#include "cppdefs.h" MODULE ad_v3dbc_mod #if defined ADJOINT && defined SOLVE3D ! !svn $Id: ad_v3dbc_im.F 352 2009-05-29 20:57:39Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This subroutine sets adjoint lateral boundary conditions for total ! ! 3D V-velocity. It updates the specified "nout" time index. ! ! ! ! BASIC STATE variables needed: v ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ad_v3dbc, ad_v3dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE ad_v3dbc (ng, tile, nout) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, nout ! ! Local variable declarations. ! # include "tile.h" ! CALL ad_v3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & nstp(ng), nout, & & OCEAN(ng) % ad_v) RETURN END SUBROUTINE ad_v3dbc ! !*********************************************************************** SUBROUTINE ad_v3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & nstp, nout, & & ad_v) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_grid USE mod_ncparam USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nstp, nout ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_v(LBi:,LBj:,:,:) # else real(r8), intent(inout) :: ad_v(LBi:UBi,LBj:UBj,UBk,2) # endif ! ! Local variable declarations. ! integer :: i, j, k real(r8) :: Ce, Cx, cff, tau real(r8) :: adfac real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_grad # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Initialize adjoint private variables. !----------------------------------------------------------------------- ! ad_grad(LBi:UBi,LBj:UBj)=0.0_r8 # if !defined EW_PERIODIC && !defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF ((NORTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=1,N(ng) !> tl_v(Iend+1,Jend+1,k,nout)=0.5_r8* & !> & (tl_v(Iend+1,Jend ,k,nout)+ & !> & tl_v(Iend ,Jend+1,k,nout)) !> adfac=0.5_r8*ad_v(Iend+1,Jend+1,k,nout) ad_v(Iend+1,Jend ,k,nout)=ad_v(Iend+1,Jend ,k,nout)+adfac ad_v(Iend ,Jend+1,k,nout)=ad_v(Iend ,Jend+1,k,nout)+adfac ad_v(Iend+1,Jend+1,k,nout)=0.0_r8 END DO END IF IF ((NORTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=1,N(ng) !> tl_v(Istr-1,Jend+1,k,nout)=0.5_r8* & !> & (tl_v(Istr-1,Jend ,k,nout)+ & !> & tl_v(Istr ,Jend+1,k,nout)) !> adfac=0.5_r8*ad_v(Istr-1,Jend+1,k,nout) ad_v(Istr-1,Jend ,k,nout)=ad_v(Istr-1,Jend ,k,nout)+adfac ad_v(Istr ,Jend+1,k,nout)=ad_v(Istr ,Jend+1,k,nout)+adfac ad_v(Istr-1,Jend+1,k,nout)=0.0_r8 END DO END IF IF ((SOUTHERN_EDGE).and.(EASTERN_EDGE)) THEN DO k=1,N(ng) !> tl_v(Iend+1,Jstr,k,nout)=0.5_r8* & !> & (tl_v(Iend ,Jstr ,k,nout)+ & !> & tl_v(Iend+1,Jstr+1,k,nout)) !> adfac=0.5_r8*ad_v(Iend+1,Jstr,k,nout) ad_v(Iend ,Jstr ,k,nout)=ad_v(Iend ,Jstr ,k,nout)+adfac ad_v(Iend+1,Jstr+1,k,nout)=ad_v(Iend+1,Jstr+1,k,nout)+adfac ad_v(Iend+1,Jstr ,k,nout)=0.0_r8 END DO END IF IF ((SOUTHERN_EDGE).and.(WESTERN_EDGE)) THEN DO k=1,N(ng) !> tl_v(Istr-1,Jstr,k,nout)=0.5_r8* & !> & (tl_v(Istr ,Jstr ,k,nout)+ & !> & tl_v(Istr-1,Jstr+1,k,nout)) !> adfac=0.5_r8*ad_v(Istr-1,Jstr,k,nout) ad_v(Istr ,Jstr ,k,nout)=ad_v(Istr ,Jstr ,k,nout)+adfac ad_v(Istr-1,Jstr+1,k,nout)=ad_v(Istr-1,Jstr+1,k,nout)+adfac ad_v(Istr-1,Jstr ,k,nout)=0.0_r8 END DO END IF # endif # ifndef EW_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (EASTERN_EDGE) THEN # if defined EAST_M3RADIATION_NOT_YET IF (iic(ng).ne.0) THEN ! ! Eastern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO j=JstrV,Jend # ifdef EAST_M3NUDGING IF (BOUNDARY(ng)%v_east_Cx(j,k).eq.0.0_r8) THEN tau=M3obc_in(ng,ieast) ELSE tau=M3obc_out(ng,ieast) END IF tau=tau*dt(ng) # endif Cx=BOUNDARY(ng)%v_east_Cx(j,k) # ifdef RADIATION_2D Ce=BOUNDARY(ng)%v_east_Ce(j,k) # else Ce=0.0_r8 # endif cff=BOUNDARY(ng)%v_east_C2(j,k) # ifdef MASKING !> tl_v(Iend+1,j,k,nout)=tl_v(Iend+1,j,k,nout)* & !> & GRID(ng)%vmask(Iend+1,j) !> ad_v(Iend+1,j,k,nout)=ad_v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef EAST_M3NUDGING !> tl_v(Iend+1,j,k,nout)=tl_v(Iend+1,j,k,nout)- & !> & tau*tl_v(Iend+1,j,k,nstp) !> ad_v(Iend+1,j,k,nstp)=ad_v(Iend+1,j,k,nstp)- & & tau*ad_v(Iend+1,j,k,nout) # endif !> tl_v(Iend+1,j,k,nout)=(cff*tl_v(Iend+1,j,k,nstp)+ & !> & Cx *tl_v(Iend ,j,k,nout)- & !> & MAX(Ce,0.0_r8)* & !> & tl_grad(Iend+1,j-1)- & !> & MIN(Ce,0.0_r8)* & !> & tl_grad(Iend+1,j ))/ & !> & (cff+Cx) !> adfac=ad_v(Iend+1,j,k,nout)/(cff+Cx) ad_grad(Iend+1,j-1)=ad_grad(Iend+1,j-1)- & & MAX(Ce,0.0_r8)*adfac ad_grad(Iend+1,j )=ad_grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*adfac ad_v(Iend ,j,k,nout)=ad_v(Iend ,j,k,nout)+Cx *adfac ad_v(Iend+1,j,k,nstp)=ad_v(Iend+1,j,k,nstp)+cff*adfac ad_v(Iend+1,j,k,nout)=0.0_r8 END DO END DO END IF # elif defined EAST_M3CLAMPED ! ! Eastern edge, clamped boundary condition. ! DO k=1,N(ng) DO j=JstrV,Jend # ifdef MASKING !> tl_v(Iend+1,j,k,nout)=tl_v(Iend+1,j,k,nout)* & !> & GRID(ng)%vmask(Iend+1,j) !> ad_v(Iend+1,j,k,nout)=ad_v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef ADJUST_BOUNDARY IF (Lobc(ieast,isVvel,ng)) THEN !> tl_v(Iend+1,j,k,nout)=BOUNDARY(ng)%tl_v_east(j,k) !> BOUNDARY(ng)%ad_v_east(j,k)=BOUNDARY(ng)%ad_v_east(j,k)+ & & ad_v(Iend+1,j,k,nout) ad_v(Iend+1,j,k,nout)=0.0_r8 ELSE !> tl_v(Iend+1,j,k,nout)=0.0_r8 !> ad_v(Iend+1,j,k,nout)=0.0_r8 END IF # else !> tl_v(Iend+1,j,k,nout)=0.0_r8 !> ad_v(Iend+1,j,k,nout)=0.0_r8 # endif END DO END DO # elif defined EAST_M3GRADIENT ! ! Eastern edge, gradient boundary condition. ! DO k=1,N(ng) DO j=JstrV,Jend # ifdef MASKING !> tl_v(Iend+1,j,k,nout)=tl_v(Iend+1,j,k,nout)* & !> & GRID(ng)%vmask(Iend+1,j) !> ad_v(Iend+1,j,k,nout)=ad_v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif !> tl_v(Iend+1,j,k,nout)=tl_v(Iend,j,k,nout) !> ad_v(Iend ,j,k,nout)=ad_v(Iend ,j,k,nout)+ & & ad_v(Iend+1,j,k,nout) ad_v(Iend+1,j,k,nout)=0.0_r8 END DO END DO # else ! ! Eastern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! # ifdef NS_PERIODIC # define J_RANGE JstrV,Jend # else # define J_RANGE Jstr,JendR # endif DO k=1,N(ng) DO j=J_RANGE # ifdef MASKING !> tl_v(Iend+1,j,k,nout)=tl_v(Iend+1,j,k,nout)* & !> & GRID(ng)%vmask(Iend+1,j) !> ad_v(Iend+1,j,k,nout)=ad_v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif !> tl_v(Iend+1,j,k,nout)=gamma2(ng)*tl_v(Iend,j,k,nout) !> ad_v(Iend ,j,k,nout)=ad_v(Iend ,j,k,nout)+ & & gamma2(ng)*ad_v(Iend+1,j,k,nout) ad_v(Iend+1,j,k,nout)=0.0_r8 END DO END DO # undef J_RANGE # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (WESTERN_EDGE) THEN # if defined WEST_M3RADIATION_NOT_YET IF (iic(ng).ne.0) THEN ! ! Western edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO j=JstrV,Jend # ifdef WEST_M3NUDGING IF (BOUNDARY(ng)%v_west_Cx(j,k).eq.0.0_r8) THEN tau=M3obc_in(ng,iwest) ELSE tau=M3obc_out(ng,iwest) END IF tau=tau*dt(ng) # endif Cx=BOUNDARY(ng)%v_west_Cx(j,k) # ifdef RADIATION_2D Ce=BOUNDARY(ng)%v_west_Ce(j,k) # else Ce=0.0_r8 # endif cff=BOUNDARY(ng)%v_west_C2(j,k) # ifdef MASKING !> tl_v(Istr-1,j,k,nout)=tl_v(Istr-1,j,k,nout)* & !> & GRID(ng)%vmask(Istr-1,j) !> ad_v(Istr-1,j,k,nout)=ad_v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WEST_M3NUDGING !> tl_v(Istr-1,j,k,nout)=tl_v(Istr-1,j,k,nout)- & !> & tau*tl_v(Istr-1,j,k,nstp) !> ad_v(Istr-1,j,k,nstp)=ad_v(Istr-1,j,k,nstp)- & & tau*ad_v(Istr-1,j,k,nout) # endif !> tl_v(Istr-1,j,k,nout)=(cff*tl_v(Istr-1,j,k,nstp)+ & !> & Cx *tl_v(Istr ,j,k,nout)- & !> & MAX(Ce,0.0_r8)* & !> & tl_grad(Istr-1,j-1)- & !> & MIN(Ce,0.0_r8)* & !> & tl_grad(Istr-1,j ))/ & !> & (cff+Cx) !> adfac=ad_v(Istr-1,j,k,nout)/(cff+Cx) ad_grad(Istr-1,j-1)=ad_grad(Istr-1,j-1)- & & MAX(Ce,0.0_r8)*adfac ad_grad(Istr-1,j )=ad_grad(Istr-1,j )- & & MIN(Ce,0.0_r8)*adfac ad_v(Istr-1,j,k,nstp)=ad_v(Istr-1,j,k,nstp)+cff*adfac ad_v(Istr ,j,k,nout)=ad_v(Istr ,j,k,nout)+Cx *adfac ad_v(Istr-1,j,k,nout)=0.0_r8 END DO END DO END IF # elif defined WEST_M3CLAMPED ! ! Western edge, clamped boundary condition. ! DO k=1,N(ng) DO j=JstrV,Jend # ifdef MASKING !> tl_v(Istr-1,j,k,nout)=tl_v(Istr-1,j,k,nout)* & !> & GRID(ng)%vmask(Istr-1,j) !> ad_v(Istr-1,j,k,nout)=ad_v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef ADJUST_BOUNDARY IF (Lobc(iwest,isVvel,ng)) THEN !> tl_v(Istr-1,j,k,nout)=BOUNDARY(ng)%tl_v_west(j,k) !> BOUNDARY(ng)%ad_v_west(j,k)=BOUNDARY(ng)%ad_v_west(j,k)+ & & ad_v(Istr-1,j,k,nout) ad_v(Istr-1,j,k,nout)=0.0_r8 ELSE !> tl_v(Istr-1,j,k,nout)=0.0_r8 !> ad_v(Istr-1,j,k,nout)=0.0_r8 END IF # else !> tl_v(Istr-1,j,k,nout)=0.0_r8 !> ad_v(Istr-1,j,k,nout)=0.0_r8 # endif END DO END DO # elif defined WEST_M3GRADIENT ! ! Western edge, gradient boundary condition. ! DO k=1,N(ng) DO j=JstrV,Jend # ifdef MASKING !> tl_v(Istr-1,j,k,nout)=tl_v(Istr-1,j,k,nout)* & !> & GRID(ng)%vmask(Istr-1,j) !> ad_v(Istr-1,j,k,nout)=ad_v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif !> tl_v(Istr-1,j,k,nout)=tl_v(Istr,j,k,nout) !> ad_v(Istr ,j,k,nout)=ad_v(Istr ,j,k,nout)+ & & ad_v(Istr-1,j,k,nout) ad_v(Istr-1,j,k,nout)=0.0_r8 END DO END DO # else ! ! Western edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! # ifdef NS_PERIODIC # define J_RANGE JstrV,Jend # else # define J_RANGE Jstr,JendR # endif DO k=1,N(ng) DO j=J_RANGE # ifdef MASKING !> tl_v(Istr-1,j,k,nout)=tl_v(Istr-1,j,k,nout)* & !> & GRID(ng)%vmask(Istr-1,j) !> ad_v(Istr-1,j,k,nout)=ad_v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif !> tl_v(Istr-1,j,k,nout)=gamma2(ng)*tl_v(Istr,j,k,nout) !> ad_v(Istr ,j,k,nout)=ad_v(Istr ,j,k,nout)+ & & gamma2(ng)*ad_v(Istr-1,j,k,nout) ad_v(Istr-1,j,k,nout)=0.0 END DO END DO # undef J_RANGE # endif END IF # endif # ifndef NS_PERIODIC ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (NORTHERN_EDGE) THEN # if defined NORTH_M3RADIATION_NOT_YET IF (iic(ng).ne.0) THEN ! ! Northern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO i=Istr,Iend # ifdef NORTH_M3NUDGING IF (BOUNDARY(ng)%v_south_Ce(i,k).eq.0.0_r8) THEN tau=M3obc_in(ng,inorth) ELSE tau=M3obc_out(ng,inorth) END IF tau=tau*dt(ng) # endif # ifdef RADIATION_2D Cx=BOUNDARY(ng)%v_south_Cx(i,k) # else Cx=0.0_r8 # endif Ce=BOUNDARY(ng)%v_south_Ce(i,k) cff=BOUNDARY(ng)%v_south_C2(i,k) # ifdef MASKING !> tl_v(i,Jend+1,k,nout)=tl_v(i,Jend+1,k,nout)* & !> & GRID(ng)%vmask(i,Jend+1) !> ad_v(i,Jend+1,k,nout)=ad_v(i,Jend+1,k,nout)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef NORTH_M3NUDGING !> tl_v(i,Jend+1,k,nout)=tl_v(i,Jend+1,k,nout)- & !> & tau*tl_v(i,Jend+1,k,nstp) !> ad_v(i,Jend+1,k,nstp)=ad_v(i,Jend+1,k,nstp)- & & tau*ad_v(i,Jend+1,k,nout) # endif !> tl_v(i,Jend+1,k,nout)=(cff*tl_v(i,Jend+1,k,nstp)+ & !> & Ce *tl_v(i,Jend ,k,nout)- & !> & MAX(Cx,0.0_r8)* & !> & tl_grad(i ,Jend+1)- & !> & MIN(Cx,0.0_r8)* & !> & tl_grad(i+1,Jend+1))/ & !> & (cff+Ce) !> adfac=ad_v(i,Jend+1,k,nout)/(cff+Ce) ad_grad(i ,Jend+1)=ad_grad(i ,Jend+1)- & & MAX(Cx,0.0_r8)*adfac ad_grad(i+1,Jend+1)=ad_grad(i+1,Jend+1)- & & MIN(Cx,0.0_r8)*adfac ad_v(i,Jend ,k,nstp)=ad_v(i,Jend ,k,nstp)+Ce *adfac ad_v(i,Jend+1,k,nstp)=ad_v(i,Jend+1,k,nstp)+cff*adfac ad_v(i,Jend+1,k,nout)=0.0_r8 END DO END DO END IF # elif defined NORTH_M3CLAMPED ! ! Northern edge, clamped boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend # ifdef MASKING !> tl_v(i,Jend+1,k,nout)=tl_v(i,Jend+1,k,nout)* & !> & GRID(ng)%vmask(i,Jend+1) !> ad_v(i,Jend+1,k,nout)=ad_v(i,Jend+1,k,nout)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef ADJUST_BOUNDARY IF (Lobc(inorth,isVvel,ng)) THEN !> tl_v(i,Jend+1,k,nout)=BOUNDARY(ng)%tl_v_north(i,k) !> BOUNDARY(ng)%ad_v_north(i,k)=BOUNDARY(ng)%ad_v_north(i,k)+& & ad_v(i,Jend+1,k,nout) ad_v(i,Jend+1,k,nout)=0.0_r8 ELSE !> tl_v(i,Jend+1,k,nout)=0.0_r8 !> ad_v(i,Jend+1,k,nout)=0.0_r8 END IF # else !> tl_v(i,Jend+1,k,nout)=0.0_r8 !> ad_v(i,Jend+1,k,nout)=0.0_r8 # endif END DO END DO # elif defined NORTH_M3GRADIENT ! ! Northern edge, gradient boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend # ifdef MASKING !> tl_v(i,Jend+1,k,nout)=tl_v(i,Jend+1,k,nout)* & !> & GRID(ng)%vmask(i,Jend+1) !> ad_v(i,Jend+1,k,nout)=ad_v(i,Jend+1,k,nout)* & & GRID(ng)%vmask(i,Jend+1) # endif !> tl_v(i,Jend+1,k,nout)=tl_v(i,Jend,k,nout) !> ad_v(i,Jend ,k,nout)=ad_v(i,Jend ,k,nout)+ & & ad_v(i,Jend+1,k,nout) ad_v(i,Jend+1,k,nout)=0.0_r8 END DO END DO # else ! ! Northern edge, closed boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend !> tl_v(i,Jend+1,k,nout)=0.0_r8 !> ad_v(i,Jend+1,k,nout)=0.0_r8 END DO END DO # endif END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (SOUTHERN_EDGE) THEN # if defined SOUTH_M3RADIATION_NOT_YET IF (iic(ng).ne.0) THEN ! ! Southern edge, implicit upstream radiation condition. ! DO k=1,N(ng) DO i=Istr,Iend # ifdef SOUTH_M3NUDGING IF (BOUNDARY(ng)%v_south_Ce(i,k).eq.0.0_r8) THEN tau=M3obc_in(ng,isouth) ELSE tau=M3obc_out(ng,isouth) END IF tau=tau*dt(ng) # endif # ifdef RADIATION_2D Cx=BOUNDARY(ng)%v_south_Cx(i,k) # else Cx=0.0_r8 # endif Ce=BOUNDARY(ng)%v_south_Ce(i,k) cff=BOUNDARY(ng)%v_south_C2(i,k) # ifdef MASKING !> tl_v(i,Jstr,k,nout)=tl_v(i,Jstr,k,nout)* & !> & GRID(ng)%vmask(i,Jstr) !> ad_v(i,Jstr,k,nout)=ad_v(i,Jstr,k,nout)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef SOUTH_M3NUDGING !> tl_v(i,Jstr,k,nout)=tl_v(i,Jstr,k,nout)- & !> & tau*tl_v(i,Jstr,k,nstp) !> ad_v(i,Jstr,k,nstp)=ad_v(i,Jstr,k,nstp)- & & tau*ad_v(i,Jstr,k,nout) # endif !> tl_v(i,Jstr,k,nout)=(cff*tl_v(i,Jstr ,k,nstp)+ & !> & Ce *tl_v(i,Jstr+1,k,nout)- & !> & MAX(Cx,0.0_r8)* & !> & tl_grad(i ,Jstr)- & !> & MIN(Cx,0.0_r8)* & !> & tl_grad(i+1,Jstr))/ & !> & (cff+Ce) !> adfac=ad_v(i,Jstr,k,nout)/(cff+Ce) ad_grad(i ,Jstr)=ad_grad(i ,Jstr)- & & MAX(Cx,0.0_r8)*adfac ad_grad(i+1,Jstr)=ad_grad(i+1,Jstr)- & & MIN(Cx,0.0_r8)*adfac ad_v(i,Jstr ,k,nstp)=ad_v(i,Jstr ,k,nstp)+cff*adfac ad_v(i,Jstr+1,k,nout)=ad_v(i,Jstr+1,k,nout)+Ce *adfac ad_v(i,Jstr ,k,nout)=0.0_r8 END DO END DO END IF # elif defined SOUTH_M3CLAMPED ! ! Southern edge, clamped boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend # ifdef MASKING !> tl_v(i,Jstr,k,nout)=tl_v(i,Jstr,k,nout)* & !> & GRID(ng)%vmask(i,Jstr) !> ad_v(i,Jstr,k,nout)=ad_v(i,Jstr,k,nout)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef ADJUST_BOUNDARY IF (Lobc(isouth,isVvel,ng)) THEN !> tl_v(i,Jstr,k,nout)=BOUNDARY(ng)%tl_v_south(i,k) !> BOUNDARY(ng)%ad_v_south(i,k)=BOUNDARY(ng)%ad_v_south(i,k)+& & ad_v(i,Jstr,k,nout) ad_v(i,Jstr,k,nout)=0.0_r8 ELSE !> tl_v(i,Jstr,k,nout)=0.0_r8 !> ad_v(i,Jstr,k,nout)=0.0_r8 END IF # else !> tl_v(i,Jstr,k,nout)=0.0_r8 !> ad_v(i,Jstr,k,nout)=0.0_r8 # endif END DO END DO # elif defined SOUTH_M3GRADIENT ! ! Southern edge, gradient boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend # ifdef MASKING !> tl_v(i,Jstr,k,nout)=tl_v(i,Jstr,k,nout)* & !> & GRID(ng)%vmask(i,Jstr) !> ad_v(i,Jstr ,k,nout)=ad_v(i,Jstr ,k,nout)* & & GRID(ng)%vmask(i,Jstr) # endif !> tl_v(i,Jstr,k,nout)=tl_v(i,Jstr+1,k,nout) !> ad_v(i,Jstr+1,k,nout)=ad_v(i,Jstr+1,k,nout)+ & & ad_v(i,Jstr ,k,nout) ad_v(i,Jstr ,k,nout)=0.0_r8 END DO END DO # else ! ! Southern edge, closed boundary condition. ! DO k=1,N(ng) DO i=Istr,Iend !> tl_v(i,Jstr,k,nout)=0.0_r8 !> ad_v(i,Jstr,k,nout)=0.0_r8 END DO END DO # endif END IF # endif RETURN END SUBROUTINE ad_v3dbc_tile #endif END MODULE ad_v3dbc_mod