#include "cppdefs.h" #if defined TL_IOMS && !defined SOLVE3D SUBROUTINE rp_main2d (ng) ! !svn $Id: rp_main2d.F 407 2009-11-02 21:27:07Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine is the main driver for representers tangent linear ! ! ROMS/TOMS when configure as shallow water (barotropic ) ocean ! ! model only. It advances RPM vertically integrated primitive ! ! equations for a single time step. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel # ifdef MODEL_COUPLING USE mod_coupler # endif USE mod_iounits USE mod_scalars USE mod_stepping ! # ifdef AIR_OCEAN_NOT_YET USE ocean_coupler_mod, ONLY : atmos_coupling # endif # ifdef WAVES_OCEAN_NOT_YET USE ocean_coupler_mod, ONLY : waves_coupling # endif # ifdef ASSIMILATION !! USE oi_update_mod, ONLY : oi_update # endif USE rp_diag_mod, ONLY : rp_diag # ifdef defined ADJUST_WSTRESS USE rp_frc_adjust_mod, ONLY : rp_frc_adjust # endif USE rp_ini_fields_mod, ONLY : rp_ini_fields, rp_ini_zeta # ifdef ADJUST_BOUNDARY USE rp_obc_adjust_mod, ONLY : rp_obc_adjust # endif # ifdef NEARSHORE_MELLOR_NOT_YET !! USE rp_radiation_stress_mod, ONLY : rp_radiation_stress # endif # ifdef AVERAGES !! USE rp_set_avg_mod, ONLY : rp_set_avg # endif # if defined SSH_TIDES_NOT_YET || defined UV_TIDES_NOT_YET !! USE rp_set_tides_mod, ONLY : rp_set_tides # endif USE rp_set_vbc_mod, ONLY: rp_set_vbc USE rp_step2d_mod, ONLY : rp_step2d # ifdef FLOATS_NOT_YET !! USE rp_step_floats_mod, ONLY : rp_step_floats # endif # ifdef WEAK_CONSTRAINT USE tl_forcing_mod, ONLY : tl_forcing # endif ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! integer :: next_indx1, subs, tile, thread # ifdef FLOATS_NOT_YET integer :: Lend, Lstr, chunk_size # endif ! !======================================================================= ! Time-step tangent linear vertically integrated equations. !======================================================================= ! ! Set time clock. ! time(ng)=time(ng)+dt(ng) tdays(ng)=time(ng)*sec2day CALL time_string (time(ng), time_code(ng)) # ifdef WEAK_CONSTRAINT ! !----------------------------------------------------------------------- ! If appropriate, add convolved adjoint solution impulse forcing to ! the representer model solution. Notice that the forcing is only ! needed after finishing all inner loops. The forcing is continuous. ! That is, it is time interpolated at every time-step from available ! snapshots (FrequentImpulse=TRUE). !----------------------------------------------------------------------- ! IF (FrequentImpulse) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL tl_forcing (ng, TILE, kstp(ng), nstp(ng)) END DO END DO !$OMP END PARALLEL DO END IF # endif ! !----------------------------------------------------------------------- ! Read in required data, if any, from input NetCDF files. !----------------------------------------------------------------------- ! CALL rp_get_data (ng) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! If applicable, process input data: time interpolate between data ! snapshots. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_set_data (ng, TILE) END DO END DO !$OMP END PARALLEL DO IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! If not a restart, initialize all time levels and compute other ! initial fields. !----------------------------------------------------------------------- ! IF (iic(ng).eq.ntstart(ng)) THEN ! ! Initialize free-surface. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_ini_zeta (ng, TILE, iRPM) END DO END DO !$OMP END PARALLEL DO ! ! Initialize other state variables. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_ini_fields (ng, TILE, iRPM) END DO END DO !$OMP END PARALLEL DO END IF ! !----------------------------------------------------------------------- ! Compute and report diagnostics. If appropriate, accumulate time- ! averaged output data which needs a irreversible loop in shared-memory ! jobs. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) & !$OMP& SHARED(ng,Lnew,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 ! irreversible loop # ifdef AVERAGES !! CALL rp_set_avg (ng, TILE) # endif # ifdef DIAGNOSTICS !! CALL rp_set_diags (ng, TILE) # endif CALL rp_diag (ng, TILE) END DO END DO !$OMP END PARALLEL DO # ifdef AIR_OCEAN_NOT_YET ! !----------------------------------------------------------------------- ! Couple to atmospheric model every CoupleSteps(Iatmos) timesteps: get ! air/sea fluxes. !----------------------------------------------------------------------- ! IF ((iic(ng).ne.ntstart(ng)).and. & & MOD(iic(ng)-1,CoupleSteps(Iatmos,ng)).eq.0) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL atmos_coupling (ng, TILE) END DO END DO !$OMP END PARALLEL DO END IF # endif # ifdef WAVES_OCEAN_NOT_YET ! !----------------------------------------------------------------------- ! Couple to waves model every CoupleSteps(Iwaves) timesteps: get ! waves/sea fluxes. !----------------------------------------------------------------------- ! IF ((iic(ng).ne.ntstart(ng)).and. & & MOD(iic(ng),CoupleSteps(Iatmos,ng)).eq.0) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL waves_coupling (ng, TILE) END DO END DO !$OMP END PARALLEL DO END IF # endif # ifdef NEARSHORE_MELLOR_NOT_YET ! !----------------------------------------------------------------------- ! Compute radiation stress terms. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_radiation_stress (ng, TILE) END DO END DO !$OMP END PARALLEL DO # endif ! !----------------------------------------------------------------------- ! Set vertical boundary conditions. Process tidal forcing. !----------------------------------------------------------------------- ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_set_vbc (ng, TILE) # if defined SSH_TIDES_NOT_YET || defined UV_TIDES_NOT_YET CALL rp_set_tides (ng, TILE) # endif END DO END DO !$OMP END PARALLEL DO # ifdef ADJUST_BOUNDARY ! !----------------------------------------------------------------------- ! Interpolate open boundary increments and adjust open boundaries. ! Skip the last output timestep. !----------------------------------------------------------------------- ! IF (iic(ng).lt.(ntend(ng)+1)) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_obc_adjust (ng, TILE, Lbinp(ng)) END DO END DO !$OMP END PARALLEL DO END IF # endif # ifdef ADJUST_WSTRESS ! !----------------------------------------------------------------------- ! Interpolate surface forcing increments and adjust surface forcing. ! Skip the last output timestep. !----------------------------------------------------------------------- ! IF (iic(ng).lt.(ntend(ng)+1)) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_frc_adjust (ng, TILE, Lfinp(ng)) END DO END DO !$OMP END PARALLEL DO END IF # endif ! !----------------------------------------------------------------------- ! If appropriate, write out fields into output NetCDF files. Notice ! that IO data is written in delayed and serial mode. Exit if last ! time step. !----------------------------------------------------------------------- ! CALL rp_output (ng) IF ((exit_flag.ne.NoError).or.(iic(ng).eq.(ntend(ng)+1))) RETURN ! !----------------------------------------------------------------------- ! Solve the vertically integrated primitive equations for the ! free-surface and momentum components. !----------------------------------------------------------------------- ! ! Set time indices for predictor step. The PREDICTOR_2D_STEP switch ! it is assumed to be false before the first time-step. ! iif(ng)=1 nfast(ng)=1 next_indx1=3-indx1(ng) IF (.not.PREDICTOR_2D_STEP(ng)) THEN PREDICTOR_2D_STEP(ng)=.TRUE. IF (FIRST_2D_STEP) THEN kstp(ng)=indx1(ng) ELSE kstp(ng)=3-indx1(ng) END IF knew(ng)=3 krhs(ng)=indx1(ng) END IF ! ! Predictor step - Advance barotropic equations using 2D time-step ! ============== predictor scheme. ! !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*(thread+1)-1,subs*thread,-1 CALL rp_step2d (ng, TILE) END DO END DO !$OMP END PARALLEL DO ! ! Set time indices for corrector step. ! IF (PREDICTOR_2D_STEP(ng)) THEN PREDICTOR_2D_STEP(ng)=.FALSE. knew(ng)=next_indx1 kstp(ng)=3-knew(ng) krhs(ng)=3 IF (iif(ng).lt.(nfast(ng)+1)) indx1(ng)=next_indx1 END IF ! ! Corrector step - Apply 2D time-step corrector scheme. Notice that ! ============== there is not need for a corrector step during the ! auxiliary (nfast+1) time-step. ! IF (iif(ng).lt.(nfast(ng)+1)) THEN !$OMP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL rp_step2d (ng, TILE) END DO END DO !$OMP END PARALLEL DO END IF # ifdef FLOATS_NOT_YET ! !----------------------------------------------------------------------- ! Compute Lagrangian drifters trajectories. !----------------------------------------------------------------------- ! IF (Lfloats(Ng)) THEN !$OMP PARALLEL DO PRIVATE(thread,chunk_size,Lstr,Lend) & !$OMP& SHARED(ng,numthreads,Nfloats) DO thread=0,numthreads-1 chunk_size=(Nfloats(ng)+numthreads-1)/numthreads Lstr=1+thread*chunk_size Lend=MIN(Nfloats(ng),Lstr+chunk_size-1) CALL rp_step_floats (ng, Lstr, Lend) END DO !$OMP END PARALLEL DO ! ! Shift floats time indices. ! nfp1(ng)=MOD(nfp1(ng)+1,NFT+1) nf(ng) =MOD(nf(ng) +1,NFT+1) nfm1(ng)=MOD(nfm1(ng)+1,NFT+1) nfm2(ng)=MOD(nfm2(ng)+1,NFT+1) nfm3(ng)=MOD(nfm3(ng)+1,NFT+1) END IF # endif RETURN END SUBROUTINE rp_main2d #else SUBROUTINE rp_main2d RETURN END SUBROUTINE rp_main2d #endif