#include "cppdefs.h" MODULE step3d_uv_mod #if defined NONLINEAR && defined SOLVE3D ! !svn $Id: step3d_uv.F 381 2009-08-11 19:50:39Z arango $ !======================================================================= ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license Hernan G. Arango ! ! See License_ROMS.txt Alexander F. Shchepetkin ! !==================================================== John C. Warner === ! ! ! This subroutine time-steps the nonlinear horizontal momentum ! ! equations. The vertical viscosity terms are time-stepped using ! ! an implicit algorithm. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: step3d_uv CONTAINS ! !*********************************************************************** SUBROUTINE step3d_uv (ng, tile) !*********************************************************************** ! USE mod_param USE mod_coupling # ifdef DIAGNOSTICS_UV USE mod_diags # endif USE mod_forces USE mod_grid USE mod_mixing USE mod_ocean # ifdef UV_PSOURCE USE mod_sources # endif USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! # include "tile.h" ! # ifdef PROFILE CALL wclock_on (ng, iNLM, 34) # endif CALL step3d_uv_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nstp(ng), nnew(ng), & # ifdef UV_PSOURCE & Msrc(ng), Nsrc(ng), & & SOURCES(ng) % Isrc, & & SOURCES(ng) % Jsrc, & & SOURCES(ng) % Dsrc, & & SOURCES(ng) % Qsrc, & # endif # ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & # endif # ifdef WET_DRY & GRID(ng) % umask_wet, & & GRID(ng) % vmask_wet, & # endif & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % Hz, & & GRID(ng) % z_r, & & GRID(ng) % z_w, & & MIXING(ng) % Akv, & & COUPLING(ng) % DU_avg1, & & COUPLING(ng) % DV_avg1, & & COUPLING(ng) % DU_avg2, & & COUPLING(ng) % DV_avg2, & & OCEAN(ng) % ru, & & OCEAN(ng) % rv, & # ifdef DIAGNOSTICS_UV & DIAGS(ng) % DiaU2wrk, & & DIAGS(ng) % DiaV2wrk, & & DIAGS(ng) % DiaU2int, & & DIAGS(ng) % DiaV2int, & & DIAGS(ng) % DiaU3wrk, & & DIAGS(ng) % DiaV3wrk, & & DIAGS(ng) % DiaRU, & & DIAGS(ng) % DiaRV, & # endif & OCEAN(ng) % u, & & OCEAN(ng) % v, & & OCEAN(ng) % ubar, & & OCEAN(ng) % vbar, & # ifdef NEARSHORE_MELLOR & OCEAN(ng) % ubar_stokes, & & OCEAN(ng) % vbar_stokes, & & OCEAN(ng) % u_stokes, & & OCEAN(ng) % v_stokes, & # endif & GRID(ng) % Huon, & & GRID(ng) % Hvom) # ifdef PROFILE CALL wclock_off (ng, iNLM, 34) # endif RETURN END SUBROUTINE step3d_uv ! !*********************************************************************** SUBROUTINE step3d_uv_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nstp, nnew, & # ifdef UV_PSOURCE & Msrc, Nsrc, & & Isrc, Jsrc, Dsrc, Qsrc, & # endif # ifdef MASKING & umask, vmask, & # endif # ifdef WET_DRY & umask_wet, vmask_wet, & # endif & om_v, on_u, pm, pn, & & Hz, z_r, z_w, & & Akv, & & DU_avg1, DV_avg1, & & DU_avg2, DV_avg2, & & ru, rv, & # ifdef DIAGNOSTICS_UV & DiaU2wrk, DiaV2wrk, & & DiaU2int, DiaV2int, & & DiaU3wrk, DiaV3wrk, & & DiaRU, DiaRV, & # endif & u, v, & & ubar, vbar, & # ifdef NEARSHORE_MELLOR & ubar_stokes, vbar_stokes, & & u_stokes, v_stokes, & # endif & Huon, Hvom) !*********************************************************************** ! USE mod_param USE mod_scalars ! # if defined EW_PERIODIC || defined NS_PERIODIC USE exchange_2d_mod USE exchange_3d_mod # endif # ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : mp_exchange2d, mp_exchange3d # endif USE u3dbc_mod, ONLY : u3dbc_tile USE v3dbc_mod, ONLY : v3dbc_tile ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nstp, nnew # ifdef UV_PSOURCE integer, intent(in) :: Msrc, Nsrc # endif ! # ifdef ASSUMED_SHAPE # ifdef UV_PSOURCE integer, intent(in) :: Isrc(:) integer, intent(in) :: Jsrc(:) real(r8), intent(in) :: Dsrc(:) real(r8), intent(in) :: Qsrc(:,:) # endif # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif # ifdef WET_DRY real(r8), intent(in) :: umask_wet(LBi:,LBj:) real(r8), intent(in) :: vmask_wet(LBi:,LBj:) # endif real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: Akv(LBi:,LBj:,0:) real(r8), intent(in) :: DU_avg1(LBi:,LBj:) real(r8), intent(in) :: DV_avg1(LBi:,LBj:) real(r8), intent(in) :: DU_avg2(LBi:,LBj:) real(r8), intent(in) :: DV_avg2(LBi:,LBj:) real(r8), intent(in) :: ru(LBi:,LBj:,0:,:) real(r8), intent(in) :: rv(LBi:,LBj:,0:,:) # ifdef NEARSHORE_MELLOR real(r8), intent(in) :: ubar_stokes(LBi:,LBj:) real(r8), intent(in) :: vbar_stokes(LBi:,LBj:) # endif # ifdef DIAGNOSTICS_UV real(r8), intent(inout) :: DiaU2wrk(LBi:,LBj:,:) real(r8), intent(inout) :: DiaV2wrk(LBi:,LBj:,:) real(r8), intent(inout) :: DiaU2int(LBi:,LBj:,:) real(r8), intent(inout) :: DiaV2int(LBi:,LBj:,:) real(r8), intent(inout) :: DiaU3wrk(LBi:,LBj:,:,:) real(r8), intent(inout) :: DiaV3wrk(LBi:,LBj:,:,:) real(r8), intent(inout) :: DiaRU(LBi:,LBj:,:,:,:) real(r8), intent(inout) :: DiaRV(LBi:,LBj:,:,:,:) # endif real(r8), intent(inout) :: u(LBi:,LBj:,:,:) real(r8), intent(inout) :: v(LBi:,LBj:,:,:) # ifdef NEARSHORE_MELLOR real(r8), intent(inout) :: u_stokes(LBi:,LBj:,:) real(r8), intent(inout) :: v_stokes(LBi:,LBj:,:) # endif real(r8), intent(out) :: ubar(LBi:,LBj:,:) real(r8), intent(out) :: vbar(LBi:,LBj:,:) real(r8), intent(out) :: Huon(LBi:,LBj:,:) real(r8), intent(out) :: Hvom(LBi:,LBj:,:) # else # ifdef UV_PSOURCE integer, intent(in) :: Isrc(Msrc) integer, intent(in) :: Jsrc(Msrc) real(r8), intent(in) :: Dsrc(Msrc) real(r8), intent(in) :: Qsrc(Msrc,N(ng)) # endif # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif # ifdef WET_DRY real(r8), intent(in) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask_wet(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: Akv(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: DU_avg1(LBi:UBi,LBj:UBj) real(r8), intent(in) :: DV_avg1(LBi:UBi,LBj:UBj) real(r8), intent(in) :: DU_avg2(LBi:UBi,LBj:UBj) real(r8), intent(in) :: DV_avg2(LBi:UBi,LBj:UBj) real(r8), intent(in) :: ru(LBi:UBi,LBj:UBj,0:N(ng),2) real(r8), intent(in) :: rv(LBi:UBi,LBj:UBj,0:N(ng),2) # ifdef NEARSHORE_MELLOR real(r8), intent(in) :: ubar_stokes(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vbar_stokes(LBi:UBi,LBj:UBj) # endif # ifdef DIAGNOSTICS_UV real(r8), intent(inout) :: DiaU2wrk(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaV2wrk(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaU2int(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaV2int(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaU3wrk(LBi:UBi,LBj:UBj,N(ng),NDM3d) real(r8), intent(inout) :: DiaV3wrk(LBi:UBi,LBj:UBj,N(ng),NDM3d) real(r8), intent(inout) :: DiaRU(LBi:UBi,LBj:UBj,N(ng),2,NDrhs) real(r8), intent(inout) :: DiaRV(LBi:UBi,LBj:UBj,N(ng),2,NDrhs) # endif real(r8), intent(inout) :: u(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(inout) :: v(LBi:UBi,LBj:UBj,N(ng),2) # ifdef NEARSHORE_MELLOR real(r8), intent(inout) :: u_stokes(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(inout) :: v_stokes(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(out) :: ubar(LBi:UBi,LBj:UBj,3) real(r8), intent(out) :: vbar(LBi:UBi,LBj:UBj,3) real(r8), intent(out) :: Huon(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(out) :: Hvom(LBi:UBi,LBj:UBj,N(ng)) # endif ! ! Local variable declarations. ! # ifdef DISTRIBUTE # ifdef EW_PERIODIC logical :: EWperiodic=.TRUE. # else logical :: EWperiodic=.FALSE. # endif # ifdef NS_PERIODIC logical :: NSperiodic=.TRUE. # else logical :: NSperiodic=.FALSE. # endif # endif integer :: i, idiag, is, j, k real(r8) :: cff, cff1, cff2 real(r8), dimension(IminS:ImaxS,0:N(ng)) :: AK real(r8), dimension(IminS:ImaxS,0:N(ng)) :: BC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: CF real(r8), dimension(IminS:ImaxS,0:N(ng)) :: DC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: FC # ifdef NEARSHORE_MELLOR real(r8), dimension(IminS:ImaxS,0:N(ng)) :: CFs real(r8), dimension(IminS:ImaxS,0:N(ng)) :: DCs # endif real(r8), dimension(IminS:ImaxS,N(ng)) :: Hzk real(r8), dimension(IminS:ImaxS,N(ng)) :: oHz # ifdef DIAGNOSTICS_UV real(r8), dimension(IminS:ImaxS,0:N(ng)) :: wrk real(r8), dimension(IminS:ImaxS,1:NDM2d-1) :: Dwrk # endif # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Time step momentum equation in the XI-direction. !----------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend AK(i,0)=0.5_r8*(Akv(i-1,j,0)+ & & Akv(i ,j,0)) DO k=1,N(ng) AK(i,k)=0.5_r8*(Akv(i-1,j,k)+ & & Akv(i ,j,k)) Hzk(i,k)=0.5_r8*(Hz(i-1,j,k)+ & & Hz(i ,j,k)) # if defined SPLINES || defined DIAGNOSTICS_UV oHz(i,k)=1.0_r8/Hzk(i,k) # endif END DO END DO ! ! Time step right-hand-side terms. ! IF (iic(ng).eq.ntfirst(ng)) THEN cff=0.25_r8*dt(ng) ELSE IF (iic(ng).eq.(ntfirst(ng)+1)) THEN cff=0.25_r8*dt(ng)*3.0_r8/2.0_r8 ELSE cff=0.25_r8*dt(ng)*23.0_r8/12.0_r8 END IF DO i=IstrU,Iend DC(i,0)=cff*(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) END DO DO k=1,N(ng) DO i=IstrU,Iend u(i,j,k,nnew)=u(i,j,k,nnew)+ & & DC(i,0)*ru(i,j,k,nrhs) # ifdef SPLINES u(i,j,k,nnew)=u(i,j,k,nnew)*oHz(i,k) # endif # ifdef DIAGNOSTICS_UV DiaU3wrk(i,j,k,M3pgrd)=(DiaU3wrk(i,j,k,M3pgrd)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3pgrd))* & & oHz(i,k) # ifdef UV_COR DiaU3wrk(i,j,k,M3fcor)=(DiaU3wrk(i,j,k,M3fcor)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3fcor))* & & oHz(i,k) # endif # if defined UV_VIS2 || defined UV_VIS4 DiaU3wrk(i,j,k,M3hvis)=DiaU3wrk(i,j,k,M3hvis)*oHz(i,k) # endif # ifdef UV_ADV DiaU3wrk(i,j,k,M3hadv)=(DiaU3wrk(i,j,k,M3hadv)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3hadv))* & & oHz(i,k) DiaU3wrk(i,j,k,M3vadv)=(DiaU3wrk(i,j,k,M3vadv)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3vadv))* & & oHz(i,k) # endif # ifdef NEARSHORE_MELLOR DiaU3wrk(i,j,k,M3hrad)=(DiaU3wrk(i,j,k,M3hrad)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3hrad))* & & oHz(i,k) DiaU3wrk(i,j,k,M3vrad)=(DiaU3wrk(i,j,k,M3vrad)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3vrad))* & & oHz(i,k) # endif DiaU3wrk(i,j,k,M3vvis)=DiaU3wrk(i,j,k,M3vvis)*oHz(i,k) # ifdef BODYFORCE DiaU3wrk(i,j,k,M3vvis)=DiaU3wrk(i,j,k,M3vvis)+ & & DC(i,0)*DiaRU(i,j,k,nrhs,M3vvis)* & & oHz(i,k) # endif DiaU3wrk(i,j,k,M3rate)=DiaU3wrk(i,j,k,M3rate)*oHz(i,k) # endif END DO END DO # ifdef SPLINES ! ! Use conservative, parabolic spline reconstruction of vertical ! viscosity derivatives. Then, time step vertical viscosity term ! implicitly by solving a tridiagonal system. ! cff1=1.0_r8/6.0_r8 DO k=1,N(ng)-1 DO i=IstrU,Iend FC(i,k)=cff1*Hzk(i,k )-dt(ng)*AK(i,k-1)*oHz(i,k ) CF(i,k)=cff1*Hzk(i,k+1)-dt(ng)*AK(i,k+1)*oHz(i,k+1) END DO END DO DO i=IstrU,Iend CF(i,0)=0.0_r8 DC(i,0)=0.0_r8 END DO ! ! LU decomposition and forward substitution. ! cff1=1.0_r8/3.0_r8 DO k=1,N(ng)-1 DO i=IstrU,Iend BC(i,k)=cff1*(Hzk(i,k)+Hzk(i,k+1))+ & & dt(ng)*AK(i,k)*(oHz(i,k)+oHz(i,k+1)) cff=1.0_r8/(BC(i,k)-FC(i,k)*CF(i,k-1)) CF(i,k)=cff*CF(i,k) DC(i,k)=cff*(u(i,j,k+1,nnew)-u(i,j,k,nnew)- & & FC(i,k)*DC(i,k-1)) END DO END DO ! ! Backward substitution. ! DO i=IstrU,Iend DC(i,N(ng))=0.0_r8 END DO DO k=N(ng)-1,1,-1 DO i=IstrU,Iend DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) END DO END DO ! DO k=1,N(ng) DO i=IstrU,Iend DC(i,k)=DC(i,k)*AK(i,k) cff=dt(ng)*oHz(i,k)*(DC(i,k)-DC(i,k-1)) u(i,j,k,nnew)=u(i,j,k,nnew)+cff # ifdef DIAGNOSTICS_UV DiaU3wrk(i,j,k,M3vvis)=DiaU3wrk(i,j,k,M3vvis)+cff # endif END DO END DO # else ! ! Compute off-diagonal coefficients [lambda*dt*Akv/Hz] for the ! implicit vertical viscosity term at horizontal U-points and ! vertical W-points. ! cff=-lambda*dt(ng)/0.5_r8 DO k=1,N(ng)-1 DO i=IstrU,Iend cff1=1.0_r8/(z_r(i,j,k+1)+z_r(i-1,j,k+1)- & & z_r(i,j,k )-z_r(i-1,j,k )) FC(i,k)=cff*cff1*AK(i,k) END DO END DO DO i=IstrU,Iend FC(i,0)=0.0_r8 FC(i,N(ng))=0.0_r8 END DO ! ! Solve the tridiagonal system. ! DO k=1,N(ng) DO i=IstrU,Iend DC(i,k)=u(i,j,k,nnew) BC(i,k)=Hzk(i,k)-FC(i,k)-FC(i,k-1) END DO END DO DO i=IstrU,Iend cff=1.0_r8/BC(i,1) CF(i,1)=cff*FC(i,1) DC(i,1)=cff*DC(i,1) END DO DO k=2,N(ng)-1 DO i=IstrU,Iend cff=1.0_r8/(BC(i,k)-FC(i,k-1)*CF(i,k-1)) CF(i,k)=cff*FC(i,k) DC(i,k)=cff*(DC(i,k)-FC(i,k-1)*DC(i,k-1)) END DO END DO ! ! Compute new solution by back substitution. ! DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV wrk(i,N(ng))=u(i,j,N(ng),nnew)*oHz(i,N(ng)) # endif DC(i,N(ng))=(DC(i,N(ng))-FC(i,N(ng)-1)*DC(i,N(ng)-1))/ & & (BC(i,N(ng))-FC(i,N(ng)-1)*CF(i,N(ng)-1)) u(i,j,N(ng),nnew)=DC(i,N(ng)) # ifdef DIAGNOSTICS_UV DiaU3wrk(i,j,N(ng),M3vvis)=DiaU3wrk(i,j,N(ng),M3vvis)+ & & u(i,j,N(ng),nnew)-wrk(i,N(ng)) # endif END DO DO k=N(ng)-1,1,-1 DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV wrk(i,k)=u(i,j,k,nnew)*oHz(i,k) # endif DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) u(i,j,k,nnew)=DC(i,k) # ifdef DIAGNOSTICS_UV DiaU3wrk(i,j,k,M3vvis)=DiaU3wrk(i,j,k,M3vvis)+ & & u(i,j,k,nnew)-wrk(i,k) # endif END DO END DO # endif ! ! Replace INTERIOR POINTS incorrect vertical mean with more accurate ! barotropic component, ubar=DU_avg1/(D*on_u). Recall that, D=CF(:,0). ! DO i=IstrU,Iend CF(i,0)=Hzk(i,1) DC(i,0)=u(i,j,1,nnew)*Hzk(i,1) # ifdef NEARSHORE_MELLOR DCs(i,0)=u_stokes(i,j,1)*Hzk(i,1) # endif # ifdef DIAGNOSTICS_UV Dwrk(i,M2pgrd)=DiaU3wrk(i,j,1,M3pgrd)*Hzk(i,1) Dwrk(i,M2bstr)=DiaU3wrk(i,j,1,M3vvis)*Hzk(i,1) # ifdef UV_COR Dwrk(i,M2fcor)=DiaU3wrk(i,j,1,M3fcor)*Hzk(i,1) # endif # if defined UV_VIS2 || defined UV_VIS4 Dwrk(i,M2hvis)=DiaU3wrk(i,j,1,M3hvis)*Hzk(i,1) # endif # ifdef UV_ADV Dwrk(i,M2hadv)=DiaU3wrk(i,j,1,M3hadv)*Hzk(i,1) # endif # ifdef NEARSHORE_MELLOR Dwrk(i,M2hrad)=DiaU3wrk(i,j,1,M3hrad)*Hzk(i,1) # endif # endif END DO DO k=2,N(ng) DO i=IstrU,Iend CF(i,0)=CF(i,0)+Hzk(i,k) DC(i,0)=DC(i,0)+u(i,j,k,nnew)*Hzk(i,k) # ifdef NEARSHORE_MELLOR DCs(i,0)=DCs(i,0)+u_stokes(i,j,k)*Hzk(i,k) # endif # ifdef DIAGNOSTICS_UV Dwrk(i,M2pgrd)=Dwrk(i,M2pgrd)+ & & DiaU3wrk(i,j,k,M3pgrd)*Hzk(i,k) Dwrk(i,M2bstr)=Dwrk(i,M2bstr)+ & & DiaU3wrk(i,j,k,M3vvis)*Hzk(i,k) # ifdef UV_COR Dwrk(i,M2fcor)=Dwrk(i,M2fcor)+ & & DiaU3wrk(i,j,k,M3fcor)*Hzk(i,k) # endif # if defined UV_VIS2 || defined UV_VIS4 Dwrk(i,M2hvis)=Dwrk(i,M2hvis)+ & & DiaU3wrk(i,j,k,M3hvis)*Hzk(i,k) # endif # ifdef UV_ADV Dwrk(i,M2hadv)=Dwrk(i,M2hadv)+ & & DiaU3wrk(i,j,k,M3hadv)*Hzk(i,k) # endif # ifdef NEARSHORE_MELLOR Dwrk(i,M2hrad)=Dwrk(i,M2hrad)+ & & DiaU3wrk(i,j,k,M3hrad)*Hzk(i,k) # endif # endif END DO END DO DO i=IstrU,Iend cff1=1.0_r8/(CF(i,0)*on_u(i,j)) DC(i,0)=(DC(i,0)*on_u(i,j)-DU_avg1(i,j))*cff1 ! recursive # ifdef NEARSHORE_MELLOR cff2=1.0_r8/CF(i,0) DCs(i,0)=DCs(i,0)*cff2-ubar_stokes(i,j) ! recursive # endif # ifdef DIAGNOSTICS_UV Dwrk(i,M2pgrd)=(Dwrk(i,M2pgrd)*on_u(i,j)- & & DiaU2wrk(i,j,M2pgrd))*cff1 Dwrk(i,M2bstr)=(Dwrk(i,M2bstr)*on_u(i,j)- & & DiaU2wrk(i,j,M2bstr)-DiaU2wrk(i,j,M2sstr))* & & cff1 # ifdef UV_COR Dwrk(i,M2fcor)=(Dwrk(i,M2fcor)*on_u(i,j)- & & DiaU2wrk(i,j,M2fcor))*cff1 # endif # if defined UV_VIS2 || defined UV_VIS4 Dwrk(i,M2hvis)=(Dwrk(i,M2hvis)*on_u(i,j)- & & DiaU2wrk(i,j,M2hvis))*cff1 # endif # ifdef UV_ADV Dwrk(i,M2hadv)=(Dwrk(i,M2hadv)*on_u(i,j)- & & DiaU2wrk(i,j,M2hadv))*cff1 # endif # ifdef NEARSHORE_MELLOR Dwrk(i,M2hrad)=(Dwrk(i,M2hrad)*on_u(i,j)- & & DiaU2wrk(i,j,M2hrad))*cff1 # endif # endif END DO ! ! Couple and update new solution. ! DO k=1,N(ng) DO i=IstrU,Iend u(i,j,k,nnew)=u(i,j,k,nnew)-DC(i,0) # ifdef MASKING u(i,j,k,nnew)=u(i,j,k,nnew)*umask(i,j) # endif # ifdef WET_DRY u(i,j,k,nnew)=u(i,j,k,nnew)*umask_wet(i,j) # endif # ifdef NEARSHORE_MELLOR u_stokes(i,j,k)=u_stokes(i,j,k)-DCs(i,0) # ifdef MASKING u_stokes(i,j,k)=u_stokes(i,j,k)*umask(i,j) # endif # ifdef WET_DRY u_stokes(i,j,k)=u_stokes(i,j,k)*umask_wet(i,j) # endif # endif # ifdef DIAGNOSTICS_UV DiaU3wrk(i,j,k,M3pgrd)=DiaU3wrk(i,j,k,M3pgrd)- & & Dwrk(i,M2pgrd) DiaU3wrk(i,j,k,M3vvis)=DiaU3wrk(i,j,k,M3vvis)- & & Dwrk(i,M2bstr) # ifdef UV_COR DiaU3wrk(i,j,k,M3fcor)=DiaU3wrk(i,j,k,M3fcor)- & & Dwrk(i,M2fcor) # endif # if defined UV_VIS2 || defined UV_VIS4 DiaU3wrk(i,j,k,M3hvis)=DiaU3wrk(i,j,k,M3hvis)- & & Dwrk(i,M2hvis) # endif # ifdef UV_ADV DiaU3wrk(i,j,k,M3hadv)=DiaU3wrk(i,j,k,M3hadv)- & & Dwrk(i,M2hadv) # endif # ifdef NEARSHORE_MELLOR DiaU3wrk(i,j,k,M3hrad)=DiaU3wrk(i,j,k,M3hrad)- & & Dwrk(i,M2hrad) # endif # endif END DO END DO ! !----------------------------------------------------------------------- ! Time step momentum equation in the ETA-direction. !----------------------------------------------------------------------- ! IF (j.ge.JstrV) THEN DO i=Istr,Iend AK(i,0)=0.5_r8*(Akv(i,j-1,0)+ & & Akv(i,j ,0)) DO k=1,N(ng) AK(i,k)=0.5_r8*(Akv(i,j-1,k)+ & & Akv(i,j ,k)) Hzk(i,k)=0.5_r8*(Hz(i,j-1,k)+ & & Hz(i,j ,k)) # if defined SPLINES || defined DIAGNOSTICS_UV oHz(i,k)=1.0_r8/Hzk(i,k) # endif END DO END DO ! ! Time step right-hand-side terms. ! IF (iic(ng).eq.ntfirst(ng)) THEN cff=0.25_r8*dt(ng) ELSE IF (iic(ng).eq.(ntfirst(ng)+1)) THEN cff=0.25_r8*dt(ng)*3.0_r8/2.0_r8 ELSE cff=0.25_r8*dt(ng)*23.0_r8/12.0_r8 END IF DO i=Istr,Iend DC(i,0)=cff*(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) END DO DO k=1,N(ng) DO i=Istr,Iend v(i,j,k,nnew)=v(i,j,k,nnew)+DC(i,0)*rv(i,j,k,nrhs) # ifdef SPLINES v(i,j,k,nnew)=v(i,j,k,nnew)*oHz(i,k) # endif # ifdef DIAGNOSTICS_UV DiaV3wrk(i,j,k,M3pgrd)=(DiaV3wrk(i,j,k,M3pgrd)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3pgrd))*& & oHz(i,k) # ifdef UV_COR DiaV3wrk(i,j,k,M3fcor)=(DiaV3wrk(i,j,k,M3fcor)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3fcor))* & & oHz(i,k) # endif # if defined UV_VIS2 || defined UV_VIS4 DiaV3wrk(i,j,k,M3hvis)=DiaV3wrk(i,j,k,M3hvis)*oHz(i,k) # endif # ifdef UV_ADV DiaV3wrk(i,j,k,M3hadv)=(DiaV3wrk(i,j,k,M3hadv)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3hadv))*& & oHz(i,k) DiaV3wrk(i,j,k,M3vadv)=(DiaV3wrk(i,j,k,M3vadv)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3vadv))*& & oHz(i,k) # endif # ifdef NEARSHORE_MELLOR DiaV3wrk(i,j,k,M3hrad)=(DiaV3wrk(i,j,k,M3hrad)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3hrad))*& & oHz(i,k) DiaV3wrk(i,j,k,M3vrad)=(DiaV3wrk(i,j,k,M3vrad)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3vrad))*& & oHz(i,k) # endif DiaV3wrk(i,j,k,M3vvis)=DiaV3wrk(i,j,k,M3vvis)*oHz(i,k) # ifdef BODYFORCE DiaV3wrk(i,j,k,M3vvis)=DiaV3wrk(i,j,k,M3vvis)+ & & DC(i,0)*DiaRV(i,j,k,nrhs,M3vvis)* & & oHz(i,k) # endif DiaV3wrk(i,j,k,M3rate)=DiaV3wrk(i,j,k,M3rate)*oHz(i,k) # endif END DO END DO # ifdef SPLINES ! ! Use conservative, parabolic spline reconstruction of vertical ! viscosity derivatives. Then, time step vertical viscosity term ! implicitly by solving a tridiagonal system. ! cff1=1.0_r8/6.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=cff1*Hzk(i,k )-dt(ng)*AK(i,k-1)*oHz(i,k ) CF(i,k)=cff1*Hzk(i,k+1)-dt(ng)*AK(i,k+1)*oHz(i,k+1) END DO END DO DO i=Istr,Iend CF(i,0)=0.0_r8 DC(i,0)=0.0_r8 END DO ! ! LU decomposition and forward substitution. ! cff1=1.0_r8/3.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend BC(i,k)=cff1*(Hzk(i,k)+Hzk(i,k+1))+ & & dt(ng)*AK(i,k)*(oHz(i,k)+oHz(i,k+1)) cff=1.0_r8/(BC(i,k)-FC(i,k)*CF(i,k-1)) CF(i,k)=cff*CF(i,k) DC(i,k)=cff*(v(i,j,k+1,nnew)-v(i,j,k,nnew)- & & FC(i,k)*DC(i,k-1)) END DO END DO ! ! Backward substitution. ! DO i=Istr,Iend DC(i,N(ng))=0.0_r8 END DO DO k=N(ng)-1,1,-1 DO i=Istr,Iend DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) END DO END DO ! DO k=1,N(ng) DO i=Istr,Iend DC(i,k)=DC(i,k)*AK(i,k) cff=dt(ng)*oHz(i,k)*(DC(i,k)-DC(i,k-1)) v(i,j,k,nnew)=v(i,j,k,nnew)+cff # ifdef DIAGNOSTICS_UV DiaV3wrk(i,j,k,M3vvis)=DiaV3wrk(i,j,k,M3vvis)+cff # endif END DO END DO # else ! ! Compute off-diagonal coefficients [lambda*dt*Akv/Hz] for the ! implicit vertical viscosity term at horizontal V-points and ! vertical W-points. ! cff=-lambda*dt(ng)/0.5_r8 DO k=1,N(ng)-1 DO i=Istr,Iend cff1=1.0_r8/(z_r(i,j,k+1)+z_r(i,j-1,k+1)- & & z_r(i,j,k )-z_r(i,j-1,k )) FC(i,k)=cff*cff1*AK(i,k) END DO END DO DO i=Istr,Iend FC(i,0)=0.0_r8 FC(i,N(ng))=0.0_r8 END DO ! ! Solve the tridiagonal system. ! DO k=1,N(ng) DO i=Istr,Iend DC(i,k)=v(i,j,k,nnew) BC(i,k)=Hzk(i,k)-FC(i,k)-FC(i,k-1) END DO END DO DO i=Istr,Iend cff=1.0_r8/BC(i,1) CF(i,1)=cff*FC(i,1) DC(i,1)=cff*DC(i,1) END DO DO k=2,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(BC(i,k)-FC(i,k-1)*CF(i,k-1)) CF(i,k)=cff*FC(i,k) DC(i,k)=cff*(DC(i,k)-FC(i,k-1)*DC(i,k-1)) END DO END DO ! ! Compute new solution by back substitution. ! DO i=Istr,Iend # ifdef DIAGNOSTICS_UV wrk(i,N(ng))=v(i,j,N(ng),nnew)*oHz(i,N(ng)) # endif DC(i,N(ng))=(DC(i,N(ng))-FC(i,N(ng)-1)*DC(i,N(ng)-1))/ & & (BC(i,N(ng))-FC(i,N(ng)-1)*CF(i,N(ng)-1)) v(i,j,N(ng),nnew)=DC(i,N(ng)) # ifdef DIAGNOSTICS_UV DiaV3wrk(i,j,N(ng),M3vvis)=DiaV3wrk(i,j,N(ng),M3vvis)+ & & v(i,j,N(ng),nnew)-wrk(i,N(ng)) # endif END DO DO k=N(ng)-1,1,-1 DO i=Istr,Iend # ifdef DIAGNOSTICS_UV wrk(i,k)=v(i,j,k,nnew)*oHz(i,k) # endif DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) v(i,j,k,nnew)=DC(i,k) # ifdef DIAGNOSTICS_UV DiaV3wrk(i,j,k,M3vvis)=DiaV3wrk(i,j,k,M3vvis)+ & & v(i,j,k,nnew)-wrk(i,k) # endif END DO END DO # endif ! ! Replace INTERIOR POINTS incorrect vertical mean with more accurate ! barotropic component, vbar=DV_avg1/(D*om_v). Recall that, D=CF(:,0). ! DO i=Istr,Iend CF(i,0)=Hzk(i,1) DC(i,0)=v(i,j,1,nnew)*Hzk(i,1) # ifdef NEARSHORE_MELLOR DCs(i,0)=v_stokes(i,j,1)*Hzk(i,1) # endif # ifdef DIAGNOSTICS_UV Dwrk(i,M2pgrd)=DiaV3wrk(i,j,1,M3pgrd)*Hzk(i,1) Dwrk(i,M2bstr)=DiaV3wrk(i,j,1,M3vvis)*Hzk(i,1) # ifdef UV_COR Dwrk(i,M2fcor)=DiaV3wrk(i,j,1,M3fcor)*Hzk(i,1) # endif # if defined UV_VIS2 || defined UV_VIS4 Dwrk(i,M2hvis)=DiaV3wrk(i,j,1,M3hvis)*Hzk(i,1) # endif # ifdef UV_ADV Dwrk(i,M2hadv)=DiaV3wrk(i,j,1,M3hadv)*Hzk(i,1) # endif # ifdef NEARSHORE_MELLOR Dwrk(i,M2hrad)=DiaV3wrk(i,j,1,M3hrad)*Hzk(i,1) # endif # endif END DO DO k=2,N(ng) DO i=Istr,Iend CF(i,0)=CF(i,0)+Hzk(i,k) DC(i,0)=DC(i,0)+v(i,j,k,nnew)*Hzk(i,k) # ifdef NEARSHORE_MELLOR DCs(i,0)=DCs(i,0)+v_stokes(i,j,k)*Hzk(i,k) # endif # ifdef DIAGNOSTICS_UV Dwrk(i,M2pgrd)=Dwrk(i,M2pgrd)+ & & DiaV3wrk(i,j,k,M3pgrd)*Hzk(i,k) Dwrk(i,M2bstr)=Dwrk(i,M2bstr)+ & & DiaV3wrk(i,j,k,M3vvis)*Hzk(i,k) # ifdef UV_COR Dwrk(i,M2fcor)=Dwrk(i,M2fcor)+ & & DiaV3wrk(i,j,k,M3fcor)*Hzk(i,k) # endif # if defined UV_VIS2 || defined UV_VIS4 Dwrk(i,M2hvis)=Dwrk(i,M2hvis)+ & & DiaV3wrk(i,j,k,M3hvis)*Hzk(i,k) # endif # ifdef UV_ADV Dwrk(i,M2hadv)=Dwrk(i,M2hadv)+ & & DiaV3wrk(i,j,k,M3hadv)*Hzk(i,k) # endif # ifdef NEARSHORE_MELLOR Dwrk(i,M2hrad)=Dwrk(i,M2hrad)+ & & DiaV3wrk(i,j,k,M3hrad)*Hzk(i,k) # endif # endif END DO END DO DO i=Istr,Iend cff1=1.0_r8/(CF(i,0)*om_v(i,j)) DC(i,0)=(DC(i,0)*om_v(i,j)-DV_avg1(i,j))*cff1 ! recursive # ifdef NEARSHORE_MELLOR cff2=1.0_r8/CF(i,0) DCs(i,0)=DCs(i,0)*cff2-vbar_stokes(i,j) ! recursive # endif # ifdef DIAGNOSTICS_UV Dwrk(i,M2pgrd)=(Dwrk(i,M2pgrd)*om_v(i,j)- & & DiaV2wrk(i,j,M2pgrd))*cff1 Dwrk(i,M2bstr)=(Dwrk(i,M2bstr)*om_v(i,j)- & & DiaV2wrk(i,j,M2bstr)-DiaV2wrk(i,j,M2sstr))* & & cff1 # ifdef UV_COR Dwrk(i,M2fcor)=(Dwrk(i,M2fcor)*om_v(i,j)- & & DiaV2wrk(i,j,M2fcor))*cff1 # endif # if defined UV_VIS2 || defined UV_VIS4 Dwrk(i,M2hvis)=(Dwrk(i,M2hvis)*om_v(i,j)- & & DiaV2wrk(i,j,M2hvis))*cff1 # endif # ifdef UV_ADV Dwrk(i,M2hadv)=(Dwrk(i,M2hadv)*om_v(i,j)- & & DiaV2wrk(i,j,M2hadv))*cff1 # endif # ifdef NEARSHORE_MELLOR Dwrk(i,M2hrad)=(Dwrk(i,M2hrad)*om_v(i,j)- & & DiaV2wrk(i,j,M2hrad))*cff1 # endif # endif END DO ! ! Couple and update new solution. ! DO k=1,N(ng) DO i=Istr,Iend v(i,j,k,nnew)=v(i,j,k,nnew)-DC(i,0) # ifdef MASKING v(i,j,k,nnew)=v(i,j,k,nnew)*vmask(i,j) # endif # ifdef WET_DRY v(i,j,k,nnew)=v(i,j,k,nnew)*vmask_wet(i,j) # endif # ifdef NEARSHORE_MELLOR v_stokes(i,j,k)=v_stokes(i,j,k)-DCs(i,0) # ifdef MASKING v_stokes(i,j,k)=v_stokes(i,j,k)*vmask(i,j) # endif # ifdef WET_DRY v_stokes(i,j,k)=v_stokes(i,j,k)*vmask_wet(i,j) # endif # endif # ifdef DIAGNOSTICS_UV DiaV3wrk(i,j,k,M3pgrd)=DiaV3wrk(i,j,k,M3pgrd)- & & Dwrk(i,M2pgrd) DiaV3wrk(i,j,k,M3vvis)=DiaV3wrk(i,j,k,M3vvis)- & & Dwrk(i,M2bstr) # ifdef UV_COR DiaV3wrk(i,j,k,M3fcor)=DiaV3wrk(i,j,k,M3fcor)- & & Dwrk(i,M2fcor) # endif # if defined UV_VIS2 || defined UV_VIS4 DiaV3wrk(i,j,k,M3hvis)=DiaV3wrk(i,j,k,M3hvis)- & & Dwrk(i,M2hvis) # endif # ifdef UV_ADV DiaV3wrk(i,j,k,M3hadv)=DiaV3wrk(i,j,k,M3hadv)- & & Dwrk(i,M2hadv) # endif # ifdef NEARSHORE_MELLOR DiaV3wrk(i,j,k,M3hrad)=DiaV3wrk(i,j,k,M3hrad)- & & Dwrk(i,M2hrad) # endif # endif END DO END DO END IF END DO ! !----------------------------------------------------------------------- ! Set lateral boundary conditions. !----------------------------------------------------------------------- ! CALL u3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & nstp, nnew, & & u) CALL v3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & nstp, nnew, & & v) # ifdef UV_PSOURCE ! !----------------------------------------------------------------------- ! Apply mass point sources. !----------------------------------------------------------------------- ! DO is=1,Nsrc i=Isrc(is) j=Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN IF (INT(Dsrc(is)).eq.0) THEN DO k=1,N(ng) cff1=1.0_r8/(on_u(i,j)* & & 0.5_r8*(z_w(i-1,j,k)-z_w(i-1,j,k-1)+ & & z_w(i ,j,k)-z_w(i ,j,k-1))) u(i,j,k,nnew)=Qsrc(is,k)*cff1 END DO ELSE DO k=1,N(ng) cff1=1.0_r8/(om_v(i,j)* & & 0.5_r8*(z_w(i,j-1,k)-z_w(i,j-1,k-1)+ & & z_w(i,j ,k)-z_w(i,j ,k-1))) v(i,j,k,nnew)=Qsrc(is,k)*cff1 END DO END IF END IF END DO # endif ! !----------------------------------------------------------------------- ! Couple 2D and 3D momentum equations. !----------------------------------------------------------------------- ! # ifdef EW_PERIODIC # define IU_RANGE Istr,Iend # define IV_RANGE Istr,Iend # else # define IU_RANGE Istr,IendR # define IV_RANGE IstrR,IendR # endif # ifdef NS_PERIODIC # define JU_RANGE Jstr,Jend # define JV_RANGE Jstr,Jend # else # define JU_RANGE JstrR,JendR # define JV_RANGE Jstr,JendR # endif ! ! Couple velocity component in the XI-direction. ! DO j=JU_RANGE DO i=IU_RANGE DC(i,0)=0.0_r8 CF(i,0)=0.0_r8 # ifdef NEARSHORE_MELLOR CFs(i,0)=0.0_r8 # endif FC(i,0)=0.0_r8 END DO ! ! Compute thicknesses of U-boxes DC(i,1:N), total depth of the water ! column DC(i,0), and incorrect vertical mean CF(i,0). Notice that ! barotropic component is replaced with its fast-time averaged ! values. ! DO k=1,N(ng) DO i=IU_RANGE cff=0.5_r8*on_u(i,j) DC(i,k)=cff*(Hz(i,j,k)+Hz(i-1,j,k)) DC(i,0)=DC(i,0)+DC(i,k) CF(i,0)=CF(i,0)+ & & DC(i,k)*u(i,j,k,nnew) # ifdef NEARSHORE_MELLOR CFs(i,0)=CFs(i,0)+ & & DC(i,k)*u_stokes(i,j,k) # endif END DO END DO DO i=IU_RANGE cff1=DC(i,0) ! intermediate # ifdef NEARSHORE_MELLOR ! cff2=on_u(i,j)*DC(i,0)*ubar_stokes(i,j) cff2=DC(i,0)*ubar_stokes(i,j) # endif DC(i,0)=1.0_r8/DC(i,0) ! recursive CF(i,0)=DC(i,0)*(CF(i,0)-DU_avg1(i,j)) ! recursive # ifdef NEARSHORE_MELLOR CFs(i,0)=DC(i,0)*(CFs(i,0)-cff2) ! recursive # endif ubar(i,j,1)=DC(i,0)*DU_avg1(i,j) ubar(i,j,2)=ubar(i,j,1) # ifdef DIAGNOSTICS_UV DiaU2wrk(i,j,M2rate)=ubar(i,j,1)-DiaU2int(i,j,M2rate)*DC(i,0) DiaU2int(i,j,M2rate)=ubar(i,j,1)*cff1 # endif END DO # ifdef DIAGNOSTICS_UV ! ! Convert the units of the fast-time integrated change in mass flux ! diagnostic values to change in velocity (m s-1). ! DO idiag=1,NDM2d-1 DO i=IU_RANGE DiaU2wrk(i,j,idiag)=DC(i,0)*DiaU2wrk(i,j,idiag) END DO END DO # endif ! ! Replace only BOUNDARY POINTS incorrect vertical mean with more ! accurate barotropic component, ubar=DU_avg1/(D*on_u). Recall that, ! D=CF(:,0). ! ! NOTE: Only the BOUNDARY POINTS need to be replaced. Avoid redundant ! update in the interior again for computational purposes which ! will not affect the nonlinear code. However, the adjoint ! code is wrong because the interior solution is corrected ! twice. ! # ifndef EW_PERIODIC IF (Istr.eq.1)THEN DO k=1,N(ng) u(Istr,j,k,nnew)=u(Istr,j,k,nnew)-CF(Istr,0) # ifdef MASKING u(Istr,j,k,nnew)=u(Istr,j,k,nnew)*umask(Istr,j) # endif # ifdef WET_DRY u(Istr,j,k,nnew)=u(Istr,j,k,nnew)*umask_wet(Istr,j) # endif # ifdef NEARSHORE_MELLOR u_stokes(Istr,j,k)=u_stokes(Istr,j,k)-CFs(Istr,0) # ifdef MASKING u_stokes(Istr,j,k)=u_stokes(Istr,j,k)*umask(Istr,j) # endif # ifdef WET_DRY u_stokes(Istr,j,k)=u_stokes(Istr,j,k)*umask_wet(Istr,j) # endif # endif END DO END IF IF (Iend.eq.Lm(ng)) THEN DO k=1,N(ng) u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)-CF(Iend+1,0) # ifdef MASKING u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)*umask(Iend+1,j) # endif # ifdef WET_DRY u(Iend+1,j,k,nnew)=u(Iend+1,j,k,nnew)*umask_wet(Iend+1,j) # endif # ifdef NEARSHORE_MELLOR u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)-CFs(Iend+1,0) # ifdef MASKING u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)*umask(Iend+1,j) # endif # ifdef WET_DRY u_stokes(Iend+1,j,k)=u_stokes(Iend+1,j,k)*umask_wet(Iend+1,j) # endif # endif END DO END IF # endif # ifndef NS_PERIODIC IF (j.eq.0) THEN DO k=1,N(ng) DO i=IstrU,Iend u(i,j,k,nnew)=u(i,j,k,nnew)-CF(i,0) # ifdef MASKING u(i,j,k,nnew)=u(i,j,k,nnew)*umask(i,j) # endif # ifdef WET_DRY u(i,j,k,nnew)=u(i,j,k,nnew)*umask_wet(i,j) # endif # ifdef NEARSHORE_MELLOR u_stokes(i,j,k)=u_stokes(i,j,k)-CFs(i,0) # ifdef MASKING u_stokes(i,j,k)=u_stokes(i,j,k)*umask(i,j) # endif # ifdef WET_DRY u_stokes(i,j,k)=u_stokes(i,j,k)*umask_wet(i,j) # endif # endif END DO END DO END IF IF (j.eq.Mm(ng)+1) THEN DO k=1,N(ng) DO i=IstrU,Iend u(i,j,k,nnew)=u(i,j,k,nnew)-CF(i,0) # ifdef MASKING u(i,j,k,nnew)=u(i,j,k,nnew)*umask(i,j) # endif # ifdef WET_DRY u(i,j,k,nnew)=u(i,j,k,nnew)*umask_wet(i,j) # endif # ifdef NEARSHORE_MELLOR u_stokes(i,j,k)=u_stokes(i,j,k)-CFs(i,0) # ifdef MASKING u_stokes(i,j,k)=u_stokes(i,j,k)*umask(i,j) # endif # ifdef WET_DRY u_stokes(i,j,k)=u_stokes(i,j,k)*umask_wet(i,j) # endif # endif END DO END DO END IF # endif ! ! Compute correct mass flux, Hz*u/n. ! DO k=N(ng),1,-1 DO i=IU_RANGE Huon(i,j,k)=0.5_r8*(Huon(i,j,k)+u(i,j,k,nnew)*DC(i,k)) # ifdef NEARSHORE_MELLOR Huon(i,j,k)=Huon(i,j,k)+0.5_r8*u_stokes(i,j,k)*DC(i,k) # endif FC(i,0)=FC(i,0)+Huon(i,j,k) # ifdef DIAGNOSTICS_UV DiaU3wrk(i,j,k,M3rate)=u(i,j,k,nnew)-DiaU3wrk(i,j,k,M3rate) # endif END DO END DO DO i=IU_RANGE FC(i,0)=DC(i,0)*(FC(i,0)-DU_avg2(i,j)) ! recursive END DO DO k=1,N(ng) DO i=IU_RANGE Huon(i,j,k)=Huon(i,j,k)-DC(i,k)*FC(i,0) END DO END DO ! ! Couple velocity component in the ETA-direction. ! IF (j.ge.Jstr) THEN DO i=IV_RANGE DC(i,0)=0.0_r8 CF(i,0)=0.0_r8 # ifdef NEARSHORE_MELLOR CFs(i,0)=0.0_r8 # endif FC(i,0)=0.0_r8 END DO ! ! Compute thicknesses of V-boxes DC(i,1:N), total depth of the water ! column DC(i,0), and incorrect vertical mean CF(i,0). Notice that ! barotropic component is replaced with its fast-time averaged ! values. ! DO k=1,N(ng) DO i=IV_RANGE cff=0.5_r8*om_v(i,j) DC(i,k)=cff*(Hz(i,j,k)+Hz(i,j-1,k)) DC(i,0)=DC(i,0)+DC(i,k) CF(i,0)=CF(i,0)+ & & DC(i,k)*v(i,j,k,nnew) # ifdef NEARSHORE_MELLOR CFs(i,0)=CFs(i,0)+ & & DC(i,k)*v_stokes(i,j,k) # endif END DO END DO DO i=IV_RANGE cff1=DC(i,0) ! Intermediate # ifdef NEARSHORE_MELLOR ! cff2=om_v(i,j)*DC(i,0)*vbar_stokes(i,j) cff2=DC(i,0)*vbar_stokes(i,j) # endif DC(i,0)=1.0_r8/DC(i,0) ! recursive CF(i,0)=DC(i,0)*(CF(i,0)-DV_avg1(i,j)) ! recursive # ifdef NEARSHORE_MELLOR CFs(i,0)=DC(i,0)*(CFs(i,0)-cff2) ! recursive # endif vbar(i,j,1)=DC(i,0)*DV_avg1(i,j) vbar(i,j,2)=vbar(i,j,1) # ifdef DIAGNOSTICS_UV DiaV2wrk(i,j,M2rate)=vbar(i,j,1)- & & DiaV2int(i,j,M2rate)*DC(i,0) DiaV2int(i,j,M2rate)=vbar(i,j,1)*cff1 !! DiaV2wrk(i,j,M2rate)=vbar(i,j,1)-DiaV2int(i,j,M2rate) !! DiaV2int(i,j,M2rate)=vbar(i,j,1) # endif END DO # ifdef DIAGNOSTICS_UV ! ! Convert the units of the fast-time integrated change in mass flux ! diagnostic values to change in velocity (m s-1). ! DO idiag=1,NDM2d-1 DO i=IV_RANGE DiaV2wrk(i,j,idiag)=DC(i,0)*DiaV2wrk(i,j,idiag) END DO END DO # endif ! ! Replace only BOUNDARY POINTS incorrect vertical mean with more ! accurate barotropic component, vbar=DV_avg1/(D*om_v). Recall that, ! D=CF(:,0). ! ! NOTE: Only the BOUNDARY POINTS need to be replaced. Avoid redundant ! update in the interior again for computational purposes which ! will not affect the nonlinear code. However, the adjoint ! code is wrong because the interior solution is corrected ! twice. ! # ifndef EW_PERIODIC IF (Istr.eq.1) THEN DO k=1,N(ng) v(Istr-1,j,k,nnew)=v(Istr-1,j,k,nnew)-CF(Istr-1,0) # ifdef MASKING v(Istr-1,j,k,nnew)=v(Istr-1,j,k,nnew)*vmask(Istr-1,j) # endif # ifdef WET_DRY v(Istr-1,j,k,nnew)=v(Istr-1,j,k,nnew)*vmask_wet(Istr-1,j) # endif # ifdef NEARSHORE_MELLOR v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)-CFs(Istr-1,0) # ifdef MASKING v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)*vmask(Istr-1,j) # endif # ifdef WET_DRY v_stokes(Istr-1,j,k)=v_stokes(Istr-1,j,k)*vmask_wet(Istr-1,j) # endif # endif END DO END IF IF (Iend.eq.Lm(ng)) THEN DO k=1,N(ng) v(Iend+1,j,k,nnew)=v(Iend+1,j,k,nnew)-CF(Iend+1,0) # ifdef MASKING v(Iend+1,j,k,nnew)=v(Iend+1,j,k,nnew)*vmask(Iend+1,j) # endif # ifdef WET_DRY v(Iend+1,j,k,nnew)=v(Iend+1,j,k,nnew)*vmask_wet(Iend+1,j) # endif # ifdef NEARSHORE_MELLOR v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)-CFs(Iend+1,0) # ifdef MASKING v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)*vmask(Iend+1,j) # endif # ifdef WET_DRY v_stokes(Iend+1,j,k)=v_stokes(Iend+1,j,k)*vmask_wet(Iend+1,j) # endif # endif END DO END IF # endif # ifndef NS_PERIODIC IF (j.eq.1) THEN DO k=1,N(ng) DO i=Istr,Iend v(i,j,k,nnew)=v(i,j,k,nnew)-CF(i,0) # ifdef MASKING v(i,j,k,nnew)=v(i,j,k,nnew)*vmask(i,j) # endif # ifdef WET_DRY v(i,j,k,nnew)=v(i,j,k,nnew)*vmask_wet(i,j) # endif # ifdef NEARSHORE_MELLOR v_stokes(i,j,k)=v_stokes(i,j,k)-CFs(i,0) # ifdef MASKING v_stokes(i,j,k)=v_stokes(i,j,k)*vmask(i,j) # endif # ifdef WET_DRY v_stokes(i,j,k)=v_stokes(i,j,k)*vmask_wet(i,j) # endif # endif END DO END DO END IF IF (j.eq.Mm(ng)+1) THEN DO k=1,N(ng) DO i=Istr,Iend v(i,j,k,nnew)=v(i,j,k,nnew)-CF(i,0) # ifdef MASKING v(i,j,k,nnew)=v(i,j,k,nnew)*vmask(i,j) # endif # ifdef WET_DRY v(i,j,k,nnew)=v(i,j,k,nnew)*vmask_wet(i,j) # endif # ifdef NEARSHORE_MELLOR v_stokes(i,j,k)=v_stokes(i,j,k)-CFs(i,0) # ifdef MASKING v_stokes(i,j,k)=v_stokes(i,j,k)*vmask(i,j) # endif # ifdef WET_DRY v_stokes(i,j,k)=v_stokes(i,j,k)*vmask_wet(i,j) # endif # endif END DO END DO END IF # endif ! ! Compute correct mass flux, Hz*v/m. ! DO k=N(ng),1,-1 DO i=IV_RANGE Hvom(i,j,k)=0.5_r8*(Hvom(i,j,k)+v(i,j,k,nnew)*DC(i,k)) # ifdef NEARSHORE_MELLOR Hvom(i,j,k)=Hvom(i,j,k)+0.5_r8*v_stokes(i,j,k)*DC(i,k) # endif FC(i,0)=FC(i,0)+Hvom(i,j,k) # ifdef DIAGNOSTICS_UV DiaV3wrk(i,j,k,M3rate)=v(i,j,k,nnew)- & & DiaV3wrk(i,j,k,M3rate) # endif END DO END DO DO i=IV_RANGE FC(i,0)=DC(i,0)*(FC(i,0)-DV_avg2(i,j)) ! recursive END DO DO k=1,N(ng) DO i=IV_RANGE Hvom(i,j,k)=Hvom(i,j,k)-DC(i,k)*FC(i,0) END DO END DO END IF END DO # undef IU_RANGE # undef JU_RANGE # undef IV_RANGE # undef JV_RANGE # if defined EW_PERIODIC || defined NS_PERIODIC || defined DISTRIBUTE ! !----------------------------------------------------------------------- ! Exchange boundary data. !----------------------------------------------------------------------- ! # if defined EW_PERIODIC || defined NS_PERIODIC CALL exchange_u3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & u(:,:,:,nnew)) CALL exchange_v3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & v(:,:,:,nnew)) CALL exchange_u3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & Huon) CALL exchange_v3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & Hvom) ! DO k=1,2 CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ubar(:,:,k)) CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & vbar(:,:,k)) END DO # endif # ifdef DISTRIBUTE CALL mp_exchange3d (ng, tile, iNLM, 4, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, EWperiodic, NSperiodic, & & u(:,:,:,nnew), v(:,:,:,nnew), & & Huon, Hvom) ! CALL mp_exchange2d (ng, tile, iNLM, 4, & & LBi, UBi, LBj, UBj, & & NghostPoints, EWperiodic, NSperiodic, & & ubar(:,:,1), vbar(:,:,1), & & ubar(:,:,2), vbar(:,:,2)) # endif # endif RETURN END SUBROUTINE step3d_uv_tile #endif END MODULE step3d_uv_mod