MODULE ocean_control_mod ! !svn $Id$ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! ROMS/TOMS Convolution Driver: ! ! ! ! This driver executes ROMS/TOMS standard nonlinear model. It ! ! controls the initialization, time-stepping, and finalization ! ! of the nonlinear model execution following ESMF conventions: ! ! ! ! ROMS_initialize ! ! ROMS_run ! ! ROMS_finalize ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ROMS_initialize PUBLIC :: ROMS_run PUBLIC :: ROMS_finalize CONTAINS SUBROUTINE ROMS_initialize (first, MyCOMM) ! !======================================================================= ! ! ! This routine allocates and initializes ROMS/TOMS state variables ! ! and internal and external parameters. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel USE mod_fourdvar USE mod_iounits USE mod_scalars ! ! Imported variable declarations. ! logical, intent(inout) :: first integer, intent(in), optional :: MyCOMM ! ! Local variable declarations. ! logical :: allocate_vars = .TRUE. integer :: STDrec, Tindex, ng, thread #ifdef DISTRIBUTE ! !----------------------------------------------------------------------- ! Set distribute-memory (MPI) world communictor. !----------------------------------------------------------------------- ! IF (PRESENT(MyCOMM)) THEN OCN_COMM_WORLD=MyCOMM ELSE OCN_COMM_WORLD=MPI_COMM_WORLD END IF #endif ! !----------------------------------------------------------------------- ! On first pass, initialize model parameters a variables for all ! nested/composed grids. Notice that the logical switch "first" ! is used to allow multiple calls to this routine during ensemble ! configurations. !----------------------------------------------------------------------- ! IF (first) THEN first=.FALSE. ! ! Initialize parallel parameters. ! CALL initialize_parallel ! ! Initialize wall clocks. ! IF (Master) THEN WRITE (stdout,10) 10 FORMAT (' Process Information:',/) END IF DO ng=1,Ngrids !$OMP PARALLEL DO PRIVATE(thread) SHARED(ng,numthreads) DO thread=0,numthreads-1 CALL wclock_on (ng, iNLM, 0) END DO !$OMP END PARALLEL DO END DO ! ! Read in model tunable parameters from standard input. Initialize ! "mod_param", "mod_ncparam" and "mod_scalar" modules. ! CALL inp_par (iNLM) IF (exit_flag.ne.NoError) RETURN ! ! Allocate and initialize modules variables. ! CALL mod_arrays (allocate_vars) ! ! Allocate and initialize observation arrays. ! CALL initialize_fourdvar ! ! Read in standard deviation factors for initial conditions ! error covariance. They are loaded in Tindex=1 of the ! e_var(...,Tindex) state variables. ! STDrec=1 Tindex=1 DO ng=1,Ngrids CALL get_state (ng, 6, 6, STDname(1,ng), STDrec, Tindex) IF (exit_flag.ne.NoError) RETURN END DO ! ! Read in standard deviation factors for model error covariance. ! They are loaded in Tindex=2 of the e_var(...,Tindex) state ! variables. ! STDrec=1 Tindex=2 DO ng=1,Ngrids IF (NSA.eq.2) THEN CALL get_state (ng, 6, 6, STDname(2,ng), STDrec, Tindex) IF (exit_flag.ne.NoError) RETURN END IF END DO #ifdef ADJUST_BOUNDARY ! ! Read in standard deviation factors for boundary conditions ! error covariance. ! STDrec=1 Tindex=1 DO ng=1,Ngrids CALL get_state (ng, 8, 8, STDname(3,ng), STDrec, Tindex) IF (exit_flag.ne.NoError) RETURN END DO #endif #if defined ADJUST_WSTRESS || defined ADJUST_STFLUX ! ! Read in standard deviation factors for surface forcing ! error covariance. ! STDrec=1 Tindex=1 DO ng=1,Ngrids CALL get_state (ng, 9, 9, STDname(4,ng), STDrec, Tindex) IF (exit_flag.ne.NoError) RETURN END DO #endif END IF RETURN END SUBROUTINE ROMS_initialize SUBROUTINE ROMS_run (Tstr, Tend) ! !======================================================================= ! ! ! This routine time-steps ROMS/TOMS correlation diffusion operator. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel USE mod_grid USE mod_iounits USE mod_ncparam USE mod_netcdf USE mod_ocean USE mod_scalars USE mod_stepping ! #ifdef BALANCE_OPERATOR USE ad_balance_mod, ONLY: ad_balance #endif USE ad_convolution_mod, ONLY : ad_convolution USE ad_variability_mod, ONLY : ad_variability USE ini_adjust_mod, ONLY : load_ADtoTL USE ini_adjust_mod, ONLY : load_TLtoAD USE normalization_mod, ONLY : normalization #ifdef BALANCE_OPERATOR USE tl_balance_mod, ONLY: tl_balance #endif USE tl_convolution_mod, ONLY : tl_convolution USE tl_variability_mod, ONLY : tl_variability ! ! Imported variable declarations ! integer, dimension(Ngrids) :: Tstr integer, dimension(Ngrids) :: Tend ! ! Local variable declarations. ! logical :: add, Lweak integer :: IADrec, Nrec, i, ng, subs, tile, thread #ifdef BALANCE_OPERATOR integer :: Lbck = 1 #endif ! !----------------------------------------------------------------------- ! Run model for all nested grids, if any. !----------------------------------------------------------------------- ! NEST_LOOP : DO ng=1,Ngrids ! !----------------------------------------------------------------------- ! Initialize metrics. !----------------------------------------------------------------------- ! CALL initial (ng) IF (exit_flag.ne.NoError) RETURN ! !----------------------------------------------------------------------- ! Compute or read in background-error correlations normalization ! factors. !----------------------------------------------------------------------- ! ! If computing, write out factors to NetCDF. This is an expensive ! computation and needs to be computed once for a particular ! application grid. ! IF (ANY(LwrtNRM(:,ng))) THEN CALL def_norm (ng, iNLM, 1) IF (exit_flag.ne.NoError) RETURN IF (NSA.eq.2) THEN CALL def_norm (ng, iNLM, 2) IF (exit_flag.ne.NoError) RETURN END IF #ifdef ADJUST_BOUNDARY CALL def_norm (ng, iNLM, 3) IF (exit_flag.ne.NoError) RETURN #endif #if defined ADJUST_WSTRESS || defined ADJUST_STFLUX CALL def_norm (ng, iNLM, 4) IF (exit_flag.ne.NoError) RETURN #endif IF (exit_flag.ne.NoError) RETURN !$OMP PARALLEL DO PRIVATE(ng,thread,subs,tile) SHARED(numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1 CALL normalization (ng, TILE, 2) END DO END DO !$OMP END PARALLEL DO LdefNRM(1:4,ng)=.FALSE. LwrtNRM(1:4,ng)=.FALSE. ELSE CALL get_state (ng, 5, 5, NRMname(1,ng), 1, 1) IF (exit_flag.ne.NoError) RETURN IF (NSA.eq.2) THEN CALL get_state (ng, 5, 5, NRMname(2,ng), 1, 2) IF (exit_flag.ne.NoError) RETURN END IF #ifdef ADJUST_BOUNDARY CALL get_state (ng, 10, 10, NRMname(3,ng), 1, 1) IF (exit_flag.ne.NoError) RETURN #endif #if defined ADJUST_WSTRESS || defined ADJUST_STFLUX CALL get_state (ng, 11, 11, NRMname(4,ng), 1, 1) IF (exit_flag.ne.NoError) RETURN #endif END IF #ifdef BALANCE_OPERATOR ! !----------------------------------------------------------------------- ! Read background state. !----------------------------------------------------------------------- ! CALL get_state (ng, iNLM, 9, FWDname(ng), Lbck, Lbck) IF (exit_flag.ne.NoError) RETURN #endif ! !----------------------------------------------------------------------- ! Read in adjoint solution (IADname), apply spatial convolution, ! and then write output NetCDF file (ADJname). !----------------------------------------------------------------------- ! ! Inquire about the number of records in input NetCDF. ! SourceFile='convolution.h, ROMS_run' CALL netcdf_get_dim (ng, iADM, IADname(ng)) IF (exit_flag.ne.NoError) RETURN Nrec=rec_size ! ! Create convoluted adjoint solution NetCDF file. ! LdefADJ(ng)=.TRUE. CALL ad_def_his (ng, LdefADJ(ng)) IF (exit_flag.ne.NoError) RETURN LdefADJ(ng)=.FALSE. LwrtADJ(ng)=.TRUE. ! ! Process all available adjoint records. ! Lnew(ng)=1 tADJindx(ng)=0 NrecADJ(ng)=0 LwrtState2d(ng)=.TRUE. ! ! Proccess each time record of current adjoint solution in ADJname. ! DO i=1,Nrec ! ! Set switch to scale model error covariace with background error ! covariance factor Cfscale(:). ! IF (i.eq.Nrec) THEN Lweak=.FALSE. ELSE Lweak=.TRUE. END IF ! ! Read adjoint solution. Since routine "get_state" loads data into the ! ghost points, the adjoint solution is read in the tangent linear ! state arrays by using iTLM instead of iADM in the calling arguments. ! IADrec=i CALL get_state (ng, iTLM, 4, IADname(ng), IADrec, Lnew(ng)) IF (exit_flag.ne.NoError) RETURN ! ! Load interior solution, read above, into adjoint state arrays. ! Then, multiply adjoint solution by the background-error standard ! deviations. Next, convolve resulting adjoint solution with the ! squared-root adjoint diffusion operator which impose the model-error ! spatial correlations. Notice that the spatial convolution is only ! done for half of the diffusion steps (squared-root filter). Clear ! tangent linear state arrays when done. ! add=.FALSE. !$OMP PARALLEL DO PRIVATE(ng,thread,subs,tile,Lbck) & !$OMP& SHARED(inner,add,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1 CALL load_TLtoAD (ng, TILE, Lnew(ng), Lnew(ng), add) #ifdef BALANCE_OPERATOR CALL ad_balance (ng, TILE, Lbck, Lnew(ng)) #endif CALL ad_variability (ng, TILE, Lnew(ng), Lweak) CALL ad_convolution (ng, TILE, Lnew(ng), Lweak, 2) CALL initialize_ocean (ng, TILE, iTLM) END DO END DO !$OMP END PARALLEL DO ! ! To insure symmetry, convolve resulting filtered adjoint solution ! from above with the squared-root (half of steps) tangent linear ! diffusion operator. Then, multiply result with its corresponding ! background-error standard deviations. Since the convolved solution ! is in the adjoint state arrays, first copy to tangent linear state ! arrays including the ghosts points. Copy back to adjoint state ! arrays when done with the convolution for output purposes. ! add=.FALSE. !$OMP PARALLEL DO PRIVATE(ng,thread,subs,tile,Lbck) & !$OMP& SHARED(inner,add,numthreads) DO thread=0,numthreads-1 subs=NtileX(ng)*NtileE(ng)/numthreads DO tile=subs*thread,subs*(thread+1)-1,+1 CALL load_ADtoTL (ng, TILE, Lnew(ng), Lnew(ng), add) CALL tl_convolution (ng, TILE, Lnew(ng), Lweak, 2) CALL tl_variability (ng, TILE, Lnew(ng), Lweak) #ifdef BALANCE_OPERATOR CALL tl_balance (ng, TILE, Lbck, Lnew(ng)) #endif CALL load_TLtoAD (ng, TILE, Lnew(ng), Lnew(ng), add) END DO END DO !$OMP END PARALLEL DO ! ! Write out convolved solution to adjoint history NetCDF file. ! kstp(ng)=Lnew(ng) #ifdef SOLVE3D nstp(ng)=Lnew(ng) #endif CALL ad_wrt_his (ng) IF (exit_flag.ne.NoError) RETURN END DO LwrtState2d(ng)=.FALSE. ! ! Create TLM/RPM impulse NetCDF file. Convert convolved adjoint ! solution to impulse forcing. Write out impulse forcing into TLFname ! NetCDF file. To facilitate the forcing by the TLM and RPM, the ! forcing is process and written in increasing time coordinates. ! LdefTLF(ng)=.TRUE. tTLFindx(ng)=0 CALL def_impulse (ng) IF (exit_flag.ne.NoError) RETURN #ifdef DISTRIBUTE tile=MyRank #else tile=-1 #endif CALL wrt_impulse (ng, tile, iADM, ADJname(ng)) IF (exit_flag.ne.NoError) RETURN END DO NEST_LOOP RETURN END SUBROUTINE ROMS_run SUBROUTINE ROMS_finalize ! !======================================================================= ! ! ! This routine terminates ROMS/TOMS nonlinear model execution. ! ! ! !======================================================================= ! USE mod_param USE mod_parallel USE mod_iounits USE mod_ncparam USE mod_scalars ! ! Local variable declarations. ! integer :: ng, thread ! !----------------------------------------------------------------------- ! If blowing-up, save latest model state into RESTART NetCDF file. !----------------------------------------------------------------------- ! ! If cycling restart records, write solution into the next record. ! DO ng=1,Ngrids IF (LwrtRST(ng).and.(exit_flag.eq.1)) THEN IF (Master) WRITE (stdout,10) 10 FORMAT (/,' Blowing-up: Saving latest model state into ', & & ' RESTART file',/) IF (LcycleRST(ng).and.(NrecRST(ng).ge.2)) THEN tRSTindx(ng)=2 LcycleRST(ng)=.FALSE. END IF blowup=exit_flag exit_flag=NoError CALL wrt_rst (ng) END IF END DO ! !----------------------------------------------------------------------- ! Stop model and time profiling clocks. Close output NetCDF files. !----------------------------------------------------------------------- ! ! Stop time clocks. ! IF (Master) THEN WRITE (stdout,20) 20 FORMAT (/,' Elapsed CPU time (seconds):',/) END IF DO ng=1,Ngrids !$OMP PARALLEL DO PRIVATE(thread) SHARED(ng,numthreads) DO thread=0,numthreads-1 CALL wclock_off (ng, iNLM, 0) END DO !$OMP END PARALLEL DO END DO ! ! Close IO files. ! CALL close_io RETURN END SUBROUTINE ROMS_finalize END MODULE ocean_control_mod