#include "cppdefs.h" MODULE t3dbc_mod #ifdef SOLVE3D ! !svn $Id: t3dbc_ex.F 294 2009-01-09 21:37:26Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for the ITRC-th ! ! tracer field. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: t3dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE t3dbc (ng, tile, nout, itrc) !*********************************************************************** ! USE mod_param USE mod_ocean integer, intent(in) :: ng, tile, nout, itrc # include "tile.h" ! CALL t3dbc_tile (ng, Istr, Iend, Jstr, Jend, itrc, & & LBi, UBi, LBj, UBj, N(ng), NT(ng), & & nout, nstp(ng), & & OCEAN(ng)% t) RETURN END SUBROUTINE t3dbc ! !*********************************************************************** SUBROUTINE t3dbc_tile (ng, Istr, Iend, Jstr, Jend, itrc, & & LBi, UBi, LBj, UBj, UBk, UBt, & & nout, nstp, & & t) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod mask USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, Iend, Istr, Jend, Jstr, itrc integer, intent(in) :: LBi, UBi, LBj, UBj, UBk, UBt integer, intent(in) :: nout, nstp # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: t(LBi:,LBj:,:,:,:) # else real(r8), intent(inout) :: t(LBi:UBi,LBj:UBj,UBk,3,UBt) # endif ! ! Local variable declarations. ! integer :: IstrR, IendR, JstrR, JendR, IstrU, JstrV integer :: i, j, k real(r8), parameter :: eps =1.0E-20_r8 real(r8) :: Ce, Cx, cff, dTde, dTdt, dTdx, eps, tau real(r80, dimension(PRIVATE_2D_SCRATCH_ARRAY) :: grad # include "set_bounds.h" # ifndef EW_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (WESTERN_EDGE) THEN # if defined WEST_TRADIATION ! ! Western edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO j=Jstr,Jend+1 grad(Istr-1,j)=t(Istr-1,j ,k,nstp,itrc)- & & t(Istr-1,j-1,k,nstp,itrc) # ifdef MASKING grad(Istr-1,j)=grad(Istr-1,j)*GRID(ng)%vmask(Istr-1,j) # endif grad(Istr ,j)=t(Istr ,j ,k,nstp,itrc)- & & t(Istr ,j-1,k,nstp,itrc) # ifdef MASKING grad(Istr ,j)=grad(Istr ,j)*GRID(ng)%vmask(Istr ,j) # endif END DO DO j=Jstr,Jend dTdt=t(Istr,j,k,nstp,itrc)-t(Istr ,j,k,nout,itrc) dTdx=t(Istr,j,k,nstp,itrc)-t(Istr+1,j,k,nstp,itrc) # ifdef WEST_TNUDGING tau=Tobc_out(itrc,ng,iwest) IF ((dTdt*dTdx).lt.0.0_r8) tau=Tobc_in(itrc,ng,iwest) tau=tau*dt(ng) # endif IF ((dTdt*dTdx).lt.0.0_r8) dTdt=0.0_r8 IF ((dTdt*(grad(Istr,j)+grad(Istr,j+1))).gt.0.0_r8) THEN dTde=grad(Istr,j ) ELSE dTde=grad(Istr,j+1) END IF cff=dTdt/MAX(dTdx*dTdx+dTde*dTde,eps) Cx=MIN(1.0_r8,cff*dTdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dTde,-1.0_r8)) # else Ce=0.0_r8 # endif t(Istr-1,j,k,nout,itrc)=(1.0_r8-Cx)*t(Istr-1,j,k,nstp,itrc)+& & Cx*t(Istr,j,k,nstp,itrc )- & & MAX(Ce,0.0_r8)*grad(Istr-1,j )- & & MIN(Ce,0.0_r8)*grad(Istr-1,j+1) # ifdef WEST_TNUDGING & t(Istr-1,j,k,nout,itrc)=t(Istr-1,j,k,nout,itrc)+ & & tau*(BOUNDARY(ng)%t_west(j,k,itrc)- & & t(Istr-1,j,k,nstp,itrc)) # endif # ifdef MASKING t(Istr-1,j,k,nout,itrc)=t(Istr-1,j,k,nout,itrc)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO END DO # elif defined WEST_TCLAMPED ! ! Western edge, clamped boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend t(Istr-1,j,k,nout,itrc)=BOUNDARY(ng)%t_west(j,k,itrc) # ifdef MASKING t(Istr-1,j,k,nout,itrc)=t(Istr-1,j,k,nout,itrc)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO END DO # elif defined WEST_TGRADIENT ! ! Western edge, gradient boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend t(Istr-1,j,k,nout,itrc)=t(Istr,j,k,nout,itrc) # ifdef MASKING t(Istr-1,j,k,nout,itrc)=t(Istr-1,j,k,nout,itrc)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO END DO # else ! ! Western edge, closed boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend t(Istr-1,j,k,nout,itrc)=t(Istr,j,k,nout,itrc) # ifdef MASKING t(Istr-1,j,k,nout,itrc)=t(Istr-1,j,k,nout,itrc)* & & GRID(ng)%rmask(0,j) # endif END DO END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (EASTERN_EDGE) THEN # if defined EAST_TRADIATION ! ! Eastern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO j=Jstr,Jend+1 grad(Iend ,j)=t(Iend ,j ,k,nstp,itrc)- & & t(Iend ,j-1,k,nstp,itrc) # ifdef MASKING grad(Iend ,j)=grad(Iend ,j)*GRID(ng)%vmask(Iend ,j) # endif grad(Iend+1,j)=t(Iend+1,j ,k,nstp,itrc)- & & t(Iend+1,j-1,k,nstp,itrc) # ifdef MASKING grad(Iend+1,j)=grad(Iend+1,j)*GRID(ng)%vmask(Iend+1,j) # endif END DO DO j=Jstr,Jend dTdt=t(Iend,j,k,nstp,itrc)-t(Iend ,j,k,nout,itrc) dTdx=t(Iend,j,k,nstp,itrc)-t(Iend-1,j,k,nstp,itrc) # ifdef EAST_TNUDGING tau=Tobc_out(itrc,ng,ieast) IF ((dTdt*dTdx).lt.0.0_r8) tau=Tobc_in(itrc,ng,ieast) tau=tau*dt(ng) # endif IF ((dTdt*dTdx).lt.0.0_r8) dTdt=0.0_r8 IF ((dTdt*(grad(Iend,j)+grad(Iend,j+1))).gt.0.0_r8) THEN dTde=grad(Iend,j ) ELSE dTde=grad(Iend,j+1) END IF cff=dTdt/MAX(dTdx*dTdx+dTde*dTde,eps) Cx=MIN(1.0_r8,cff*dTdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dTde,-1.0_r8)) # else Ce=0.0_r8 # endif t(Iend+1,j,k,nout,itrc)=(1.0_r8-Cx)*t(Iend+1,j,k,nstp,itrc)+& & Cx*t(Iend,j,k,nstp,itrc)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*grad(Iend+1,j+1) # ifdef EAST_TNUDGING & t(Iend+1,j,k,nout,itrc)=t(Iend+1,j,k,nout,itrc)+ & & tau*(BOUNDARY(ng)%t_east(j,k,itrc)- & & t(Iend+1,j,k,nstp,itrc)) # endif # ifdef MASKING t(Iend+1,j,k,nout,itrc)=t(Iend+1,j,k,nout,itrc)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # elif defined EAST_TCLAMPED ! ! Eastern edge, clamped boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend t(Iend+1,j,k,nout,itrc)=BOUNDARY(ng)%t_east(j,k,itrc) # ifdef MASKING t(Iend+1,j,k,nout,itrc)=t(Iend+1,j,k,nout,itrc)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # elif defined EAST_TGRADIENT ! ! Eastern edge, gradient boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend t(Iend+1,j,k,nout,itrc)=t(Iend,j,k,nout,itrc) # ifdef MASKING t(Iend+1,j,k,nout,itrc)=t(Iend+1,j,k,nout,itrc)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # else ! ! Eastern edge, closed boundary condition. ! DO k=1,N(ng) DO j=Jstr,Jend t(Iend+1,j,k,nout,itrc)=t(Iend,j,k,nout,itrc) # ifdef MASKING t(Iend+1,j,k,nout,itrc)=t(Iend+1,j,k,nout,itrc)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # endif END IF # endif # ifndef NS_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (SOUTHERN_EDGE) THEN # if defined SOUTH_TRADIATION ! ! Southern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO i=Istr,Iend+1 grad(i,Jstr )=t(i ,Jstr ,k,nstp,itrc)- & & t(i-1,Jstr ,k,nstp,itrc) # ifdef MASKING grad(i,Jstr )=grad(i,Jstr )*GRID(ng)%umask(i,Jstr ) # endif grad(i,Jstr-1)=t(i ,Jstr-1,k,nstp,itrc)- & & t(i-1,Jstr-1,k,nstp,itrc) # ifdef MASKING grad(i,Jstr-1)=grad(i,Jstr-1)*GRID(ng)%umask(i,Jstr-1) # endif END DO DO i=Istr,Iend dTdt=t(i,Jstr,k,nstp,itrc)-t(i,Jstr ,k,nout,itrc) dTde=t(i,Jstr,k,nstp,itrc)-t(i,Jstr+1,k,nstp,itrc) # ifdef SOUTH_TNUDGING tau=Tobc_out(itrc,ng,isouth) IF ((dTdt*dTde).lt.0.0_r8) tau=Tobc_in(itrc,ng,isouth) tau=tau*dt(ng) # endif IF ((dTdt*dTde).lt.0.0_r8) dTdt=0.0_r8 IF ((dTdt*(grad(i,Jstr)+grad(i+1,Jstr))).gt.0.0_r8) THEN dTdx=grad(i ,Jstr) ELSE dTdx=grad(i+1,Jstr) END IF cff=dTdt/MAX(dTdx*dTdx+dTde*dTde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dTdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dTde) t(i,Jstr-1,k,nout,itrc)=(1.0_r8-Ce)*t(i,Jstr-1,k,nstp,itrc)+& & Ce*t(i,Jstr,k,nstp,itrc )- & & MAX(Cx,0.0_r8)*grad(i ,Jstr-1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr-1) # ifdef SOUTH_TNUDGING t(i,Jstr-1,k,nout,itrc)=t(i,Jstr-1,k,nout,itrc)+ & & tau*(BOUNDARY(ng)%t_south(i,k,itrc)-& & t(i,Jstr-1,k,nstp,itrc)) # endif # ifdef MASKING t(i,Jstr-1,k,nout,itrc)=t(i,Jstr-1,k,nout,itrc)* & & GRID(ng)%rmask(i,0) # endif END DO END DO # elif defined SOUTH_TCLAMPED ! ! Southern edge, clamped boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend t(i,Jstr-1,k,nout,itrc)=BOUNDARY(ng)%t_south(i,k,itrc) # ifdef MASKING t(i,Jstr-1,k,nout,itrc)=t(i,Jstr-1,k,nout,itrc)* & & GRID(ng)%rmask(i,0) # endif END DO END DO # elif defined SOUTH_TGRADIENT ! ! Southern edge, gradient boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend t(i,Jstr-1,k,nout,itrc)=t(i,Jstr,k,nout,itrc) # ifdef MASKING t(i,Jstr-1,k,nout,itrc)=t(i,Jstr-1,k,nout,itrc)* & & GRID(ng)%rmask(i,0) # endif END DO END DO # else ! ! Southern edge, closed boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend t(i,Jstr-1,k,nout,itrc)=t(i,Jstr,k,nout,itrc) # ifdef MASKING t(i,Jstr-1,k,nout,itrc)=t(i,Jstr-1,k,nout,itrc)* & & GRID(ng)%rmask(i,0) # endif END DO END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (NORTHERN_EDGE) THEN # if defined NORTH_TRADIATION ! ! Northern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO i=Istr,Iend+1 grad(i,Jend )=t(i ,Jend ,k,nstp,itrc)- & & t(i-1,Jend ,k,nstp,itrc) # ifdef MASKING grad(i,Jend )=grad(i,Jend )*GRID(ng)%umask(i,Jend ) # endif grad(i,Jend+1)=t(i ,Jend+1,k,nstp,itrc)- & & t(i-1,Jend+1,k,nstp,itrc) # ifdef MASKING grad(i,Jend+1)=grad(i,Jend+1)*GRID(ng)%umask(i,Jend+1) # endif END DO DO i=Istr,Iend dTdt=t(i,Jend,k,nstp,itrc)-t(i,Jend ,k,nout,itrc) dTde=t(i,Jend,k,nstp,itrc)-t(i,Jend-1,k,nstp,itrc) # ifdef NORTH_TNUDGING tau=Tobc_out(itrc,ng,inorth) IF ((dTdt*dTde).lt.0.0_r8) tau=Tobc_in(itrc,ng,inorth) tau=tau*dt(ng) # endif IF ((dTdt*dTde).lt.0.0_r8) dTdt=0.0_r8 IF ((dTdt*(grad(i,Jend)+grad(i+1,Jend))).gt.0.0_r8) THEN dTdx=grad(i ,Jend) ELSE dTdx=grad(i+1,Jend) END IF cff=dTdt/MAX(dTdx*dTdx+dTde*dTde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dTdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dTde) t(i,Jend+1,k,nout,itrc)=(1.0_r8-Ce)*t(i,Jend+1,k,nstp,itrc)+& & Ce*t(i,Jend,k,nstp,itrc)- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1) # ifdef NORTH_TNUDGING t(i,Jend+1,k,nout,itrc)=t(i,Jend+1,k,nout,itrc)+ & & tau*(BOUNDARY(ng)%t_north(i,k,itrc)-& & t(i,Jend+1,k,nstp,itrc)) # endif # ifdef MASKING t(i,Jend+1,k,nout,itrc)=t(i,Jend+1,k,nout,itrc)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # elif defined NORTH_TCLAMPED ! ! Northern edge, clamped boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend t(i,Jend+1,k,nout,itrc)=BOUNDARY(ng)%t_north(i,k,itrc) # ifdef MASKING t(i,Jend+1,k,nout,itrc)=t(i,Jend+1,k,nout,itrc)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # elif defined NORTH_TGRADIENT ! ! Northern edge, gradient boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend t(i,Jend+1,k,nout,itrc)=t(i,Jend,k,nout,itrc) # ifdef MASKING t(i,Jend+1,k,nout,itrc)=t(i,Jend+1,k,nout,itrc)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # else ! ! Northern edge, closed boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend t(i,Jend+1,k,nout,itrc)=t(i,Jend,k,nout,itrc) # ifdef MASKING t(i,Jend+1,k,nout,itrc)=t(i,Jend+1,k,nout,itrc)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # endif END IF # endif # if !defined EW_PERIODIC && !defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF ((SOUTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=1,N(ng) t(Istr-1,Jstr-1,k,nout,itrc)=0.5_r8* & & (t(Istr ,Jstr-1,k,nout,itrc)+ & & t(Istr-1,Jstr ,k,nout,itrc)) END DO END IF IF ((SOUTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=1,N(ng) t(Iend+1,Jstr-1,k,nout,itrc)=0.5_r8* & & (t(Iend ,Jstr-1,k,nout,itrc)+ & & t(Iend+1,Jstr ,k,nout,itrc)) END DO END IF IF ((NORTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=1,N(ng) t(Istr-1,Jend+1,k,nout,itrc)=0.5_r8* & & (t(Istr ,Jend+1,k,nout,itrc)+ & & t(Istr-1,Jend ,k,nout,itrc)) END DO END IF IF ((NORTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=1,N(ng) t(Iend+1,Jend+1,k,nout,itrc)=0.5_r8* & & (t(Iend ,Jend+1,k,nout,itrc)+ & & t(Iend+1,Jend ,k,nout,itrc)) END DO END IF # endif RETURN END SUBROUTINE t3dbc_tile #endif END MODULE t3dbc_mod