#ifdef EW_PERIODIC # define I_RANGE Istr-1,Iend+1 #else # define I_RANGE MAX(Istr-1,1),MIN(Iend+1,Lm(ng)) #endif #ifdef NS_PERIODIC # define J_RANGE Jstr-1,Jend+1 #else # define J_RANGE MAX(Jstr-1,1),MIN(Jend+1,Mm(ng)) #endif SUBROUTINE ad_t3dmix4 (ng, tile) ! !svn $Id: ad_t3dmix4_s.h 406 2009-10-16 19:42:47Z arango $ !************************************************** Hernan G. Arango *** ! Copyright (c) 2002-2009 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !*********************************************************************** ! ! ! This subroutine computes adjoint horizontal biharmonic mixing ! ! of tracers along S-coordinate levels surfaces. ! ! ! !*********************************************************************** ! USE mod_param #ifdef CLIMA_TS_MIX USE mod_clima #endif #ifdef DIAGNOSTICS_TS !! USE mod_diags #endif USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iADM, 27) #endif CALL ad_t3dmix4_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nnew(ng), & #ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & #endif & GRID(ng) % Hz, & & GRID(ng) % ad_Hz, & & GRID(ng) % pmon_u, & & GRID(ng) % pnom_v, & & GRID(ng) % pm, & & GRID(ng) % pn, & & MIXING(ng) % diff4, & #ifdef CLIMA_TS_MIX & CLIMA(ng) % tclm, & #endif #ifdef DIAGNOSTICS_TS !! & DIAGS(ng) % DiaTwrk, & #endif & OCEAN(ng) % t, & & OCEAN(ng) % ad_t) #ifdef PROFILE CALL wclock_off (ng, iADM, 27) #endif RETURN END SUBROUTINE ad_t3dmix4 ! !*********************************************************************** SUBROUTINE ad_t3dmix4_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nnew, & #ifdef MASKING & umask, vmask, & #endif & Hz, ad_Hz, & & pmon_u, pnom_v, pm, pn, & & diff4, & #ifdef CLIMA_TS_MIX & tclm, & #endif #ifdef DIAGNOSTICS_TS !! & DiaTwrk, & #endif & t, ad_t) !*********************************************************************** ! USE mod_param USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nnew #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: pmon_u(LBi:,LBj:) real(r8), intent(in) :: pnom_v(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: diff4(LBi:,LBj:,:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) # ifdef CLIMA_TS_MIX real(r8), intent(in) :: tclm(LBi:,LBj:,:,:) # endif # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:,LBj:,:,:,:) # endif real(r8), intent(inout) :: ad_Hz(LBi:,LBj:,:) real(r8), intent(inout) :: ad_t(LBi:,LBj:,:,:,:) #else # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: pmon_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pnom_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: diff4(LBi:UBi,LBj:UBj,NT(ng)) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # ifdef CLIMA_TS_MIX real(r8), intent(in) :: tclm(LBi:UBi,LBj:UBj,N(ng),NT(ng)) # endif # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:UBi,LBj:UBj,N(ng),NT(ng), & !! & NDT) # endif real(r8), intent(inout) :: ad_Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(inout) :: ad_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) #endif ! ! Local variable declarations. ! integer :: i, itrc, j, k real(r8) :: cff, cff1 real(r8) :: adfac, adfac1, adfac2, ad_cff, ad_cff1 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapT real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_LapT #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Initialize adjoint private variables. !----------------------------------------------------------------------- ! ad_cff=0.0_r8 ad_cff1=0.0_r8 ad_FE(IminS:ImaxS,JminS:JmaxS)=0.0_r8 ad_FX(IminS:ImaxS,JminS:JmaxS)=0.0_r8 ad_LapT(IminS:ImaxS,JminS:JmaxS)=0.0_r8 ! !---------------------------------------------------------------------- ! Compute adjoint horizontal biharmonic diffusion along constant ! S-surfaces. The biharmonic operator is computed by applying the ! harmonic operator twice. !---------------------------------------------------------------------- ! DO itrc=1,NT(ng) DO k=1,N(ng) ! ! Compute FX=d(LapT)/d(xi) and FE=d(LapT)/d(eta) BASIC STATE terms. ! DO j=J_RANGE DO i=I_RANGE+1 cff=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & & pmon_u(i,j) #ifdef MASKING cff=cff*umask(i,j) #endif FX(i,j)=cff*(Hz(i,j,k)+Hz(i-1,j,k))* & & (t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc)) END DO END DO DO j=J_RANGE+1 DO i=I_RANGE cff=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & pnom_v(i,j) #ifdef MASKING cff=cff*vmask(i,j) #endif FE(i,j)=cff*(Hz(i,j,k)+Hz(i,j-1,k))* & & (t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc)) END DO END DO ! ! Compute first BASIC STATE harmonic operator and multiply by the ! metrics of the second harmonic operator. ! DO j=J_RANGE DO i=I_RANGE cff=1.0_r8/Hz(i,j,k) LapT(i,j)=pm(i,j)*pn(i,j)*cff* & & (FX(i+1,j)-FX(i,j)+ & & FE(i,j+1)-FE(i,j)) END DO END DO ! ! Apply boundary conditions (except periodic; closed or gradient) ! to the first harmonic operator. ! #ifndef EW_PERIODIC IF (WESTERN_EDGE) THEN DO j=J_RANGE # ifdef WESTERN_WALL LapT(Istr-1,j)=0.0_r8 # else LapT(Istr-1,j)=LapT(Istr,j) # endif END DO END IF IF (EASTERN_EDGE) THEN DO j=J_RANGE # ifdef EASTERN_WALL LapT(Iend+1,j)=0.0_r8 # else LapT(Iend+1,j)=LapT(Iend,j) # endif END DO END IF #endif #ifndef NS_PERIODIC IF (SOUTHERN_EDGE) THEN DO i=I_RANGE # ifdef SOUTHERN_WALL LapT(i,Jstr-1)=0.0_r8 # else LapT(i,Jstr-1)=LapT(i,Jstr) # endif END DO END IF IF (NORTHERN_EDGE) THEN DO i=I_RANGE # ifdef NORTHERN_WALL LapT(i,Jend+1)=0.0_r8 # else LapT(i,Jend+1)=LapT(i,Jend) # endif END DO END IF #endif ! ! Time-step biharmonic, S-surfaces diffusion term (m Tunits). ! DO j=Jstr,Jend DO i=Istr,Iend #ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iThdif)=-cff #endif #ifdef TS_MPDATA_NOT_YET cff1=1.0_r8/Hz(i,j,k) !> tl_t(i,j,k,3,itrc)=tl_cff1*t(i,j,k,nnew,itrc)+ & !> & cff1*tl_t(i,j,k,nnew,itrc) !> ad_t(i,j,k,nnew,itrc)=ad_t(i,j,k,nnew,itrc)+ & & cff1*ad_t(i,j,k,3,itrc) ad_cff1=ad_cff1+ & & t(i,j,k,nnew,itrc)*ad_t(i,j,k,3,itrc) ad_t(i,j,k,3,itrc)=0.0_r8 !> tl_cff1=-cff1*cff1*tl_Hz(i,j,k) !> ad_Hz(i,j,k)=ad_Hz(i,j,k)- & & cff1*cff1*ad_cff1 ad_cff1=0.0_r8 #endif !> tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff !> ad_cff=ad_cff-ad_t(i,j,k,nnew,itrc) !> tl_cff=dt(ng)*pm(i,j)*pn(i,j)* & !> & (tl_FX(i+1,j)-tl_FX(i,j)+ & !> & tl_FE(i,j+1)-tl_FE(i,j)) !> adfac=dt(ng)*pm(i,j)*pn(i,j)*ad_cff ad_FX(i ,j)=ad_FX(i ,j)-adfac ad_FX(i+1,j)=ad_FX(i+1,j)+adfac ad_FE(i,j )=ad_FE(i,j )-adfac ad_FE(i,j+1)=ad_FE(i,j+1)+adfac ad_cff=0.0_r8 END DO END DO ! ! Compute ad_FE=d(ad_LapT)/d(eta) and ad_FX=d(ad_LapT)/d(xi) terms. ! DO j=Jstr,Jend+1 DO i=Istr,Iend #ifdef MASKING !> tl_FE(i,j)=tl_FE(i,j)*vmask(i,j) !> ad_FE(i,j)=ad_FE(i,j)*vmask(i,j) #endif !> tl_FE(i,j)=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & !> & pnom_v(i,j)* & !> & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !> & (LapT(i,j)-LapT(i,j-1))+ & !> & (Hz(i,j,k)+Hz(i,j-1,k))* & !> & (tl_LapT(i,j)-tl_LapT(i,j-1))) !> adfac=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & & pnom_v(i,j)*ad_FE(i,j) adfac1=adfac*(LapT(i,j)-LapT(i,j-1)) adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_LapT(i,j-1)=ad_LapT(i,j-1)-adfac2 ad_LapT(i,j )=ad_LapT(i,j )+adfac2 ad_FE(i,j)=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=Istr,Iend+1 #ifdef MASKING !> tl_FX(i,j)=tl_FX(i,j)*umask(i,j) !> ad_FX(i,j)=ad_FX(i,j)*umask(i,j) #endif !> tl_FX(i,j)=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & !> & pmon_u(i,j)* & !> & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !> & (LapT(i,j)-LapT(i-1,j))+ & !> & (Hz(i,j,k)+Hz(i-1,j,k))* & !> & (tl_LapT(i,j)-tl_LapT(i-1,j))) !> adfac=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & & pmon_u(i,j)*ad_FX(i,j) adfac1=adfac*(LapT(i,j)-LapT(i-1,j)) adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_LapT(i-1,j)=ad_LapT(i-1,j)-adfac2 ad_LapT(i ,j)=ad_LapT(i ,j)+adfac2 ad_FX(i,j)=0.0_r8 END DO END DO ! ! Apply boundary conditions (except periodic; closed or gradient) ! to the first harmonic operator. ! #ifndef NS_PERIODIC IF (NORTHERN_EDGE) THEN DO i=I_RANGE # ifdef NORTHERN_WALL !> tl_LapT(i,Jend+1)=0.0_r8 !> ad_LapT(i,Jend+1)=0.0_r8 # else !> tl_LapT(i,Jend+1)=tl_LapT(i,Jend) !> ad_LapT(i,Jend)=ad_LapT(i,Jend)+ad_LapT(i,Jend+1) ad_LapT(i,Jend+1)=0.0_r8 # endif END DO END IF IF (SOUTHERN_EDGE) THEN DO i=I_RANGE # ifdef SOUTHERN_WALL !> tl_LapT(i,Jstr-1)=0.0_r8 !> ad_LapT(i,Jstr-1)=0.0_r8 # else !> tl_LapT(i,Jstr-1)=tl_LapT(i,Jstr) !> ad_LapT(i,Jstr)=ad_LapT(i,Jstr)+ad_LapT(i,Jstr-1) ad_LapT(i,Jstr-1)=0.0_r8 # endif END DO END IF #endif #ifndef EW_PERIODIC IF (EASTERN_EDGE) THEN DO j=J_RANGE # ifdef EASTERN_WALL !> tl_LapT(Iend+1,j)=0.0_r8 !> ad_LapT(Iend+1,j)=0.0_r8 # else !> tl_LapT(Iend+1,j)=tl_LapT(Iend,j) !> ad_LapT(Iend,j)=ad_LapT(Iend,j)+ad_LapT(Iend+1,j) ad_LapT(Iend+1,j)=0.0_r8 # endif END DO END IF IF (WESTERN_EDGE) THEN DO j=J_RANGE # ifdef WESTERN_WALL !> tl_LapT(Istr-1,j)=0.0_r8 !> ad_LapT(Istr-1,j)=0.0_r8 # else !> tl_LapT(Istr-1,j)=tl_LapT(Istr,j) !> ad_LapT(Istr,j)=ad_LapT(Istr,j)+ad_LapT(Istr-1,j) ad_LapT(Istr-1,j)=0.0_r8 # endif END DO END IF #endif ! ! Compute first harmonic operator and multiply by the metrics of the ! second harmonic operator. ! DO j=J_RANGE DO i=I_RANGE cff=1.0_r8/Hz(i,j,k) !> tl_LapT(i,j)=pm(i,j)*pn(i,j)* & !> & (tl_cff* & !> & (FX(i+1,j)-FX(i,j)+ & !> & FE(i,j+1)-FE(i,j))+ & !> & cff* & !> & (tl_FX(i+1,j)-tl_FX(i,j)+ & !> & tl_FE(i,j+1)-tl_FE(i,j))) !> adfac=pm(i,j)*pn(i,j)*ad_LapT(i,j) adfac1=cff*adfac ad_cff=ad_cff+ & & adfac*(FX(i+1,j)-FX(i,j)+ & & FE(i,j+1)-FE(i,j)) ad_FX(i ,j)=ad_FX(i ,j)-adfac1 ad_FX(i+1,j)=ad_FX(i+1,j)+adfac1 ad_FE(i,j )=ad_FE(i,j )-adfac1 ad_FE(i,j+1)=ad_FE(i,j+1)+adfac1 ad_LapT(i,j)=0.0_r8 !> tl_cff=-cff*cff*tl_Hz(i,j,k) !> ad_Hz(i,j,k)=ad_Hz(i,j,k)-cff*cff*ad_cff ad_cff=0.0_r8 END DO END DO ! ! Compute horizontal tracer flux in the ETA- and XI-directions. ! DO j=J_RANGE+1 DO i=I_RANGE cff=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & pnom_v(i,j) #ifdef MASKING cff=cff*vmask(i,j) #endif !> tl_FE(i,j)=cff* & #if defined CLIMA_TS_MIX !> & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !> & ((t(i,j ,k,nrhs,itrc)-tclm(i,j ,k,itrc))- & !> & (t(i,j-1,k,nrhs,itrc)-tclm(i,j-1,k,itrc)))+ & !> & (Hz(i,j,k)+Hz(i,j-1,k))* & !> & (tl_t(i,j ,k,nrhs,itrc)- & !> & tl_t(i,j-1,k,nrhs,itrc))) #else !> & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !> & (t(i,j ,k,nrhs,itrc)- & !> & t(i,j-1,k,nrhs,itrc))+ & !> & (Hz(i,j,k)+Hz(i,j-1,k))* & !> & (tl_t(i,j ,k,nrhs,itrc)- & !> & tl_t(i,j-1,k,nrhs,itrc))) #endif !> adfac=cff*ad_FE(i,j) #if defined CLIMA_TS_MIX adfac1=adfac*((t(i,j ,k,nrhs,itrc)-tclm(i,j ,k,itrc))- & & (t(i,j-1,k,nrhs,itrc)-tclm(i,j-1,k,itrc))) #else adfac1=adfac*(t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc)) #endif adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_t(i,j-1,k,nrhs,itrc)=ad_t(i,j-1,k,nrhs,itrc)-adfac2 ad_t(i,j ,k,nrhs,itrc)=ad_t(i,j ,k,nrhs,itrc)+adfac2 ad_FE(i,j)=0.0_r8 END DO END DO DO j=J_RANGE DO i=I_RANGE+1 cff=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & & pmon_u(i,j) #ifdef MASKING cff=cff*umask(i,j) #endif !> tl_FX(i,j)=cff* & #if defined CLIMA_TS_MIX !> & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !> & ((t(i ,j,k,nrhs,itrc)-tclm(i ,j,k,itrc))- & !> & (t(i-1,j,k,nrhs,itrc)-tclm(i-1,j,k,itrc)))+ & !> & (Hz(i,j,k)+Hz(i-1,j,k))* & !> & (tl_t(i ,j,k,nrhs,itrc)- & !> & tl_t(i-1,j,k,nrhs,itrc))) #else !> & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !> & (t(i ,j,k,nrhs,itrc)- & !> & t(i-1,j,k,nrhs,itrc))+ & !> & (Hz(i,j,k)+Hz(i-1,j,k))* & !> & (tl_t(i ,j,k,nrhs,itrc)- & !> & tl_t(i-1,j,k,nrhs,itrc))) #endif !> adfac=cff*ad_FX(i,j) #if defined CLIMA_TS_MIX adfac1=adfac*((t(i ,j,k,nrhs,itrc)-tclm(i ,j,k,itrc))- & & (t(i-1,j,k,nrhs,itrc)-tclm(i-1,j,k,itrc))) #else adfac1=adfac*(t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc)) #endif adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_t(i-1,j,k,nrhs,itrc)=ad_t(i-1,j,k,nrhs,itrc)-adfac2 ad_t(i ,j,k,nrhs,itrc)=ad_t(i ,j,k,nrhs,itrc)+adfac2 ad_FX(i,j)=0.0_r8 END DO END DO END DO END DO #undef I_RANGE #undef J_RANGE RETURN END SUBROUTINE ad_t3dmix4_tile