THEN got_var(idFsur)=.TRUE. tlmVid(idFsur,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbar))) THEN got_var(idUbar)=.TRUE. tlmVid(idUbar,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbar))) THEN got_var(idVbar)=.TRUE. tlmVid(idVbar,ng)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isFsur)))) THEN got_var(idSbry(isFsur))=.TRUE. tlmVid(idSbry(isFsur),ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUbar)))) THEN got_var(idSbry(isUbar))=.TRUE. tlmVid(idSbry(isUbar),ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVbar)))) THEN got_var(idSbry(isVbar))=.TRUE. tlmVid(idSbry(isVbar),ng)=var_id(i) # endif # ifdef FORWARD_WRITE # ifdef FORWARD_RHS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRzet))) THEN got_var(idRzet)=.TRUE. tlmVid(idRzet,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRu2d))) THEN got_var(idRu2d)=.TRUE. tlmVid(idRu2d,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRv2d))) THEN got_var(idRv2d)=.TRUE. tlmVid(idRv2d,ng)=var_id(i) # endif # ifdef SOLVE3D # ifdef FORWARD_RHS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRuct))) THEN got_var(idRuct)=.TRUE. tlmVid(idRuct,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRvct))) THEN got_var(idRvct)=.TRUE. tlmVid(idRvct,ng)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUfx1))) THEN got_var(idUfx1)=.TRUE. tlmVid(idUfx1,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUfx1))) THEN got_var(idUfx1)=.TRUE. tlmVid(idUfx1,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUfx2))) THEN got_var(idUfx2)=.TRUE. tlmVid(idUfx2,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVfx1))) THEN got_var(idVfx1)=.TRUE. tlmVid(idVfx1,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVfx2))) THEN got_var(idVfx2)=.TRUE. tlmVid(idVfx2,ng)=var_id(i) # ifdef FORWARD_RHS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRu3d))) THEN got_var(idRu3d)=.TRUE. tlmVid(idRu3d,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idRv3d))) THEN got_var(idRv3d)=.TRUE. tlmVid(idRv3d,ng)=var_id(i) # endif # endif # endif # ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUvel))) THEN got_var(idUvel)=.TRUE. tlmVid(idUvel,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvel))) THEN got_var(idVvel)=.TRUE. tlmVid(idVvel,ng)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUvel)))) THEN got_var(idSbry(isUvel))=.TRUE. tlmVid(idSbry(isUvel),ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVvel)))) THEN got_var(idSbry(isVvel))=.TRUE. tlmVid(idSbry(isVvel),ng)=var_id(i) # endif ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idDano))) THEN got_var(idDano)=.TRUE. tlmVid(idDano,ng)=var_id(i) # if defined FORWARD_MIXING && \ (defined GLS_MIXING_NOT_YET || defined MY25_MIXING_NOT_YET) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvis))) THEN got_var(idVvis)=.TRUE. tlmVid(idVvis,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTdif))) THEN got_var(idTdif)=.TRUE. tlmVid(idTdif,ng)=var_id(i) # ifdef SALINITY ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idSdif))) THEN got_var(idSdif)=.TRUE. tlmVid(idSdif,ng)=var_id(i) # endif # if defined GLS_MIXING_NOT_YET || defined MY25_MIXING_NOT_YET ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idMtke))) THEN got_var(idMtke)=.TRUE. tlmVid(idMtke,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmKK))) THEN got_var(idVmKK)=.TRUE. tlmVid(idVmKK,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idMtls))) THEN got_var(idMtls)=.TRUE. tlmVid(idMtls,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmLS))) THEN got_var(idVmLS)=.TRUE. tlmVid(idVmLS,ng)=var_id(i) # ifdef GLS_MIXING_NOT_YET ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVmKP))) THEN got_var(idVmKP)=.TRUE. tlmVid(idVmKP,ng)=var_id(i) # endif # endif # endif # endif # ifdef ADJUST_WSTRESS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUsms))) THEN got_var(idUsms)=.TRUE. tlmVid(idUsms,ng)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVsms))) THEN got_var(idVsms)=.TRUE. tlmVid(idVsms,ng)=var_id(i) # endif END IF # ifdef SOLVE3D DO itrc=1,NT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTvar(itrc)))) THEN got_var(idTvar(itrc))=.TRUE. tlmTid(itrc,ng)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isTvar(itrc))))) THEN got_var(idSbry(isTvar(itrc)))=.TRUE. tlmVid(idSbry(isTvar(itrc)),ng)=var_id(i) # endif # ifdef ADJUST_STFLUX ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idTsur(itrc)))) THEN got_var(idTsur(itrc))=.TRUE. tlmVid(idTsur(itrc),ng)=var_id(i) # endif END IF END DO # endif END DO ! ! Check if tangent variables are available in input NetCDF file. ! IF (.not.got_var(idtime)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idtime)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idFsur).and.Hout(idFsur,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idFsur)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUbar).and.Hout(idUbar,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbar).and.Hout(idVbar,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isFsur))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isFsur))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isUbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef FORWARD_WRITE IF (.not.got_var(idRzet)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRzet)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idRu2d)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRu2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idRv2d)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRv2d)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef SOLVE3D IF (.not.got_var(idRuct)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRuct)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idRvct)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRvct)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUfx1)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUfx1)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUfx2)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUfx2)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVfx1)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVfx1)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVfx2)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVfx2)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idRu3d)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRu3d)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idRv3d)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idRv3d)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # endif # ifdef SOLVE3D IF (.not.got_var(idUvel).and.Hout(idUvel,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVvel).and.Hout(idVvel,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isUvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif IF (.not.got_var(idDano).and.Hout(idDano,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idDano)), & & TRIM(ncname) exit_flag=3 RETURN END IF # if defined FORWARD_MIXING && \ (defined GLS_MIXING_NOT_YET || defined MY25_MIXING_NOT_YET) IF (.not.got_var(idVvis).and.Hout(idVvis,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVvis)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idTdif).and.Hout(idTdif,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTdif)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef SALINITY IF (.not.got_var(idSdif).and.Hout(idSdif,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSdif)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # if defined GLS_MIXING_NOT_YET || defined MY25_MIXING_NOT_YET IF (.not.got_var(idMtke).and.Hout(idMtke,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idMtke)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVmKK).and.Hout(idVmKK,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVmKK)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idMtls).and.Hout(idMtls,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idMtls)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVmLS).and.Hout(idVmLS,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVmLS)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef GSL_MIXING IF (.not.got_var(idVmKP).and.Hout(idVmKP,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVmKP)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # endif # endif # endif # ifdef ADJUST_WSTRESS IF (.not.got_var(idUsms).and.Hout(idUsms,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVsms).and.Hout(idVsms,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef SOLVE3D DO itrc=1,NT(ng) IF (.not.got_var(idTvar(itrc)).and.Hout(idTvar(itrc),ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTvar(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isTvar(itrc)))) THEN IF (Master) WRITE (stdout,70) & & TRIM(Vname(1,idSbry(isTvar(itrc)))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef ADJUST_STFLUX IF (.not.got_var(idTsur(itrc)).and.Hout(idTsur(itrc),ng).and. & & Lstflux(itrc,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTsur(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif END DO # endif ! ! Set unlimited time record dimension to the appropriate value. ! IF (ndefTLM(ng).gt.0) THEN tTLMindx(ng)=((ntstart(ng)-1)- & & ndefTLM(ng)*((ntstart(ng)-1)/ndefTLM(ng)))/ & & nTLM(ng) ELSE tTLMindx(ng)=(ntstart(ng)-1)/nTLM(ng) END IF tTLMindx(ng)=MIN(tTLMindx(ng),rec_size) END IF QUERY ! 10 FORMAT (3x,'TL_DEF_HIS - creating tangent file: ',a) 20 FORMAT (3x,'TL_DEF_HIS - inquiring tangent file: ',a) 30 FORMAT (/,' TL_DEF_HIS - unable to create tangent NetCDF file: ', & & a) 40 FORMAT ('tangent linear',1x,a) 50 FORMAT (1pe11.4,1x,'millimeter') 60 FORMAT (/,' TL_DEF_HIS - unable to open tangent NetCDF file: ',a) 70 FORMAT (/,' TL_DEF_HIS - unable to find variable: ',a,2x, & & ' in tangent NetCDF file: ',a) RETURN END SUBROUTINE tl_def_his #else SUBROUTINE tl_def_his RETURN END SUBROUTINE tl_def_his #endif