#include "cppdefs.h" MODULE u3dbc_mod #ifdef SOLVE3D ! !svn $Id: u3dbc_ex.F 294 2009-01-09 21:37:26Z arango $ !======================================================================= ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for total 3D ! ! U-velocity. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: u3dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE u3dbc (ng, tile) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! integer, intent(in) :: ng, tile #include "tile.h" ! CALL u3dbc_tile (ng, Istr, Iend, Jstr, Jend, & & LBi, UBi, LBj, UBj, N(ng) & & nstp(ng), nnew(ng), & & OCEAN(ng) % u) RETURN END SUBROUTINE u3dbc ! !*********************************************************************** SUBROUTINE u3dbc_tile (ng, Istr, Iend, Jstr, Jend, & & LBi, UBi, LBj, UBj, UBk, & & nstp, nnew, & & u) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_grid USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, Iend, Istr, Jend, Jstr integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: nstp, nnew # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: u(LBi:,LBj:,:,:) # else real(r8), intent(inout) :: u(LBi:UBi,LBj:UBj,UBk,2) # endif ! ! Local variable declarations. ! integer :: IstrR, IendR, JstrR, JendR, IstrU, JstrV integer :: i, j, k real(r8), parameter :: eps = 1.0E-20_r8 real(r8) :: Ce, Cx, cff, dUde, dUdt, dUdx, tau real(r8), dimension(PRIVATE_2D_SCRATCH_ARRAY) :: grad # include "set_bounds.h" # ifndef EW_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (WESTERN_EDGE) THEN # if defined WEST_M3RADIATION ! ! Western edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO j=Jstr,Jend+1 grad(Istr ,j)=u(Istr ,j ,k,nstp)- & & u(Istr ,j-1,k,nstp) grad(Istr+1,j)=u(Istr+1,j ,k,nstp)- & & u(Istr+1,j-1,k,nstp) END DO DO j=Jstr,Jend dUdt=u(Istr+1,j,k,nstp)-u(Istr+1,j,k,nnew) dUdx=u(Istr+1,j,k,nstp)-u(Istr+2,j,k,nstp) # ifdef WEST_M3NUDGING tau=M3obc_out(ng,iwest) IF ((dUdt*dUdx).lt.0.0_r8) tau=M3obc_in(ng,iwest) tau=tau*dt(ng) # endif IF ((dUdt*dUdx).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(Istr+1,j)+grad(Istr+1,j+1))).gt.0.0_r8) THEN dUde=grad(Istr+1,j ) ELSE dUde=grad(Istr+1,j+1) END IF cff=dUdt/MAX(dUdx*dUdx+dUde*dUde,eps) Cx=MIN(1.0_r8,cff*dUdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dUde,-1.0_r8)) # else Ce=0.0_r8 # endif u(Istr,j,k,nnew)=(1.0_r8-Cx)*u(Istr,j,k,nstp)+ & & Cx*u(Istr+1,j,k,nstp)- & & MAX(Ce,0.0_r8)*grad(Istr,j )- & & MIN(Ce,0.0_r8)*grad(Istr,j+1) # ifdef WEST_M3NUDGING u(Istr,j,k,nnew)=u(Istr,j,k,nnew)+ & & tau*(BOUNDARY(ng)%u_west(j,k)- & & u(Istr,j,k,nstp)) # endif # ifdef MASKING u(Istr,j,k,nnew)=u(Istr,j,k,nnew)* & & GRID(ng)%umask(Istr,j) # endif END DO END DO # elif defined WEST_M3CLAMPED ! ! Western edge, clamped boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend u(Istr,j,k,nnew)=BOUNDARY(ng)%u_west(j,k) # ifdef MASKING u(Istr,j,k,nnew)=u(Istr,j,k,nnew)* & & GRID(ng)%umask(Istr,j) # endif END DO END DO # elif defined WEST_M3GRADIENT ! ! Western edge, gradient boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend u(Istr,j,k,nnew)=u(Istr+1,j,k,nnew) # ifdef MASKING u(Istr,j,k,nnew)=u(Istr,j,k,nnew)* & & GRID(ng)%umask(Istr,j) # endif END DO END DO # else ! ! Western edge, closed boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend u(Istr,j,k,nnew)=0.0_r8 END DO END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (EASTERN_EDGE) THEN # if defined EAST_M3RADIATION ! ! Eastern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO j=Jstr,Jend+1 grad(Iend ,j)=u(Iend ,j ,k,nstp)- & & u(Iend ,j-1,k,nstp) grad(Iend+1,j)=u(Iend+1,j ,k,nstp)- & & u(Iend+1,j-1,k,nstp) END DO DO j=Jstr,Jend dUdt=u(Iend,j,k,nstp)-u(Iend ,j,k,nnew) dUdx=u(Iend,j,k,nstp)-u(Iend-1,j,k,nstp) # ifdef EAST_M3NUDGING tau=M3obc_out(ng,ieast) IF ((dUdt*dUdx).lt.0.0_r8) tau=M3obc_in(ng,ieast) tau=tau*dt(ng) # endif IF ((dUdt*dUdx).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(Iend,j)+grad(Iend,j+1))).gt.0.0_r8) THEN dUde=grad(Iend,j ) ELSE dUde=grad(Iend,j+1) END IF cff=dUdt/MAX(dUdx*dUdx+dUde*dUde,eps) Cx=MIN(1.0_r8,cff*dUdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dUde,-1.0_r8)) # else Ce=0.0_r8 # endif u(Iend+1,j,k,nnew)=(1.0_r8-Cx)*u(Iend+1,j,k,nstp)+ & & Cx*u(Iend,j,k,nstp)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*grad(Iend+1,j+1) # ifdef EAST_M3NUDGING u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)+ & & tau*(BOUNDARY(ng)%u_east(j,k)- & & u(Iend+1,j,k,nstp)) # endif # ifdef MASKING u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)* & & GRID(ng)%umask(Iend+1,j) # endif END DO END DO # elif defined EAST_M3CLAMPED ! ! Eastern edge, clamped boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend u(Iend+1,j,k,nnew)=BOUNDARY(ng)%u_east(j,k) # ifdef MASKING u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)* & & GRID(ng)%umask(Iend+1,j) # endif END DO END DO # elif defined EAST_M3GRADIENT ! ! Eastern edge, gradient boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend u(Iend+1,j,k,nnew)=u(Iend,j,k,nnew) # ifdef MASKING u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)* & & GRID(ng)%umask(Iend+1,j) # endif END DO END DO # else ! ! Eastern edge, closed boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend u(Iend+1,j,k,nnew)=0.0_r8 END DO END DO # endif END IF # endif # ifndef NS_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (SOUTHERN_EDGE) THEN # if defined SOUTH_M3RADIATION ! ! Southern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO i=IstrU-1,Iend grad(i,Jstr-1)=u(i+1,Jstr-1,k,nstp)- & & u(i ,Jstr-1,k,nstp) grad(i,Jstr )=u(i+1,Jstr ,k,nstp)- & & u(i ,Jstr ,k,nstp) END DO DO i=IstrU,Iend dUdt=u(i,Jstr,k,nstp)-u(i,Jstr ,k,nnew) dUde=u(i,Jstr,k,nstp)-u(i,Jstr+1,k,nstp) # ifdef SOUTH_M3NUDGING tau=M3obc_out(ng,isouth) IF ((dUdt*dUde).lt.0.0_r8) tau=M3obc_in(ng,isouth) tau=tau*dt(ng) # endif IF ((dUdt*dUde).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(i-1,Jstr)+grad(i,Jstr))).gt.0.0_r8) THEN dUdx=grad(i-1,Jstr) ELSE dUdx=grad(i ,Jstr) END IF cff=dUdt/MAX(dUdx*dUdx+dUde*dUde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dUdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dUde) u(i,Jstr-1,k,nnew)=(1.0_r8-Ce)*u(i,Jstr-1,k,nstp)+ & & Ce*u(i,Jstr,k,nstp)- & & MAX(Cx,0.0_r8)*grad(i-1,Jstr-1)- & & MIN(Cx,0.0_r8)*grad(i ,Jstr-1) # ifdef SOUTH_M3NUDGING u(i,Jstr-1,k,nnew)=u(i,Jstr-1,k,nnew)+ & & tau*(BOUNDARY(ng)%u_south(i,k)- & & u(i,Jstr-1,k,nstp)) # endif # ifdef MASKING u(i,Jstr-1,k,nnew)=u(i,Jstr-1,k,nnew)* & & GRID(ng)%umask(i,Jstr-1) # endif END DO END DO # elif defined SOUTH_M3CLAMPED ! ! Southern edge, clamped boundary condition. ! DO k=1,N(ng) DO i=IstrU,Iend u(i,Jstr-1,k,nnew)=BOUNDARY(ng)%u_south(i,k) # ifdef MASKING u(i,Jstr-1,k,nnew)=u(i,Jstr-1,k,nnew)* & & GRID(ng)%umask(i,Jstr-1) # endif END DO END DO # elif defined SOUTH_M3GRADIENT ! ! Southern edge, gradient boundary condition. ! DO k=1,N(ng) DO i=IstrU,Iend u(i,Jstr-1,k,nnew)=u(i,Jstr,k,nnew) # ifdef MASKING u(i,Jstr-1,k,nnew)=u(i,Jstr-1,k,nnew)* & & GRID(ng)%umask(i,Jstr-1) # endif END DO END DO # else ! ! Southern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! # ifdef EW_PERIODIC # define I_RANGE IstrU,Iend # else # define I_RANGE Istr,IendR # endif DO k=1,N(ng) DO i=I_RANGE u(i,Jstr-1,k,nnew)=gamma2(ng)*u(i,Jstr,k,nnew) # ifdef MASKING u(i,Jstr-1,k,nnew)=u(i,Jstr-1,k,nnew)* & & GRID(ng)%umask(i,Jstr-1) # endif END DO END DO # undef I_RANGE # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (NORTHERN_EDGE) THEN # if defined NORTH_M3RADIATION ! ! Northern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO i=IstrU-1,Iend grad(i,Jend )=u(i+1,Jend ,k,nstp)- & & u(i ,Jend ,k,nstp) grad(i,Jend+1)=u(i+1,Jend+1,k,nstp)- & & u(i ,Jend+1,k,nstp) END DO DO i=IstrU,Iend dUdt=u(i,Jend,k,nstp)-u(i,Jend ,k,nnew) dUde=u(i,Jend,k,nstp)-u(i,Jend-1,k,nstp) # ifdef NORTH_M3NUDGING tau=M3obc_out(ng,inorth) IF ((dUdt*dUde).lt.0.0_r8) tau=M3obc_in(ng,inorth) tau=tau*dt(ng) # endif IF ((dUdt*dUde).lt.0.0_r8) dUdt=0.0_r8 IF ((dUdt*(grad(i-1,Jend)+grad(i,Jend))).gt.0.0_r8) THEN dUdx=grad(i-1,Jend) ELSE dUdx=grad(i ,Jend) END IF cff=dUdt/MAX(dUdx*dUdx+dUde*dUde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dUdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dUde) u(i,Jend+1,k,nnew)=(1.0_r8-Ce)*u(i,Jend+1,k,nstp)+ & & Ce*u(i,Jend,k,nstp)- & & MAX(Cx,0.0_r8)*grad(i-1,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i ,Jend+1) # ifdef NORTH_M3NUDGING u(i,Jend+1,k,nnew)=u(i,Jend+1,k,nnew)+ & & tau*(BOUNDARY(ng)%u_north(i,k)- & & u(i,Jend+1,k,nstp)) # endif # ifdef MASKING u(i,Jend+1,k,nnew)=u(i,Jend+1,k,nnew)* & & GRID(ng)%umask(i,Jend+1) # endif END DO END DO # elif defined NORTH_M3CLAMPED ! ! Northern edge, clamped boundary condition. ! DO k=1,N(ng) DO i=IstrU,Iend u(i,Jend+1,k,nnew)=BOUNDARY(ng)%u_north(i,k) # ifdef MASKING u(i,Jend+1,k,nnew)=u(i,Jend+1,k,nnew)* & & GRID(ng)%umask(i,Jend+1) # endif END DO END DO # elif defined NORTH_M3GRADIENT ! ! Northern edge, gradient boundary condition. ! DO k=1,N(ng) DO i=IstrU,Iend u(i,Jend+1,k,nnew)=u(i,Jend,k,nnew) # ifdef MASKING u(i,Jend+1,k,nnew)=u(i,Jend+1,k,nnew)* & & GRID(ng)%umask(i,Jend+1) # endif END DO END DO # else ! ! Northern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! # ifdef EW_PERIODIC # define I_RANGE IstrU,Iend # else # define I_RANGE Istr,IendR # endif DO k=1,N(ng) DO i=I_RANGE u(i,Jend+1,k,nnew)=gamma2(ng)*u(i,Jend,k,nnew) # ifdef MASKING u(i,Jend+1,k,nnew)=u(i,Jend+1,k,nnew)* & & GRID(ng)%umask(i,Jend+1) # endif END DO END DO # undef I_RANGE # endif END IF # endif # if !defined EW_PERIODIC && !defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF ((SOUTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=1,N(ng) u(Istr,Jstr-1,k,nnew)=0.5_r8*(u(Istr+1,Jstr-1,k,nnew)+ & & u(Istr ,Jstr ,k,nnew)) END DO END IF IF ((SOUTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=1,N(ng) u(Iend+1,Jstr-1,k,nnew)=0.5_r8*(u(Iend ,Jstr-1,k,nnew)+ & & u(Iend+1,Jstr ,k,nnew)) END DO END IF IF ((NORTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=1,N(ng) u(Istr,Jend+1,k,nnew)=0.5_r8*(u(Istr+1,Jend+1,k,nnew)+ & & u(Istr ,Jend ,k,nnew)) END DO END IF IF ((NORTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=1,N(ng) u(Iend+1,Jend+1,k,nnew)=0.5_r8*(u(Iend ,Jend+1,k,nnew)+ & & u(Iend+1,Jend ,k,nnew)) END DO END IF # endif RETURN END SUBROUTINE u3dbc_tile #endif END MODULE u3dbc_mod