#include "cppdefs.h" #if defined TL_IOMS && defined SOLVE3D SUBROUTINE rp_main3d (ng) ! !svn $Id: rp_main3d.F 409 2009-11-18 20:39:05Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine is the main driver for representers tangent linear ! ! ROMS/TOMS when configure as a full 3D baroclinic ocean model. ! ! It advances RPM primitive equations for a single time step. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel # ifdef MODEL_COUPLING USE mod_coupler # endif USE mod_iounits USE mod_scalars USE mod_stepping ! # ifdef ANA_VMIX USE analytical_mod, ONLY : ana_vmix # endif # ifdef AIR_OCEAN_NOT_YET USE ocean_coupler_mod, ONLY : atmos_coupling # endif # ifdef WAVES_OCEAN_NOT_YET USE ocean_coupler_mod, ONLY : waves_coupling # endif # ifdef ASSIMILATION !! USE oi_update_mod, ONLY : oi_update # endif # ifdef FORWARD_READ USE omega_mod, ONLY : omega USE set_depth_mod, ONLY : set_depth USE set_massflux_mod, ONLY : set_massflux # endif # ifdef BIOLOGY USE rp_biology_mod, ONLY : rp_biology # endif # ifdef BBL_MODEL_NOT_YET !! USE rp_bbl_mod, ONLY : rp_bblm # endif # if defined BULK_FLUXES && !defined NL_BULK_FLUXES USE rp_bulk_flux_mod, ONLY : rp_bulk_flux # endif # ifdef BVF_MIXING_NOT_YET !! USE rp_bvf_mix_mod, ONLY : rp_bvf_mix # endif USE rp_diag_mod, ONLY : rp_diag # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS USE rp_frc_adjust_mod, ONLY : rp_frc_adjust # endif # ifdef GLS_MIXING_NOT_YET !! USE rp_gls_corstep_mod, ONLY : rp_gls_corstep !! USE rp_gls_prestep_mod, ONLY : rp_gls_prestep # endif USE rp_ini_fields_mod, ONLY : rp_ini_fields, rp_ini_zeta # ifdef LMD_MIXING_NOT_YET !! USE rp_lmd_vmix_mod, ONLY : rp_lmd_vmix # endif # ifdef MY25_MIXING !! USE rp_my25_corstep_mod, ONLY : rp_my25_corstep !! USE rp_my25_prestep_mod, ONLY : rp_my25_prestep # endif # ifdef ADJUST_BOUNDARY USE rp_obc_adjust_mod, ONLY : rp_obc_adjust USE rp_obc_adjust_mod, ONLY : rp_obc2d_adjust USE rp_set_depth_mod, ONLY : rp_set_depth_bry # endif USE rp_omega_mod, ONLY : rp_omega # ifdef NEARSHORE_MELLOR_NOT_YET !! USE rp_radiation_stress_mod, ONLY : rp_radiation_stress # endif # ifndef TS_FIXED USE rp_rho_eos_mod, ONLY : rp_rho_eos # endif USE rp_rhs3d_mod, ONLY : rp_rhs3d # ifdef SEDIMENT_NOT_YET !! USE rp_sediment_mod, ONLY : rp_sediment # endif # ifdef AVERAGES !! USE rp_set_avg_mod, ONLY : rp_set_avg # endif # ifdef MOVE_SET_DEPTH USE rp_set_depth_mod, ONLY : rp_set_depth # endif USE rp_set_massflux_mod, ONLY : rp_set_massflux # if defined SSH_TIDES_NOT_YET || defined UV_TIDES_NOT_YET !! USE rp_set_tides_mod, ONLY : rp_set_tides # endif USE rp_set_vbc_mod, ONLY : rp_set_vbc USE rp_set_zeta_mod, ONLY : rp_set_zeta USE rp_step2d_mod, ONLY : rp_step2d # ifndef TS_FIXED USE rp_step3d_t_mod, ONLY : rp_step3d_t # endif USE rp_step3d_uv_mod, ONLY : rp_step3d_uv # ifdef FLOATS_NOT_YET !! USE rp_step_floats_mod, ONLY : rp_step_floats # endif # ifdef WEAK_CONSTRAINT USE tl_forcing_mod, ONLY : tl_forcing # endif !! USE wvelocity_mod, ONLY : wvelocity ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! integer :: my_iif, next_indx1, subs, tile, thread # ifdef FLOATS_NOT_YET integer :: Lend, Lstr, chunk_size # endif ! !======================================================================= ! Time-step tangent linear 3D primitive equations. !======================================================================= ! ! Set time indices and time clock. ! nstp(ng)=1+MOD(iic(ng)-ntstart(ng),2) nnew(ng)=3-nstp(ng) nrhs(ng)=nstp(ng) time(ng)=time(ng)+dt(ng) tdays(ng)=time(ng)*sec2day CALL time_string (time(ng), time_code(ng)) ! !----------------------------------------------------------------------- ! Read in required data, if any, data from input NetCDF files. !----------------------------------------------------------------------- ! CALL rp_get_data (ng) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! If applicable, process input data: time interpolate between data ! snapshots. Compute BASIC STATE depths and thickness. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_set_data (ng, TILE) # ifdef FORWARD_READ CALL set_depth (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO IF (exit_flag.ne.NoError) RETURN # ifdef FORWARD_READ ! !----------------------------------------------------------------------- ! Compute BASIC STATE horizontal mass fluxes (Hz*u/n and Hz*v/m). !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL set_massflux (ng, TILE) END DO END DO !$OMP END PARALLEL DO # endif # ifdef WEAK_CONSTRAINT ! !----------------------------------------------------------------------- ! If appropriate, add convolved adjoint solution impulse forcing to ! the representer model solution. Notice that the forcing is only ! needed after finishing all inner loops. The forcing is continuous. ! That is, it is time interpolated at every time-step from available ! snapshots (FrequentImpulse=TRUE). !----------------------------------------------------------------------- ! IF (FrequentImpulse) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL tl_forcing (ng, TILE, kstp(ng), nstp(ng)) END DO END DO !$OMP END PARALLEL DO END IF # endif ! !----------------------------------------------------------------------- ! If not a restart, initialize all time levels and compute other ! initial fields. !----------------------------------------------------------------------- ! IF (iic(ng).eq.ntstart(ng)) THEN ! ! Initialize free-surface. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_ini_zeta (ng, TILE, iRPM) END DO END DO !$OMP END PARALLEL DO ! ! Initialize other state variables. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_ini_fields (ng, TILE, iRPM) END DO END DO !$OMP END PARALLEL DO END IF ! !----------------------------------------------------------------------- ! Compute horizontal mass fluxes (Hz*u/n and Hz*v/m), density related ! quatities and report global diagnostics. Compute BASIC STATE omega ! vertical velocity. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_set_massflux (ng, TILE) # ifndef TS_FIXED CALL rp_rho_eos (ng, TILE) # endif CALL rp_diag (ng, TILE) # ifdef FORWARD_READ CALL omega (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO IF (exit_flag.ne.NoError) RETURN # ifdef AIR_OCEAN_NOT_YET ! !----------------------------------------------------------------------- ! Couple to atmospheric model every CoupleSteps(Iatmos) timesteps: get ! air/sea fluxes. !----------------------------------------------------------------------- ! IF ((iic(ng).ne.ntstart(ng)).and. & & MOD(iic(ng)-1,CoupleSteps(Iatmos,ng)).eq.0) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL atmos_coupling (ng, TILE) END DO END DO !$OMP END PARALLEL DO END IF # endif # ifdef WAVES_OCEAN_NOT_YET ! !----------------------------------------------------------------------- ! Couple to waves model every CoupleSteps(Iwaves) timesteps: get ! waves/sea fluxes. !----------------------------------------------------------------------- ! IF ((iic(ng).ne.ntstart(ng)).and. & & MOD(iic(ng),CoupleSteps(Iwaves,ng)).eq.0) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL waves_coupling (ng, TILE) END DO END DO !$OMP END PARALLEL DO END IF # endif # ifdef NEARSHORE_MELLOR_NOT_YET ! !----------------------------------------------------------------------- ! Compute radiation stress terms. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_radiation_stress (ng, TILE) END DO END DO !$OMP END PARALLEL DO # endif ! !----------------------------------------------------------------------- ! Set fields for vertical boundary conditions. Process tidal forcing, ! if any. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 # if defined BULK_FLUXES && !defined NL_BULK_FLUXES CALL rp_bulk_flux (ng, TILE) # endif # ifdef BBL_MODEL_NOT_YET CALL rp_bblm (ng, TILE) # endif CALL rp_set_vbc (ng, TILE) # if defined SSH_TIDES_NOT_YET || defined UV_TIDES_NOT_YET CALL rp_set_tides (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO # ifdef ADJUST_BOUNDARY ! !----------------------------------------------------------------------- ! Interpolate open boundary increments and adjust open boundaries. ! Skip the last output timestep. !----------------------------------------------------------------------- ! IF ((Nrun.ne.1).and.(iic(ng).lt.(ntend(ng)+1))) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_obc_adjust (ng, TILE, Lbinp(ng)) CALL rp_set_depth_bry (ng, TILE) CALL rp_obc2d_adjust (ng, TILE, Lbinp(ng)) END DO END DO !$OMP END PARALLEL DO END IF # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS ! !----------------------------------------------------------------------- ! Interpolate surface forcing increments and adjust surface forcing. ! Skip the last output timestep. !----------------------------------------------------------------------- ! IF (iic(ng).lt.(ntend(ng)+1)) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_frc_adjust (ng, TILE, Lfinp(ng)) END DO END DO !$OMP END PARALLEL DO END IF # endif ! !----------------------------------------------------------------------- ! Compute tangent linear vertical mixing coefficients for momentum and ! tracers. Compute S-coordinate vertical velocity, diagnostically from ! horizontal mass divergence. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 # if defined ANA_VMIX_NOT_YET CALL rp_ana_vmix (ng, TILE) # elif defined LMD_MIXING_NOT_YET CALL rp_lmd_vmix (ng, TILE) # elif defined BVF_MIXING_NOT_YET CALL rp_bvf_mix (ng, TILE) # endif CALL rp_omega (ng, TILE) !! CALL wvelocity (ng, TILE, nstp(ng)) END DO END DO !$OMP END PARALLEL DO ! !----------------------------------------------------------------------- ! Set free-surface to it time-averaged value. If applicable, ! accumulate time-averaged output data which needs a irreversible ! loop in shared-memory jobs. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) & !$OMP& SHARED(ng,Lnew,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 ! irreversible loop CALL rp_set_zeta (ng, TILE) # ifdef DIAGNOSTICS !! CALL rp_set_diags (ng, TILE) # endif # ifdef AVERAGES !! CALL rp_set_avg (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO ! !----------------------------------------------------------------------- ! If appropriate, write out fields into output NetCDF files. Notice ! that IO data is written in delayed and serial mode. Exit if last ! time step. !----------------------------------------------------------------------- ! CALL rp_output (ng) IF ((exit_flag.ne.NoError).or.(iic(ng).eq.(ntend(ng)+1))) RETURN ! !----------------------------------------------------------------------- ! Compute right-hand-side terms for 3D equations. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) & !$OMP& SHARED(ng,Lnew,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_rhs3d (ng, TILE) # ifdef MY25_MIXING_NOT_YET CALL rp_my25_prestep (ng, TILE) # elif defined GLS_MIXING_NOT_YET CALL rp_gls_prestep (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO ! !----------------------------------------------------------------------- ! Solve the vertically integrated primitive equations for the ! free-surface and barotropic momentum components. !----------------------------------------------------------------------- ! DO my_iif=1,nfast(ng)+1 ! ! Set time indices for predictor step. The PREDICTOR_2D_STEP switch ! it is assumed to be false before the first time-step. ! next_indx1=3-indx1(ng) IF (.not.PREDICTOR_2D_STEP(ng)) THEN PREDICTOR_2D_STEP(ng)=.TRUE. iif(ng)=my_iif IF (FIRST_2D_STEP) THEN kstp(ng)=indx1(ng) ELSE kstp(ng)=3-indx1(ng) END IF knew(ng)=3 krhs(ng)=indx1(ng) END IF ! ! Predictor step - Advance barotropic equations using 2D time-step ! ============== predictor scheme. No actual time-stepping is ! performed during the auxiliary (nfast+1) time-step. It is needed ! to finalize the fast-time averaging of 2D fields, if any, and ! compute the new time-evolving depths. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_step2d (ng, TILE) END DO END DO !$OMP END PARALLEL DO ! ! Set time indices for corrector step. ! IF (PREDICTOR_2D_STEP(ng)) THEN PREDICTOR_2D_STEP(ng)=.FALSE. knew(ng)=next_indx1 kstp(ng)=3-knew(ng) krhs(ng)=3 IF (iif(ng).lt.(nfast(ng)+1)) indx1(ng)=next_indx1 END IF ! ! Corrector step - Apply 2D time-step corrector scheme. Notice that ! ============== there is not need for a corrector step during the ! auxiliary (nfast+1) time-step. ! IF (iif(ng).lt.(nfast(ng)+1)) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_step2d (ng, TILE) END DO END DO !$OMP END PARALLEL DO END IF END DO # ifdef MOVE_SET_DEPTH ! !----------------------------------------------------------------------- ! Recompute depths and thicknesses using the new time filtered ! free-surface. This call was moved from "rp_step2d" to here. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_set_depth (ng, TILE) END DO END DO # endif ! !----------------------------------------------------------------------- ! Time-step 3D momentum equations. !----------------------------------------------------------------------- ! ! Time-step 3D momentum equations and couple with vertically ! integrated equations. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_step3d_uv (ng, TILE) END DO END DO !$OMP END PARALLEL DO ! !----------------------------------------------------------------------- ! Time-step vertical mixing turbulent equations and passive tracer ! source and sink terms, if applicable. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_omega (ng, TILE) # ifdef MY25_MIXING_NOT_YET CALL rp_my25_corstep (ng, TILE) # elif defined GLS_MIXING_NOT_YET CALL rp_gls_corstep (ng, TILE) # endif # ifdef BIOLOGY CALL rp_biology (ng, TILE) # endif # ifdef SEDIMENT_NOT_YET CALL rp_sediment (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO # ifndef TS_FIXED ! !----------------------------------------------------------------------- ! Time-step tracer equations. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_step3d_t (ng, TILE) END DO END DO !$OMP END PARALLEL DO # endif # ifdef FLOATS_NOT_YET ! !----------------------------------------------------------------------- ! Compute Lagrangian drifters trajectories. !----------------------------------------------------------------------- ! IF (Lfloats(Ng)) THEN !$OMP PARALLEL DO PRIVATE(thread,chunk_size,Lstr,Lend) & !$OMP& SHARED(ng,numthreads,Nfloats) DO thread=0,numthreads-1 chunk_size=(Nfloats(ng)+numthreads-1)/numthreads Lstr=1+thread*chunk_size Lend=MIN(Nfloats(ng),Lstr+chunk_size-1) CALL rp_step_floats (ng, Lstr, Lend) END DO !$OMP END PARALLEL DO ! ! Shift floats time indices. ! nfp1(ng)=MOD(nfp1(ng)+1,NFT+1) nf(ng) =MOD(nf(ng) +1,NFT+1) nfm1(ng)=MOD(nfm1(ng)+1,NFT+1) nfm2(ng)=MOD(nfm2(ng)+1,NFT+1) nfm3(ng)=MOD(nfm3(ng)+1,NFT+1) END IF # endif RETURN END SUBROUTINE rp_main3d #else SUBROUTINE rp_main3d RETURN END SUBROUTINE rp_main3d #endif