#include "cppdefs.h" MODULE tkebc #if defined SOLVE3D && (defined MY25_MIXING || defined GLS_MIXING) ! !svn $Id$ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This subroutine sets lateral boundary conditions for turbulent ! ! kinetic energy and turbulent length scale variables associated ! ! with the Mellor and Yamada or GOTM closures. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: tkebc_tile CONTAINS ! !*********************************************************************** SUBROUTINE tkebc (ng, tile, nout) !*********************************************************************** ! USE mod_param USE mod_mixing integer, intent(in) :: ng, tile, nout # include "tile.h" ! CALL tkebc_tile (ng, Istr, Iend, Jstr, Jend, & & LBi, UBi, LBj, UBj, N(ng), & & nout, nstp(ng), & & MIXING(ng)% gls, & & MIXING(ng)% tke) RETURN END SUBROUTINE tkebc ! !*********************************************************************** SUBROUTINE tkebc_tile (ng, Istr, Iend, Jstr, Jend, & & LBi, UBi, LBj, UBj, UBk, & & nout, nstp, & & gls, tke) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, Iend, Istr, Jend, Jstr integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: nout, nstp # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: gls(LBi:,LBj:,0:,:) real(r8), intent(inout) :: tke(LBi:,LBj:,0:,:) # else real(r8), intent(inout) :: gls(LBi:UBi,LBj:UBj,0:UBk,3) real(r8), intent(inout) :: tke(LBi:UBi,LBj:UBj,0:UBk,3) # endif ! ! Local variable declarations. ! integer :: IstrR, IendR, JstrR, JendR, IstrU, JstrV integer :: i, j, k real(r8), parameter :: eps = 1.0e-20_r8 real(r8) :: Ce, Cx, cff, dKde, dKdt, dKdx real(r8), dimension(PRIVATE_2D_SCRATCH_ARRAY) :: grad real(r8), dimension(PRIVATE_2D_SCRATCH_ARRAY) :: gradL # include "set_bounds.h" # ifndef EW_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (WESTERN_EDGE) THEN ! # if defined WEST_KRADIATION ! ! Western edge, implicit upstream radiation condition. ! DO k=0,N(ng) DO j=Jstr,Jend+1 grad(Istr-1,j)=tke(Istr-1,j ,k,nstp)- & & tke(Istr-1,j-1,k,nstp) # ifdef MASKING grad(Istr-1,j)=grad (Istr-1,j)*GRID(ng)%vmask(Istr-1,j) # endif grad(Istr ,j)=tke(Istr ,j ,k,nstp)- & & tke(Istr ,j-1,k,nstp) # ifdef MASKING grad(Istr ,j)=grad(Istr ,j)*GRID(ng)%vmask(Istr ,j) # endif gradL(Istr-1,j)=gls(Istr-1,j ,k,nstp)- & & gls(Istr-1,j-1,k,nstp) # ifdef MASKING gradL(Istr-1,j)=gradL(Istr-1,j)*GRID(ng)%vmask(Istr-1,j) # endif gradL(Istr ,j)=gls(Istr ,j ,k,nstp)- & & gls(Istr ,j-1,k,nstp) # ifdef MASKING gradL(Istr,j)=gradL(Istr,j)*GRID(ng)%vmask(Istr,j) # endif END DO DO j=Jstr,Jend dKdt=tke(Istr,j,k,nstp)-tke(Istr ,j,k,nout) dKdx=tke(Istr,j,k,nstp)-tke(istr+1,j,k,nstp) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(Istr,j)+grad(Istr,j+1))).gt.0.0_r8) THEN dKde=grad(Istr,j ) ELSE dKde=grad(Istr,j+1) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(1.0_r8,cff*dKdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dKde,-1.0_r8)) # else Ce=0.0_r8 # endif tke(Istr-1,j,k,nout)=(1.0_r8-Cx)*tke(Istr-1,j,k,nstp)+ & & Cx*tke(Istr,j,k,nstp)- & & MAX(Ce,0.0_r8)*grad(Istr-1,j )- & & MIN(Ce,0.0_r8)*grad(Istr-1,j+1) # ifdef MASKING tke(Istr-1,j,k,nout)=tke(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) # endif dKdt=gls(Istr,j,k,nstp)-gls(Istr ,j,k,nout) dKdx=gls(Istr,j,k,nstp)-gls(Istr+1,j,k,nstp) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(Istr,j)+gradL(Istr,j+1))).gt.0.0_r8) THEN dKde=gradL(Istr,j ) ELSE dKde=gradL(Istr,j+1) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(1.0_r8,cff*dKdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dKde,-1.0_r8)) # else Ce=0.0_r8 # endif gls(Istr-1,j,k,nout)=(1.0_r8-Cx)*gls(Istr-1,j,k,nstp)+ & & Cx*gls(Istr,j,k,nstp)- & & MAX(Ce,0.0_r8)*gradL(Istr-1,j )- & & MIN(Ce,0.0_r8)*gradL(Istr-1,j+1) # ifdef MASKING gls(Istr-1,j,k,nout)=gls(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO END DO # elif defined WEST_KGRADIENT ! ! Western edge, gradient boundary condition. ! DO k=0,N(ng) DO j=Jstr,Jend tke(Istr-1,j,k,nout)=tke(Istr,j,k,nout) # ifdef MASKING tke(Istr-1,j,k,nout)=tke(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) # endif gls(Istr-1,j,k,nout)=gls(Istr,j,k,nout) # ifdef MASKING gls(Istr-1,j,k,nout)=gls(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO END DO # else ! ! Western edge, closed boundary condition. ! DO k=0,N(ng) DO j=Jstr,Jend tke(Istr-1,j,k,nout)=tke(Istr,j,k,nout) # ifdef MASKING tke(Istr-1,j,k,nout)=tke(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) # endif gls(Istr-1,j,k,nout)=gls(Istr,j,k,nout) # ifdef MASKING gls(Istr-1,j,k,nout)=gls(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (EASTERN_EDGE) THEN ! # if defined EAST_KRADIATION ! ! Eastern edge, implicit upstream radiation condition. ! DO k=0,N(ng) DO j=Jstr,Jend+1 grad(Iend ,j)=tke(Iend ,j ,k,nstp)- & & tke(Iend ,j-1,k,nstp) # ifdef MASKING grad(Iend,j)=grad(Iend,j)*GRID(ng)%vmask(Iend,j) # endif grad(Iend+1,j)=tke(Iend+1,j ,k,nstp)- & & tke(Iend+1,j-1,k,nstp) # ifdef MASKING grad(Iend+1,j)=grad(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) # endif gradL(Iend ,j)=gls(Iend ,j ,k,nstp)- & & gls(Iend ,j-1,k,nstp) # ifdef MASKING gradL(Iend ,j)=gradL(Iend ,j)*GRID(ng)%vmask(Iend ,j) # endif gradL(Iend+1,j)=gls(Iend+1,j ,k,nstp)- & & gls(Iend+1,j-1,k,nstp) # ifdef MASKING gradL(Iend+1,j)=gradL(Iend+1,j)*GRID(ng)%vmask(Iend+1,j) # endif END DO DO j=Jstr,Jend dKdt=tke(Iend,j,k,nstp)-tke(Iend ,j,k,nout) dKdx=tke(Iend,j,k,nstp)-tke(Iend-1,j,k,nstp) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(Iend,j)+grad(Iend,j+1))).gt.0.0_r8) THEN dKde=grad(Iend,j ) ELSE dKde=grad(Iend,j+1) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(1.0_r8,cff*dKdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dKde,-1.0_r8)) # else Ce=0.0_r8 # endif tke(Iend+1,j,k,nout)=(1.0_r8-Cx)*tke(Iend+1,j,k,nstp)+ & & Cx*tke(Iend,j,k,nstp)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*grad(Iend+1,j+1) # ifdef MASKING tke(Iend+1,j,k,nout)=tke(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) # endif dKdt=gls(Iend,j,k,nstp)-gls(Iend ,j,k,nout) dKdx=gls(Iend,j,k,nstp)-gls(Iend-1,j,k,nstp) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(Iend,j)+gradL(Iend,j+1))).gt.0.0_r8) THEN dKde=gradL(Iend,j ) ELSE dKde=gradL(Iend,j+1) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(1.0_r8,cff*dKdx) # ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(cff*dKde,-1.0_r8)) # else Ce=0.0_r8 # endif gls(Iend+1,j,k,nout)=(1.0_r8-Cx)*gls(Iend+1,j,k,nstp)+ & & Cx*gls(Iend,j,k,nstp)- & & MAX(Ce,0.0_r8)*gradL(Iend+1,j )- & & MIN(Ce,0.0_r8)*gradL(Iend+1,j+1) # ifdef MASKING gls(Iend+1,j,k,nout)=gls(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # elif defined EAST_KGRADIENT ! ! Eastern edge, gradient boundary condition. ! DO k=0,N(ng) DO j=Jstr,Jend tke(Iend+1,j,k,nout)=tke(Iend,j,k,nout) # ifdef MASKING tke(Iend+1,j,k,nout)=tke(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) # endif gls(Iend+1,j,k,nout)=gls(Iend,j,k,nout) # ifdef MASKING gls(Iend+1,j,k,nout)=gls(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # else ! ! Eastern edge, closed boundary condition. ! DO k=0,N(ng) DO j=Jstr,Jend tke(Iend+1,j,k,nout)=tke(Iend,j,k,nout) # ifdef MASKING tke(Iend+1,j,k,nout)=tke(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) # endif gls(Iend+1,j,k,nout)=gls(Iend,j,k,nout) # ifdef MASKING gls(Iend+1,j,k,nout)=gls(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO END DO # endif END IF # endif # ifndef NS_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (SOUTHERN_EDGE) THEN ! # if defined SOUTH_KRADIATION ! ! Southern edge, implicit upstream radiation condition. ! DO k=0,N(ng) DO i=Istr,Iend+1 grad(i,Jstr )=tke(i ,Jstr ,k,nstp)- & & tke(i-1,Jstr ,k,nstp) # ifdef MASKING grad(i,Jstr )=grad(i,Jstr )*GRID(ng)%umask(i,Jstr ) # endif grad(i,Jstr-1)=tke(i ,Jstr-1,k,nstp)- & & tke(i-1,Jstr-1,k,nstp) # ifdef MASKING grad(i,Jstr-1)=grad(i,Jstr-1)*GRID(ng)%umask(i,Jstr-1) # endif gradL(i,Jstr )=gls(i ,Jstr ,k,nstp)- & & gls(i-1,Jstr ,k,nstp) # ifdef MASKING gradL(i,Jstr )=gradL(i,Jstr )*GRID(ng)%umask(i,Jstr ) # endif gradL(i,Jstr-1)=gls(i ,Jstr-1,k,nstp)- & & gls(i-1,Jstr-1,k,nstp) # ifdef MASKING gradL(i,Jstr-1)=gradL(i,Jstr-1)*GRID(ng)%umask(i,Jstr-1) # endif END DO DO i=Istr,Iend dKdt=tke(i,Jstr,k,nstp)-tke(i,Jstr ,k,nout) dKde=tke(i,Jstr,k,nstp)-tke(i,Jstr+1,k,nstp) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(i,Jstr)+grad(i+1,Jstr))).gt.0.0_r8) THEN dKdx=grad(i ,Jstr) ELSE dKdx=grad(i+1,Jstr) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dKdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dKde) tke(i,Jstr-1,k,nout)=(1.0_r8-Ce)*tke(i,Jstr-1,k,nstp)+ & & Ce*tke(i,Jstr,k,nstp)- & & MAX(Cx,0.0_r8)*grad(i ,Jstr-1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr-1) # ifdef MASKING tke(i,Jstr-1,k,nout)=tke(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) # endif dKdt=gls(i,Jstr,k,nstp)-gls(i,Jstr ,k,nout) dKde=gls(i,Jstr,k,nstp)-gls(i,Jstr+1,k,nstp) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(i,Jstr)+gradL(i+1,Jstr))).gt.0.0_r8) THEN dKdx=gradL(i ,Jstr) ELSE dKdx=gradL(i+1,Jstr) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dKdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dKde) gls(i,Jstr-1,k,nout)=(1.0_r8-Ce)*gls(i,Jstr-1,k,nstp)+ & & Ce*gls(i,Jstr,k,nstp)- & & MAX(Cx,0.0_r8)*gradL(i ,Jstr-1)- & & MIN(Cx,0.0_r8)*gradL(i+1,Jstr-1) # ifdef MASKING gls(i,Jstr-1,k,nout)=gls(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO END DO # elif defined SOUTH_KGRADIENT ! ! Southern edge, gradient boundary condition. ! DO k=0,N(ng) DO i=Istr,Iend tke(i,Jstr-1,k,nout)=tke(i,Jstr,k,nout) # ifdef MASKING tke(i,Jstr-1,k,nout)=tke(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) # endif gls(i,Jstr-1,k,nout)=gls(i,Jstr,k,nout) # ifdef MASKING gls(i,Jstr-1,k,nout)=gls(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO END DO # else ! ! Southern edge, closed boundary condition. ! DO k=0,N(ng) DO i=Istr,Iend tke(i,Jstr-1,k,nout)=tke(i,Jstr,k,nout) # ifdef MASKING tke(i,Jstr-1,k,nout)=tke(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) # endif gls(i,Jstr-1,k,nout)=gls(i,Jstr,k,nout) # ifdef MASKING gls(i,Jstr-1,k,nout)=gls(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (NORTHERN_EDGE) THEN ! # if defined NORTH_KRADIATION ! ! Northern edge, implicit upstream radiation condition. ! DO k=0,N(ng) DO i=Istr,Iend+1 grad(i,Jend )=tke(i ,Jend ,k,nstp)- & & tke(i-1,Jend ,k,nstp) # ifdef MASKING grad(i,Jend )=grad(i,Jend )*GRID(ng)%umask(i,Jend ) # endif grad(i,Jend+1)=tke(i ,Jend+1,k,nstp)- & & tke(i-1,Jend+1,k,nstp) # ifdef MASKING grad(i,Jend+1)=grad(i,Jend+1)*GRID(ng)%umask(i,Jend+1) # endif gradL(i,Jend )=gls(i ,Jend ,k,nstp)- & & gls(i-1,Jend ,k,nstp) # ifdef MASKING gradL(i,Jend )=gradL(i,Jend )*GRID(ng)%umask(i,Jend ) # endif gradL(i,Jend+1)=gls(i ,Jend+1,k,nstp)- & & gls(i-1,Jend+1,k,nstp) # ifdef MASKING gradL(i,Jend+1)=gradL(i,Jend+1)*GRID(ng)%umask(i,Jend+1) # endif END DO DO i=Istr,Iend dKdt=tke(i,Jend,k,nstp)-tke(i,Jend ,k,nout) dKde=tke(i,Jend,k,nstp)-tke(i,Jend-1,k,nstp) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(i,Jend)+grad(i+1,Jend))).gt.0.0_r8) THEN dKdx=grad(i ,Jend) ELSE dKdx=grad(i+1,Jend) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dKdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dKde) tke(i,Jend+1,k,nout)=(1.0_r8-Ce)*tke(i,Jend+1,k,nstp)+ & & Ce*tke(i,Jend,k,nstp)- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1) # ifdef MASKING tke(i,Jend+1,k,nout)=tke(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) # endif dKdt=gls(i,Jend,k,nstp)-gls(i,Jend ,k,nout) dKde=gls(i,Jend,k,nstp)-gls(i,Jend-1,k,nstp) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(i ,Jend)+gradL(i+1,Jend))).gt.0.0_r8) THEN dKdx=gradL(i ,Jend) ELSE dKdx=gradL(i+1,Jend) END IF cff=dKdt/MAX(dKdx*dKdx+dKde*dKde,eps) # ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(cff*dKdx,-1.0_r8)) # else Cx=0.0_r8 # endif Ce=MIN(1.0_r8,cff*dKde) gls(i,Jend+1,k,nout)=(1.0_r8-Ce)*gls(i,Jend+1,k,nstp)+ & & Ce*gls(i,Jend,k,nstp)- & & MAX(Cx,0.0_r8)*gradL(i ,Jend+1)- & & MIN(Cx,0.0_r8)*gradL(i+1,Jend+1) # ifdef MASKING gls(i,Jend+1,k,nout)=gls(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # elif defined NORTH_KGRADIENT ! ! Northern edge, gradient boundary condition. ! DO k=0,N(ng) DO i=Istr,Iend tke(i,Jend+1,k,nout)=tke(i,Jend,k,nout) # ifdef MASKING tke(i,Jend+1,k,nout)=tke(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) # endif gls(i,Jend+1,k,nout)=gls(i,Jend,k,nout) # ifdef MASKING gls(i,Jend+1,k,nout)=gls(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # else ! ! Northern edge, closed boundary condition. ! DO k=0,N(ng) DO i=Istr,Iend tke(i,Jend+1,k,nout)=tke(i,Jend,k,nout) # ifdef MASKING tke(i,Jend+1,k,nout)=tke(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) # endif gls(i,Jend+1,k,nout)=gls(i,Jend,k,nout) # ifdef MASKING gls(i,Jend+1,k,nout)=gls(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO END DO # endif END IF # endif # if !defined EW_PERIODIC && !defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF ((SOUTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=0,N(ng) tke(Istr-1,Jstr-1,k,nout)=0.5_r8*(tke(Istr ,Jstr-1,k,nout)+ & & tke(Istr-1,Jstr ,k,nout)) gls(Istr-1,Jstr-1,k,nout)=0.5_r8*(gls(Istr ,Jstr-1,k,nout)+ & & gls(Istr-1,Jstr ,k,nout)) END DO END IF IF ((SOUTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=0,N(ng) tke(Iend+1,Jstr-1,k,nout)=0.5_r8*(tke(Iend ,Jstr-1,k,nout)+ & & tke(Iend+1,Jstr ,k,nout)) gls(Iend+1,Jstr-1,k,nout)=0.5_r8*(gls(Iend ,Jstr-1,k,nout)+ & & gls(Iend+1,Jstr ,k,nout)) END DO END IF IF ((NORTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=0,N(ng) tke(Istr-1,Jend+1,k,nout)=0.5_r8*(tke(Istr ,Jend+1,k,nout)+ & & tke(Istr-1,Jend ,k,nout)) gls(Istr-1,Jend+1,k,nout)=0.5_r8*(gls(Istr ,Jend+1,k,nout)+ & & gls(Istr-1,Jend ,k,nout)) END DO END IF IF ((NORTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=0,N(ng) tke(Iend+1,Jend+1,k,nout)=0.5_r8*(tke(Iend ,Jend+1,k,nout)+ & & tke(Iend+1,Jend ,k,nout)) gls(Iend+1,Jend+1,k,nout)=0.5_r8*(gls(Iend ,Jend+1,k,nout)+ & & gls(Iend+1,Jend ,k,nout)) END DO END IF # endif RETURN END SUBROUTINE tkebc #endif END MODULE tkebc_mod