#include "cppdefs.h" MODULE zetabc_mod ! !svn $Id$ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine sets lateral boundary conditions for free-surface. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: zetabc_tile CONTAINS ! !*********************************************************************** SUBROUTINE zetabc (ng, tile, kout) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, kout ! ! Local variable declarations. ! # include "tile.h" ! CALL zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), kout, & & OCEAN(ng) % zeta) RETURN END SUBROUTINE zetabc ! !*********************************************************************** SUBROUTINE zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, kout, & & zeta) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_grid USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: krhs, kstp, kout #ifdef ASSUMED_SHAPE real(r8), intent(inout) :: zeta(LBi:,LBj:,:) #else real(r8), intent(inout) :: zeta(LBi:UBi,LBj:UBj,3) #endif ! ! Local variable declarations. ! integer :: i, j, know real(r8), parameter :: eps =1.0E-20_r8 real(r8) :: Ce, Cx real(r8) :: cff, cff1, cff2, dt2d, dZde, dZdt, dZdx, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Set time-indices !----------------------------------------------------------------------- ! IF (FIRST_2D_STEP) THEN know=krhs dt2d=dtfast(ng) ELSE IF (PREDICTOR_2D_STEP(ng)) THEN know=krhs dt2d=2.0_r8*dtfast(ng) ELSE know=kstp dt2d=dtfast(ng) END IF #ifndef EW_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (WESTERN_EDGE) THEN # if defined WEST_FSRADIATION ! ! Western edge, implicit upstream radiation condition. ! DO j=Jstr,Jend+1 grad(Istr-1,j)=zeta(Istr-1,j ,know)- & & zeta(Istr-1,j-1,know) # ifdef MASKING grad(Istr-1,j)=grad(Istr-1,j)*GRID(ng)%vmask(Istr-1,j) # endif grad(Istr,j)=zeta(Istr,j ,know)- & & zeta(Istr,j-1,know) # ifdef MASKING grad(Istr,j)=grad(Istr,j)*GRID(ng)%vmask(Istr,j) # endif END DO DO j=Jstr,Jend dZdt=zeta(Istr,j,know)-zeta(Istr ,j,kout) dZdx=zeta(Istr,j,kout)-zeta(Istr+1,j,kout) # ifdef WEST_FSNUDGING IF ((dZdt*dZdx).lt.0.0_r8) THEN tau=FSobc_in(ng,iwest) ELSE tau=FSobc_out(ng,iwest) END IF tau=tau*dt2d # endif IF ((dZdt*dZdx).lt.0.0_r8) dZdt=0.0_r8 IF ((dZdt*(grad(Istr,j)+grad(Istr,j+1))).gt.0.0_r8) THEN dZde=grad(Istr,j ) ELSE dZde=grad(Istr,j+1) END IF cff=MAX(dZdx*dZdx+dZde*dZde,eps) Cx=dZdt*dZdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dZdt*dZde,-cff)) # else Ce=0.0_r8 # endif # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%zeta_west_Cx(j)=Cx BOUNDARY(ng)%zeta_west_Ce(j)=Ce BOUNDARY(ng)%zeta_west_C2(j)=cff # endif zeta(Istr-1,j,kout)=(cff*zeta(Istr-1,j,know)+ & & Cx *zeta(Istr ,j,kout)- & & MAX(Ce,0.0_r8)*grad(Istr-1,j )- & & MIN(Ce,0.0_r8)*grad(Istr-1,j+1))/ & & (cff+Cx) # ifdef WEST_FSNUDGING zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)+ & & tau*(BOUNDARY(ng)%zeta_west(j)- & & zeta(Istr-1,j,know)) # endif # ifdef MASKING zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO # elif defined WEST_FSCHAPMAN ! ! Western edge, Chapman boundary condition. ! DO j=Jstr,Jend cff=dt2d*GRID(ng)%pm(Istr,j) cff1=SQRT(g*(GRID(ng)%h(Istr,j)+ & & zeta(Istr,j,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) zeta(Istr-1,j,kout)=cff2*(zeta(Istr-1,j,know)+ & & Cx*zeta(Istr,j,kout)) # ifdef MASKING zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO # elif defined WEST_FSCLAMPED ! ! Western edge, clamped boundary condition. ! DO j=Jstr,Jend zeta(Istr-1,j,kout)=BOUNDARY(ng)%zeta_west(j) # ifdef MASKING zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO # elif defined WEST_FSGRADIENT ! ! Western edge, gradient boundary condition. ! DO j=Jstr,Jend zeta(Istr-1,j,kout)=zeta(Istr,j,kout) # ifdef MASKING zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO # else ! ! Western edge, closed boundary condition. ! DO j=Jstr,Jend zeta(Istr-1,j,kout)=zeta(Istr,j,kout) # ifdef MASKING zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)* & & GRID(ng)%rmask(Istr-1,j) # endif END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (EASTERN_EDGE) THEN # if defined EAST_FSRADIATION ! ! Eastern edge, implicit upstream radiation condition. ! DO j=Jstr,Jend+1 grad(Iend ,j)=zeta(Iend ,j ,know)- & & zeta(Iend ,j-1,know) # ifdef MASKING grad(Iend ,j)=grad(Iend ,j)*GRID(ng)%vmask(Iend ,j) # endif grad(Iend+1,j)=zeta(Iend+1,j ,know)- & & zeta(Iend+1,j-1,know) # ifdef MASKING grad(Iend+1,j)=grad(Iend+1,j)*GRID(ng)%vmask(Iend+1,j) # endif END DO DO j=Jstr,Jend dZdt=zeta(Iend,j,know)-zeta(Iend ,j,kout) dZdx=zeta(Iend,j,kout)-zeta(Iend-1,j,kout) # ifdef EAST_FSNUDGING IF ((dZdt*dZdx).lt.0.0_r8) THEN tau=FSobc_in(ng,ieast) ELSE tau=FSobc_out(ng,ieast) END IF tau=tau*dt2d # endif IF ((dZdt*dZdx).lt.0.0_r8) dZdt=0.0_r8 IF ((dZdt*(grad(Iend,j)+grad(Iend,j+1))).gt.0.0_r8) THEN dZde=grad(Iend,j ) ELSE dZde=grad(Iend,j+1) END IF cff=MAX(dZdx*dZdx+dZde*dZde,eps) Cx=dZdt*dZdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dZdt*dZde,-cff)) # else Ce=0.0_r8 # endif # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%zeta_east_Cx(j)=Cx BOUNDARY(ng)%zeta_east_Ce(j)=Ce BOUNDARY(ng)%zeta_east_C2(j)=cff # endif zeta(Iend+1,j,kout)=(cff*zeta(Iend+1,j,know)+ & & Cx *zeta(Iend ,j,kout)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*grad(Iend+1,j+1))/ & & (cff+Cx) # ifdef EAST_FSNUDGING zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)+ & & tau*(BOUNDARY(ng)%zeta_east(j)- & & zeta(Iend+1,j,know)) # endif # ifdef MASKING zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO # elif defined EAST_FSCHAPMAN ! ! Eastern edge, Chapman boundary condition. ! DO j=Jstr,Jend cff=dt2d*GRID(ng)%pm(Iend,j) cff1=SQRT(g*(GRID(ng)%h(Iend,j)+ & & zeta(Iend,j,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) zeta(Iend+1,j,kout)=cff2*(zeta(Iend+1,j,know)+ & & Cx*zeta(Iend,j,kout)) # ifdef MASKING zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO # elif defined EAST_FSCLAMPED ! ! Eastern edge, clamped boundary condition. ! DO j=Jstr,Jend zeta(Iend+1,j,kout)=BOUNDARY(ng)%zeta_east(j) # ifdef MASKING zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO # elif defined EAST_FSGRADIENT ! ! Eastern edge, gradient boundary condition. ! DO j=Jstr,Jend zeta(Iend+1,j,kout)=zeta(Iend,j,kout) # ifdef MASKING zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO # else ! ! Eastern edge, closed boundary condition. ! DO j=Jstr,Jend zeta(Iend+1,j,kout)=zeta(Iend,j,kout) # ifdef MASKING zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)* & & GRID(ng)%rmask(Iend+1,j) # endif END DO # endif END IF #endif #ifndef NS_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (SOUTHERN_EDGE) THEN # if defined SOUTH_FSRADIATION ! ! Southern edge, implicit upstream radiation condition. ! DO i=Istr,Iend+1 grad(i,Jstr )=zeta(i ,Jstr,know)- & & zeta(i-1,Jstr,know) # ifdef MASKING grad(i,Jstr )=grad(i,Jstr )*GRID(ng)%umask(i,Jstr ) # endif grad(i,Jstr-1)=zeta(i ,Jstr-1,know)- & & zeta(i-1,Jstr-1,know) # ifdef MASKING grad(i,Jstr-1)=grad(i,Jstr-1)*GRID(ng)%umask(i,Jstr-1) # endif END DO DO i=Istr,Iend dZdt=zeta(i,Jstr,know)-zeta(i,Jstr ,kout) dZde=zeta(i,Jstr,kout)-zeta(i,Jstr-1,kout) # ifdef SOUTH_FSNUDGING IF ((dZdt*dZde).lt.0.0_r8) THEN tau=FSobc_in(ng,isouth) ELSE tau=FSobc_out(ng,isouth) END IF tau=tau*dt2d # endif IF ((dZdt*dZde).lt.0.0_r8) dZdt=0.0_r8 IF ((dZdt*(grad(i,Jstr)+grad(i+1,Jstr))).gt.0.0_r8) THEN dZdx=grad(i ,Jstr) ELSE dZdx=grad(i+1,Jstr) END IF cff=MAX(dZdx*dZdx+dZde*dZde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dZdt*dZdx,-cff)) # else Cx=0.0_r8 # endif Ce=dZdt*dZde # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%zeta_south_Cx(i)=Cx BOUNDARY(ng)%zeta_south_Ce(i)=Ce BOUNDARY(ng)%zeta_south_C2(i)=cff # endif zeta(i,Jstr-1,kout)=(cff*zeta(i,Jstr-1,know)+ & & Ce *zeta(i,Jstr ,kout)- & & MAX(Cx,0.0_r8)*grad(i ,Jstr)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr))/ & & (cff+Ce) # ifdef SOUTH_FSNUDGING zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)+ & & tau*(BOUNDARY(ng)%zeta_south(i)- & & zeta(i,Jstr-1,know)) # endif # ifdef MASKING zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO # elif defined SOUTH_FSCHAPMAN ! ! Southern edge, Chapman boundary condition. ! DO i=Istr,Iend cff=dt2d*GRID(ng)%pn(i,Jstr) cff1=SQRT(g*(GRID(ng)%h(i,Jstr)+ & & zeta(i,Jstr,know))) Ce=cff*cff1 cff2=1.0_r8/(1.0_r8+Ce) zeta(i,Jstr-1,kout)=cff2*(zeta(i,Jstr-1,know)+ & & Ce*zeta(i,Jstr,kout)) # ifdef MASKING zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO # elif defined SOUTH_FSCLAMPED ! ! Southern edge, clamped boundary condition. ! DO i=Istr,Iend zeta(i,Jstr-1,kout)=BOUNDARY(ng)%zeta_south(i) # ifdef MASKING zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO # elif defined SOUTH_FSGRADIENT ! ! Southern edge, gradient boundary condition. ! DO i=Istr,Iend zeta(i,Jstr-1,kout)=zeta(i,Jstr,kout) # ifdef MASKING zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO # else ! ! Southern edge, closed boundary condition. ! DO i=Istr,Iend zeta(i,Jstr-1,kout)=zeta(i,Jstr,kout) # ifdef MASKING zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)* & & GRID(ng)%rmask(i,Jstr-1) # endif END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (NORTHERN_EDGE) THEN # if defined NORTH_FSRADIATION ! ! Northern edge, implicit upstream radiation condition. ! DO i=Istr,Iend+1 grad(i,Jend )=zeta(i ,Jend ,know)- & & zeta(i-1,Jend ,know) # ifdef MASKING grad(i,Jend )=grad(i,Jend )*GRID(ng)%umask(i,Jend ) # endif grad(i,Jend+1)=zeta(i ,Jend+1,know)- & & zeta(i-1,Jend+1,know) # ifdef MASKING grad(i,Jend+1)=grad(i,Jend+1)*GRID(ng)%umask(i,Jend+1) # endif END DO DO i=Istr,Iend dZdt=zeta(i,Jend,know)-zeta(i,Jend ,kout) dZde=zeta(i,Jend,kout)-zeta(i,Jend-1,kout) # ifdef NORTH_FSNUDGING IF ((dZdt*dZde).lt.0.0_r8) THEN tau=FSobc_in(ng,inorth) ELSE tau=FSobc_out(ng,inorth) END IF tau=tau*dt2d # endif IF ((dZdt*dZde).lt.0.0_r8) dZdt=0.0_r8 IF ((dZdt*(grad(i,Jend)+grad(i+1,Jend))).gt.0.0_r8) THEN dZdx=grad(i ,Jend) ELSE dZdx=grad(i+1,Jend) END IF cff=MAX(dZdx*dZdx+dZde*dZde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dZdt*dZdx,-cff)) # else Cx=0.0_r8 # endif Ce=dZdt*dZde # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%zeta_north_Cx(i)=Cx BOUNDARY(ng)%zeta_north_Ce(i)=Ce BOUNDARY(ng)%zeta_north_C2(i)=cff # endif zeta(i,Jend+1,kout)=(cff*zeta(i,Jend+1,know)+ & & Ce *zeta(i,Jend ,kout)- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1))/ & & (cff+Ce) # ifdef NORTH_FSNUDGING zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)+ & & tau*(BOUNDARY(ng)%zeta_north(i)- & & zeta(i,Jend+1,know)) # endif # ifdef MASKING zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO # elif defined NORTH_FSCHAPMAN ! ! Northern edge, Chapman boundary condition. ! DO i=Istr,Iend cff=dt2d*GRID(ng)%pn(i,Jend) cff1=SQRT(g*(GRID(ng)%h(i,Jend)+ & & zeta(i,Jend,know))) Ce=cff*cff1 cff2=1.0_r8/(1.0_r8+Ce) zeta(i,Jend+1,kout)=cff2*(zeta(i,Jend+1,know)+ & & Ce*zeta(i,Jend,kout)) # ifdef MASKING zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO # elif defined NORTH_FSCLAMPED ! ! Northern edge, clamped boundary condition. ! DO i=Istr,Iend zeta(i,Jend+1,kout)=BOUNDARY(ng)%zeta_north(i) # ifdef MASKING zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO # elif defined NORTH_FSGRADIENT ! ! Northern edge, gradient boundary condition. ! DO i=Istr,Iend zeta(i,Jend+1,kout)=zeta(i,Jend,kout) # ifdef MASKING zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO # else ! ! Northern edge, closed boundary condition. ! DO i=Istr,Iend zeta(i,Jend+1,kout)=zeta(i,Jend,kout) # ifdef MASKING zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)* & & GRID(ng)%rmask(i,Jend+1) # endif END DO # endif END IF #endif #if !defined EW_PERIODIC && !defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF ((SOUTHERN_EDGE).and.(WESTERN_EDGE)) THEN zeta(Istr-1,Jstr-1,kout)=0.5_r8*(zeta(Istr ,Jstr-1,kout)+ & & zeta(Istr-1,Jstr ,kout)) END IF IF ((SOUTHERN_EDGE).and.(EASTERN_EDGE)) THEN zeta(Iend+1,Jstr-1,kout)=0.5_r8*(zeta(Iend ,Jstr-1,kout)+ & & zeta(Iend+1,Jstr ,kout)) END IF IF ((NORTHERN_EDGE).and.(WESTERN_EDGE)) THEN zeta(Istr-1,Jend+1,kout)=0.5_r8*(zeta(Istr-1,Jend ,kout)+ & & zeta(Istr ,Jend+1,kout)) END IF IF ((NORTHERN_EDGE).and.(EASTERN_EDGE)) THEN zeta(Iend+1,Jend+1,kout)=0.5_r8*(zeta(Iend+1,Jend ,kout)+ & & zeta(Iend ,Jend+1,kout)) END IF #endif #if defined WET_DRY ! !----------------------------------------------------------------------- ! Ensure that water level on boundary cells is above bed elevation. !----------------------------------------------------------------------- ! cff=Dcrit(ng)-eps # ifndef EW_PERIODIC IF (WESTERN_EDGE) THEN DO j=Jstr,Jend IF (zeta(Istr-1,j,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Istr-1,j))) THEN zeta(Istr-1,j,kout)=cff-GRID(ng)%h(Istr-1,j) END IF END DO END IF IF (EASTERN_EDGE) THEN DO j=Jstr,Jend IF (zeta(Iend+1,j,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Iend+1,j))) THEN zeta(Iend+1,j,kout)=cff-GRID(ng)%h(Iend+1,j) END IF END DO END IF # endif # ifndef NS_PERIODIC IF (SOUTHERN_EDGE) THEN DO i=Istr,Iend IF (zeta(i,Jstr-1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(i,Jstr-1))) THEN zeta(i,Jstr-1,kout)=cff-GRID(ng)%h(i,Jstr-1) END IF END DO END IF IF (NORTHERN_EDGE) THEN DO i=Istr,Iend IF (zeta(i,Jend+1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(i,Jend+1))) THEN zeta(i,Jend+1,kout)=cff-GRID(ng)%h(i,Jend+1) END IF END DO END IF # endif # if !defined EW_PERIODIC && !defined NS_PERIODIC IF ((SOUTHERN_EDGE).and.(WESTERN_EDGE)) THEN IF (zeta(Istr-1,Jstr-1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Istr-1,Jstr-1))) THEN zeta(Istr-1,Jstr-1,kout)=cff-GRID(ng)%h(Istr-1,Jstr-1) END IF END IF IF ((SOUTHERN_EDGE).and.(EASTERN_EDGE)) THEN IF (zeta(Iend+1,Jstr-1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Iend+1,Jstr-1))) THEN zeta(Iend+1,Jstr-1,kout)=cff-GRID(ng)%h(Iend+1,Jstr-1) END IF END IF IF ((NORTHERN_EDGE).and.(WESTERN_EDGE)) THEN IF (zeta(Istr-1,Jend+1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Istr-1,Jend+1))) THEN zeta(Istr-1,Jend+1,kout)=cff-GRID(ng)%h(Istr-1,Jend+1) END IF END IF IF ((NORTHERN_EDGE).and.(EASTERN_EDGE)) THEN IF (zeta(Iend+1,Jend+1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Iend+1,Jend+1))) THEN zeta(Iend+1,Jend+1,kout)=cff-GRID(ng)%h(Iend+1,Jend+1) END IF END IF # endif #endif RETURN END SUBROUTINE zetabc_tile END MODULE zetabc_mod