#include "cppdefs.h" MODULE ad_exchange_3d_mod #if defined ADJOINT && defined SOLVE3D && \ (defined EW_PERIODIC || defined NS_PERIODIC) ! !svn $Id: ad_exchange_3d.F 294 2009-01-09 21:37:26Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This package contains adjoint periodic boundary conditions routines ! ! for 3D variables. ! ! ! ! Routines: ! ! ! ! ad_exchange_p3d_tile periodic conditions at PSI-points ! ! ad_exchange_r3d_tile periodic conditions at RHO-points ! ! ad_exchange_u3d_tile periodic conditions at U-points ! ! ad_exchange_v3d_tile periodic conditions at V-points ! ! ad_exchange_w3d_tile periodic conditions at W-points ! ! ! !======================================================================= ! implicit none CONTAINS ! !*********************************************************************** SUBROUTINE ad_exchange_p3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, LBk, UBk, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, LBk, UBk ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:,LBk:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj,LBk:UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,-2,k)=tl_A(Lm(ng)-2,Mm(ng)-2,k) !> ad_A(Lm(ng)-2,Mm(ng)-2,k)=ad_A(Lm(ng)-2,Mm(ng)-2,k)+ & & ad_A(-2,-2,k) ad_A(-2,-2,k)=0.0_r8 !> tl_A(-2,-1,k)=tl_A(Lm(ng)-2,Mm(ng)-1,k) !> ad_A(Lm(ng)-2,Mm(ng)-1,k)=ad_A(Lm(ng)-2,Mm(ng)-1,k)+ & & ad_A(-2,-1,k) ad_A(-2,-1,k)=0.0_r8 !> tl_A(-2, 0,k)=tl_A(Lm(ng)-2,Mm(ng) ,k) !> ad_A(Lm(ng)-2,Mm(ng) ,k)=ad_A(Lm(ng)-2,Mm(ng) ,k)+ & & ad_A(-2, 0,k) ad_A(-2, 0,k)=0.0_r8 !> tl_A(-1,-2,k)=tl_A(Lm(ng)-1,Mm(ng)-2,k) !> ad_A(Lm(ng)-1,Mm(ng)-2,k)=ad_A(Lm(ng)-1,Mm(ng)-2,k)+ & & ad_A(-1,-2,k) ad_A(-1,-2,k)=0.0_r8 !> tl_A(-1,-1,k)=tl_A(Lm(ng)-1,Mm(ng)-1,k) !> ad_A(Lm(ng)-1,Mm(ng)-1,k)=ad_A(Lm(ng)-1,Mm(ng)-1,k)+ & & ad_A(-1,-1,k) ad_A(-1,-1,k)=0.0_r8 !> tl_A(-1, 0,k)=tl_A(Lm(ng)-1,Mm(ng) ,k) !> ad_A(Lm(ng)-1,Mm(ng) ,k)=ad_A(Lm(ng)-1,Mm(ng) ,k)+ & & ad_A(-1, 0,k) ad_A(-1, 0,k)=0.0_r8 !> tl_A( 0,-2,k)=tl_A(Lm(ng) ,Mm(ng)-2,k) !> ad_A(Lm(ng) ,Mm(ng)-2,k)=ad_A(Lm(ng) ,Mm(ng)-2,k)+ & & ad_A( 0,-2,k) ad_A( 0,-2,k)=0.0_r8 !> tl_A( 0,-1,k)=tl_A(Lm(ng) ,Mm(ng)-1,k) !> ad_A(Lm(ng) ,Mm(ng)-1,k)=ad_A(Lm(ng) ,Mm(ng)-1,k)+ & & ad_A( 0,-1,k) ad_A( 0,-1,k)=0.0_r8 !> tl_A( 0, 0,k)=tl_A(Lm(ng) ,Mm(ng) ,k) !> ad_A(Lm(ng) ,Mm(ng) ,k)=ad_A(Lm(ng) ,Mm(ng) ,k)+ & & ad_A( 0, 0,k) ad_A( 0, 0,k)=0.0_r8 END DO END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,-2,k)=tl_A( 1,Mm(ng)-2,k) !> ad_A( 1,Mm(ng)-2,k)=ad_A( 1,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+1,-2,k) ad_A(Lm(ng)+1,-2,k)=0.0_r8 !> tl_A(Lm(ng)+1,-1,k)=tl_A( 1,Mm(ng)-1,k) !> ad_A( 1,Mm(ng)-1,k)=ad_A( 1,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+1,-1,k) ad_A(Lm(ng)+1,-1,k)=0.0_r8 !> tl_A(Lm(ng)+1, 0,k)=tl_A( 1,Mm(ng) ,k) !> ad_A( 1,Mm(ng) ,k)=ad_A( 1,Mm(ng) ,k)+ & & ad_A(Lm(ng)+1, 0,k) ad_A(Lm(ng)+1, 0,k)=0.0_r8 !> tl_A(Lm(ng)+2,-2,k)=tl_A( 2,Mm(ng)-2,k) !> ad_A( 2,Mm(ng)-2,k)=ad_A( 2,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+2,-2,k) ad_A(Lm(ng)+2,-2,k)=0.0_r8 !> tl_A(Lm(ng)+2,-1,k)=tl_A( 2,Mm(ng)-1,k) !> ad_A( 2,Mm(ng)-1,k)=ad_A( 2,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+2,-1,k) ad_A(Lm(ng)+2,-1,k)=0.0_r8 !> tl_A(Lm(ng)+2, 0,k)=tl_A( 2,Mm(ng) ,k) !> ad_A( 2,Mm(ng) ,k)=ad_A( 2,Mm(ng) ,k)+ & & ad_A(Lm(ng)+2, 0,k) ad_A(Lm(ng)+2, 0,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2,k)=tl_A(3 ,Mm(ng)-2,k) !> ad_A(3 ,Mm(ng)-2,k)=ad_A(3 ,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+3,-2,k) ad_A(Lm(ng)+3,-2,k)=0.0_r8 !> tl_A(Lm(ng)+3,-1,k)=tl_A(3 ,Mm(ng)-1,k) !> ad_A(3 ,Mm(ng)-1,k)=ad_A(3 ,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+3,-1,k) ad_A(Lm(ng)+3,-1,k)=0.0_r8 !> tl_A(Lm(ng)+3, 0,k)=tl_A(3 ,Mm(ng) ,k) !> ad_A(3 ,Mm(ng) ,k)=ad_A(3 ,Mm(ng) ,k)+ & & ad_A(Lm(ng)+3, 0,k) ad_A(Lm(ng)+3, 0,k)=0.0_r8 # endif END DO END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,Mm(ng)+1,k)=tl_A(Lm(ng)-2, 1,k) !> ad_A(Lm(ng)-2, 1,k)=ad_A(Lm(ng)-2, 1,k)+ & & ad_A(-2,Mm(ng)+1,k) ad_A(-2,Mm(ng)+1,k)=0.0_r8 !> tl_A(-1,Mm(ng)+1,k)=tl_A(Lm(ng)-1, 1,k) !> ad_A(Lm(ng)-1, 1,k)=ad_A(Lm(ng)-1, 1,k)+ & & ad_A(-1,Mm(ng)+1,k) ad_A(-1,Mm(ng)+1,k)=0.0_r8 !> tl_A( 0,Mm(ng)+1,k)=tl_A(Lm(ng) , 1,k) !> ad_A(Lm(ng) , 1,k)=ad_A(Lm(ng) , 1,k)+ & & ad_A( 0,Mm(ng)+1,k) ad_A( 0,Mm(ng)+1,k)=0.0_r8 !> tl_A(-2,Mm(ng)+2,k)=tl_A(Lm(ng)-2, 2,k) !> ad_A(Lm(ng)-2, 2,k)=ad_A(Lm(ng)-2, 2,k)+ & & ad_A(-2,Mm(ng)+2,k) ad_A(-2,Mm(ng)+2,k)=0.0_r8 !> tl_A(-1,Mm(ng)+2,k)=tl_A(Lm(ng)-1, 2,k) !> ad_A(Lm(ng)-1, 2,k)=ad_A(Lm(ng)-1, 2,k)+ & & ad_A(-1,Mm(ng)+2,k) ad_A(-1,Mm(ng)+2,k)=0.0_r8 !> tl_A( 0,Mm(ng)+2,k)=tl_A(Lm(ng) , 2,k) !> ad_A(Lm(ng) , 2,k)=ad_A(Lm(ng) , 2,k)+ & & ad_A( 0,Mm(ng)+2,k) ad_A( 0,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3,k)=tl_A(Lm(ng)-2, 3,k) !> ad_A(Lm(ng)-2, 3,k)=ad_A(Lm(ng)-2, 3,k)+ & & ad_A(-2,Mm(ng)+3,k) ad_A(-2,Mm(ng)+3,k)=0.0_r8 !> tl_A(-1,Mm(ng)+3,k)=tl_A(Lm(ng)-1, 3,k) !> ad_A(Lm(ng)-1, 3,k)=ad_A(Lm(ng)-1, 3,k)+ & & ad_A(-1,Mm(ng)+3,k) ad_A(-1,Mm(ng)+3,k)=0.0_r8 !> tl_A( 0,Mm(ng)+3,k)=tl_A(Lm(ng) , 3,k) !> ad_A(Lm(ng) , 3,k)=ad_A(Lm(ng) , 3,k)+ & & ad_A( 0,Mm(ng)+3,k) ad_A( 0,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,Mm(ng)+1,k)=tl_A( 1, 1,k) !> ad_A( 1, 1,k)=ad_A( 1, 1,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+1,k) ad_A(Lm(ng)+1,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2,k)=tl_A( 1, 2,k) !> ad_A( 1, 2,k)=ad_A( 1, 2,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+2,k) ad_A(Lm(ng)+1,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3,k)=tl_A( 1, 3,k) !> ad_A( 1, 3,k)=ad_A( 1, 3,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+3,k) ad_A(Lm(ng)+1,Mm(ng)+3,k)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1,k)=tl_A( 2, 1,k) !> ad_A( 2, 1,k)=ad_A( 2, 1,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+1,k) ad_A(Lm(ng)+2,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2,k)=tl_A(2, 2,k) !> ad_A( 2, 2,k)=ad_A( 2, 2,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+2,k) ad_A(Lm(ng)+2,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3,k)=tl_A( 2, 3,k) !> ad_A( 2, 3,k)=ad_A( 2, 3,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+3,k) ad_A(Lm(ng)+2,Mm(ng)+3,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1,k)=tl_A( 3, 1,k) !> ad_A( 3, 1,k)=ad_A( 3, 1,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+1,k) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2,k)=tl_A( 3, 2,k) !> ad_A( 3, 2,k)=ad_A( 3, 2,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+2,k) ad_A(Lm(ng)+3,Mm(ng)+2,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3,k)=tl_A( 3, 3,k) !> ad_A( 3, 3,k)=ad_A( 3, 3,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE Istr,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,-2,k)=tl_A(i,Mm(ng)-2,k) !> ad_A(i,Mm(ng)-2,k)=ad_A(i,Mm(ng)-2,k)+ & & ad_A(i,-2,k) ad_A(i,-2,k)=0.0_r8 !> tl_A(i,-1,k)=tl_A(i,Mm(ng)-1,k) !> ad_A(i,Mm(ng)-1,k)=ad_A(i,Mm(ng)-1,k)+ & & ad_A(i,-1,k) ad_A(i,-1,k)=0.0_r8 !> tl_A(i, 0,k)=tl_A(i,Mm(ng) ,k) !> ad_A(i,Mm(ng) ,k)=ad_A(i,Mm(ng) ,k)+ & & ad_A(i, 0,k) ad_A(i, 0,k)=0.0_r8 END DO END DO END IF IF (SOUTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,Mm(ng)+1,k)=tl_A(i,1,k) !> ad_A(i,1,k)=ad_A(i,1,k)+ & & ad_A(i,Mm(ng)+1,k) ad_A(i,Mm(ng)+1,k)=0.0_r8 !> tl_A(i,Mm(ng)+2,k)=tl_A(i,2,k) !> ad_A(i,2,k)=ad_A(i,2,k)+ & & ad_A(i,Mm(ng)+2,k) ad_A(i,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3,k)=tl_A(i,3,k) !> ad_A(i,3,k)=ad_A(i,3,k)+ & & ad_A(i,Mm(ng)+3,k) ad_A(i,Mm(ng)+3,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE Jstr,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(-2,j,k)=tl_A(Lm(ng)-2,j,k) !> ad_A(Lm(ng)-2,j,k)=ad_A(Lm(ng)-2,j,k)+ & & ad_A(-2,j,k) ad_A(-2,j,k)=0.0_r8 !> tl_A(-1,j,k)=tl_A(Lm(ng)-1,j,k) !> ad_A(Lm(ng)-1,j,k)=ad_A(Lm(ng)-1,j,k)+ & & ad_A(-1,j,k) ad_A(-1,j,k)=0.0_r8 !> tl_A( 0,j,k)=tl_A(Lm(ng) ,j,k) !> ad_A(Lm(ng) ,j,k)=ad_A(Lm(ng) ,j,k)+ & & ad_A( 0,j,k) ad_A( 0,j,k)=0.0_r8 END DO END DO END IF IF (WESTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(Lm(ng)+1,j,k)=tl_A(1,j,k) !> ad_A(1,j,k)=ad_A(1,j,k)+ & & ad_A(Lm(ng)+1,j,k) ad_A(Lm(ng)+1,j,k)=0.0_r8 !> tl_A(Lm(ng)+2,j,k)=tl_A(2,j,k) !> ad_A(2,j,k)=ad_A(2,j,k)+ & & ad_A(Lm(ng)+2,j,k) ad_A(Lm(ng)+2,j,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j,k)=ad_A(3,j,k)+ & & ad_A(Lm(ng)+3,j,k) ad_A(Lm(ng)+3,j,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_p3d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, LBk, UBk, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, LBk, UBk ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:,LBk:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj,LBk:UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,-2,k)=tl_A(Lm(ng)-2,Mm(ng)-2,k) !> ad_A(Lm(ng)-2,Mm(ng)-2,k)=ad_A(Lm(ng)-2,Mm(ng)-2,k)+ & & ad_A(-2,-2,k) ad_A(-2,-2,k)=0.0_r8 !> tl_A(-2,-1,k)=tl_A(Lm(ng)-2,Mm(ng)-1,k) !> ad_A(Lm(ng)-2,Mm(ng)-1,k)=ad_A(Lm(ng)-2,Mm(ng)-1,k)+ & & ad_A(-2,-1,k) ad_A(-2,-1,k)=0.0_r8 !> tl_A(-2, 0,k)=tl_A(Lm(ng)-2,Mm(ng) ,k) !> ad_A(Lm(ng)-2,Mm(ng) ,k)=ad_A(Lm(ng)-2,Mm(ng) ,k)+ & & ad_A(-2, 0,k) ad_A(-2, 0,k)=0.0_r8 !> tl_A(-1,-2,k)=tl_A(Lm(ng)-1,Mm(ng)-2,k) !> ad_A(Lm(ng)-1,Mm(ng)-2,k)=ad_A(Lm(ng)-1,Mm(ng)-2,k)+ & & ad_A(-1,-2,k) ad_A(-1,-2,k)=0.0_r8 !> tl_A(-1,-1,k)=tl_A(Lm(ng)-1,Mm(ng)-1,k) !> ad_A(Lm(ng)-1,Mm(ng)-1,k)=ad_A(Lm(ng)-1,Mm(ng)-1,k)+ & & ad_A(-1,-1,k) ad_A(-1,-1,k)=0.0_r8 !> tl_A(-1, 0,k)=tl_A(Lm(ng)-1,Mm(ng) ,k) !> ad_A(Lm(ng)-1,Mm(ng) ,k)=ad_A(Lm(ng)-1,Mm(ng) ,k)+ & & ad_A(-1, 0,k) ad_A(-1, 0,k)=0.0_r8 !> tl_A( 0,-2,k)=tl_A(Lm(ng) ,Mm(ng)-2,k) !> ad_A(Lm(ng) ,Mm(ng)-2,k)=ad_A(Lm(ng) ,Mm(ng)-2,k)+ & & ad_A( 0,-2,k) ad_A( 0,-2,k)=0.0_r8 !> tl_A( 0,-1,k)=tl_A(Lm(ng) ,Mm(ng)-1,k) !> ad_A(Lm(ng) ,Mm(ng)-1,k)=ad_A(Lm(ng) ,Mm(ng)-1,k)+ & & ad_A( 0,-1,k) ad_A( 0,-1,k)=0.0_r8 !> tl_A( 0, 0,k)=tl_A(Lm(ng) ,Mm(ng) ,k) !> ad_A(Lm(ng) ,Mm(ng) ,k)=ad_A(Lm(ng) ,Mm(ng) ,k)+ & & ad_A( 0, 0,k) ad_A( 0, 0,k)=0.0_r8 END DO END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,-2,k)=tl_A( 1,Mm(ng)-2,k) !> ad_A( 1,Mm(ng)-2,k)=ad_A( 1,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+1,-2,k) ad_A(Lm(ng)+1,-2,k)=0.0_r8 !> tl_A(Lm(ng)+1,-1,k)=tl_A( 1,Mm(ng)-1,k) !> ad_A( 1,Mm(ng)-1,k)=ad_A( 1,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+1,-1,k) ad_A(Lm(ng)+1,-1,k)=0.0_r8 !> tl_A(Lm(ng)+1, 0,k)=tl_A( 1,Mm(ng) ,k) !> ad_A( 1,Mm(ng) ,k)=ad_A( 1,Mm(ng) ,k)+ & & ad_A(Lm(ng)+1, 0,k) ad_A(Lm(ng)+1, 0,k)=0.0_r8 !> tl_A(Lm(ng)+2,-2,k)=tl_A( 2,Mm(ng)-2,k) !> ad_A( 2,Mm(ng)-2,k)=ad_A( 2,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+2,-2,k) ad_A(Lm(ng)+2,-2,k)=0.0_r8 !> tl_A(Lm(ng)+2,-1,k)=tl_A( 2,Mm(ng)-1,k) !> ad_A( 2,Mm(ng)-1,k)=ad_A( 2,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+2,-1,k) ad_A(Lm(ng)+2,-1,k)=0.0_r8 !> tl_A(Lm(ng)+2, 0,k)=tl_A( 2,Mm(ng) ,k) !> ad_A( 2,Mm(ng) ,k)=ad_A( 2,Mm(ng) ,k)+ & & ad_A(Lm(ng)+2, 0,k) ad_A(Lm(ng)+2, 0,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2,k)=tl_A(3 ,Mm(ng)-2,k) !> ad_A(3 ,Mm(ng)-2,k)=ad_A(3 ,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+3,-2,k) ad_A(Lm(ng)+3,-2,k)=0.0_r8 !> tl_A(Lm(ng)+3,-1,k)=tl_A(3 ,Mm(ng)-1,k) !> ad_A(3 ,Mm(ng)-1,k)=ad_A(3 ,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+3,-1,k) ad_A(Lm(ng)+3,-1,k)=0.0_r8 !> tl_A(Lm(ng)+3, 0,k)=tl_A(3 ,Mm(ng) ,k) !> ad_A(3 ,Mm(ng) ,k)=ad_A(3 ,Mm(ng) ,k)+ & & ad_A(Lm(ng)+3, 0,k) ad_A(Lm(ng)+3, 0,k)=0.0_r8 # endif END DO END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,Mm(ng)+1,k)=tl_A(Lm(ng)-2, 1,k) !> ad_A(Lm(ng)-2, 1,k)=ad_A(Lm(ng)-2, 1,k)+ & & ad_A(-2,Mm(ng)+1,k) ad_A(-2,Mm(ng)+1,k)=0.0_r8 !> tl_A(-1,Mm(ng)+1,k)=tl_A(Lm(ng)-1, 1,k) !> ad_A(Lm(ng)-1, 1,k)=ad_A(Lm(ng)-1, 1,k)+ & & ad_A(-1,Mm(ng)+1,k) ad_A(-1,Mm(ng)+1,k)=0.0_r8 !> tl_A( 0,Mm(ng)+1,k)=tl_A(Lm(ng) , 1,k) !> ad_A(Lm(ng) , 1,k)=ad_A(Lm(ng) , 1,k)+ & & ad_A( 0,Mm(ng)+1,k) ad_A( 0,Mm(ng)+1,k)=0.0_r8 !> tl_A(-2,Mm(ng)+2,k)=tl_A(Lm(ng)-2, 2,k) !> ad_A(Lm(ng)-2, 2,k)=ad_A(Lm(ng)-2, 2,k)+ & & ad_A(-2,Mm(ng)+2,k) ad_A(-2,Mm(ng)+2,k)=0.0_r8 !> tl_A(-1,Mm(ng)+2,k)=tl_A(Lm(ng)-1, 2,k) !> ad_A(Lm(ng)-1, 2,k)=ad_A(Lm(ng)-1, 2,k)+ & & ad_A(-1,Mm(ng)+2,k) ad_A(-1,Mm(ng)+2,k)=0.0_r8 !> tl_A( 0,Mm(ng)+2,k)=tl_A(Lm(ng) , 2,k) !> ad_A(Lm(ng) , 2,k)=ad_A(Lm(ng) , 2,k)+ & & ad_A( 0,Mm(ng)+2,k) ad_A( 0,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3,k)=tl_A(Lm(ng)-2, 3,k) !> ad_A(Lm(ng)-2, 3,k)=ad_A(Lm(ng)-2, 3,k)+ & & ad_A(-2,Mm(ng)+3,k) ad_A(-2,Mm(ng)+3,k)=0.0_r8 !> tl_A(-1,Mm(ng)+3,k)=tl_A(Lm(ng)-1, 3,k) !> ad_A(Lm(ng)-1, 3,k)=ad_A(Lm(ng)-1, 3,k)+ & & ad_A(-1,Mm(ng)+3,k) ad_A(-1,Mm(ng)+3,k)=0.0_r8 !> tl_A( 0,Mm(ng)+3,k)=tl_A(Lm(ng) , 3,k) !> ad_A(Lm(ng) , 3,k)=ad_A(Lm(ng) , 3,k)+ & & ad_A( 0,Mm(ng)+3,k) ad_A( 0,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,Mm(ng)+1,k)=tl_A( 1, 1,k) !> ad_A( 1, 1,k)=ad_A( 1, 1,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+1,k) ad_A(Lm(ng)+1,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2,k)=tl_A( 1, 2,k) !> ad_A( 1, 2,k)=ad_A( 1, 2,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+2,k) ad_A(Lm(ng)+1,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3,k)=tl_A( 1, 3,k) !> ad_A( 1, 3,k)=ad_A( 1, 3,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+3,k) ad_A(Lm(ng)+1,Mm(ng)+3,k)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1,k)=tl_A( 2, 1,k) !> ad_A( 2, 1,k)=ad_A( 2, 1,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+1,k) ad_A(Lm(ng)+2,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2,k)=tl_A( 2, 2,k) !> ad_A( 2, 2,k)=ad_A( 2, 2,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+2,k) ad_A(Lm(ng)+2,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3,k)=tl_A( 2, 3,k) !> ad_A( 2, 3,k)=ad_A( 2, 3,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+3,k) ad_A(Lm(ng)+2,Mm(ng)+3,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1,k)=tl_A( 3, 1,k) !> ad_A( 3, 1,k)=ad_A( 3, 1,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+1,k) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2,k)=tl_A( 3, 2,k) !> ad_A( 3, 2,k)=ad_A( 3, 2,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+2,k) ad_A(Lm(ng)+3,Mm(ng)+2,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3,k)=tl_A( 3, 3,k) !> ad_A( 3, 3,k)=ad_A( 3, 3,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE IstrR,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,-2,k)=tl_A(i,Mm(ng)-2,k) !> ad_A(i,Mm(ng)-2,k)=ad_A(i,Mm(ng)-2,k)+ & & ad_A(i,-2,k) ad_A(i,-2,k)=0.0_r8 !> tl_A(i,-1,k)=tl_A(i,Mm(ng)-1,k) !> ad_A(i,Mm(ng)-1,k)=ad_A(i,Mm(ng)-1,k)+ & & ad_A(i,-1,k) ad_A(i,-1,k)=0.0_r8 !> tl_A(i, 0,k)=tl_A(i,Mm(ng) ,k) !> ad_A(i,Mm(ng) ,k)=ad_A(i,Mm(ng) ,k)+ & & ad_A(i, 0,k) ad_A(i, 0,k)=0.0_r8 END DO END DO END IF IF (SOUTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,Mm(ng)+1,k)=tl_A(i, 1,k) !> ad_A(i, 1,k)=ad_A(i, 1,k)+ & & ad_A(i,Mm(ng)+1,k) ad_A(i,Mm(ng)+1,k)=0.0_r8 !> tl_A(i,Mm(ng)+2,k)=tl_A(i, 2,k) !> ad_A(i, 2,k)=ad_A(i, 2,k)+ & & ad_A(i,Mm(ng)+2,k) ad_A(i,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3,k)=tl_A(i,3,k) !> ad_A(i,3,k)=ad_A(i,3,k)+ & & ad_A(i,Mm(ng)+3,k) ad_A(i,Mm(ng)+3,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE JstrR,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(-2,j,k)=tl_A(Lm(ng)-2,j,k) !> ad_A(Lm(ng)-2,j,k)=ad_A(Lm(ng)-2,j,k)+ & & ad_A(-2,j,k) ad_A(-2,j,k)=0.0_r8 !> tl_A(-1,j,k)=tl_A(Lm(ng)-1,j,k) !> ad_A(Lm(ng)-1,j,k)=ad_A(Lm(ng)-1,j,k)+ & & ad_A(-1,j,k) ad_A(-1,j,k)=0.0_r8 !> tl_A( 0,j,k)=tl_A(Lm(ng) ,j,k) !> ad_A(Lm(ng) ,j,k)=ad_A(Lm(ng) ,j,k)+ & & ad_A( 0,j,k) ad_A( 0,j,k)=0.0_r8 END DO END DO END IF IF (WESTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(Lm(ng)+1,j,k)=tl_A(1,j,k) !> ad_A(1,j,k)=ad_A(1,j,k)+ & & ad_A(Lm(ng)+1,j,k) ad_A(Lm(ng)+1,j,k)=0.0_r8 !> tl_A(Lm(ng)+2,j,k)=tl_A( 2,j,k) !> ad_A(2,j,k)=ad_A(2,j,k)+ & & ad_A(Lm(ng)+2,j,k) ad_A(Lm(ng)+2,j,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j,k)=ad_A(3,j,k)+ & & ad_A(Lm(ng)+3,j,k) ad_A(Lm(ng)+3,j,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_r3d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_u3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, LBk, UBk, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, LBk, UBk ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:,LBk:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj,LBk:UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,-2,k)=tl_A(Lm(ng)-2,Mm(ng)-2,k) !> ad_A(Lm(ng)-2,Mm(ng)-2,k)=ad_A(Lm(ng)-2,Mm(ng)-2,k)+ & & ad_A(-2,-2,k) ad_A(-2,-2,k)=0.0_r8 !> tl_A(-2,-1,k)=tl_A(Lm(ng)-2,Mm(ng)-1,k) !> ad_A(Lm(ng)-2,Mm(ng)-1,k)=ad_A(Lm(ng)-2,Mm(ng)-1,k)+ & & ad_A(-2,-1,k) ad_A(-2,-1,k)=0.0_r8 !> tl_A(-2, 0,k)=tl_A(Lm(ng)-2,Mm(ng) ,k) !> ad_A(Lm(ng)-2,Mm(ng) ,k)=ad_A(Lm(ng)-2,Mm(ng) ,k)+ & & ad_A(-2, 0,k) ad_A(-2, 0,k)=0.0_r8 !> tl_A(-1,-2,k)=tl_A(Lm(ng)-1,Mm(ng)-2,k) !> ad_A(Lm(ng)-1,Mm(ng)-2,k)=ad_A(Lm(ng)-1,Mm(ng)-2,k)+ & & ad_A(-1,-2,k) ad_A(-1,-2,k)=0.0_r8 !> tl_A(-1,-1,k)=tl_A(Lm(ng)-1,Mm(ng)-1,k) !> ad_A(Lm(ng)-1,Mm(ng)-1,k)=ad_A(Lm(ng)-1,Mm(ng)-1,k)+ & & ad_A(-1,-1,k) ad_A(-1,-1,k)=0.0_r8 !> tl_A(-1, 0,k)=tl_A(Lm(ng)-1,Mm(ng) ,k) !> ad_A(Lm(ng)-1,Mm(ng) ,k)=ad_A(Lm(ng)-1,Mm(ng) ,k)+ & & ad_A(-1, 0,k) ad_A(-1, 0,k)=0.0_r8 !> tl_A( 0,-2,k)=tl_A(Lm(ng) ,Mm(ng)-2,k) !> ad_A(Lm(ng) ,Mm(ng)-2,k)=ad_A(Lm(ng) ,Mm(ng)-2,k)+ & & ad_A( 0,-2,k) ad_A( 0,-2,k)=0.0_r8 !> tl_A( 0,-1,k)=tl_A(Lm(ng) ,Mm(ng)-1,k) !> ad_A(Lm(ng) ,Mm(ng)-1,k)=ad_A(Lm(ng) ,Mm(ng)-1,k)+ & & ad_A( 0,-1,k) ad_A( 0,-1,k)=0.0_r8 !> tl_A( 0, 0,k)=tl_A(Lm(ng) ,Mm(ng) ,k) !> ad_A(Lm(ng) ,Mm(ng) ,k)=ad_A(Lm(ng) ,Mm(ng) ,k)+ & & ad_A( 0, 0,k) ad_A( 0, 0,k)=0.0_r8 END DO END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,-2,k)=tl_A( 1,Mm(ng)-2,k) !> ad_A( 1,Mm(ng)-2,k)=ad_A( 1,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+1,-2,k) ad_A(Lm(ng)+1,-2,k)=0.0_r8 !> tl_A(Lm(ng)+1,-1,k)=tl_A( 1,Mm(ng)-1,k) !> ad_A( 1,Mm(ng)-1,k)=ad_A( 1,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+1,-1,k) ad_A(Lm(ng)+1,-1,k)=0.0_r8 !> tl_A(Lm(ng)+1, 0,k)=tl_A( 1,Mm(ng) ,k) !> ad_A( 1,Mm(ng) ,k)=ad_A( 1,Mm(ng) ,k)+ & & ad_A(Lm(ng)+1, 0,k) ad_A(Lm(ng)+1, 0,k)=0.0_r8 !> tl_A(Lm(ng)+2,-2,k)=tl_A( 2,Mm(ng)-2,k) !> ad_A( 2,Mm(ng)-2,k)=ad_A( 2,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+2,-2,k) ad_A(Lm(ng)+2,-2,k)=0.0_r8 !> tl_A(Lm(ng)+2,-1,k)=tl_A( 2,Mm(ng)-1,k) !> ad_A( 2,Mm(ng)-1,k)=ad_A( 2,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+2,-1,k) ad_A(Lm(ng)+2,-1,k)=0.0_r8 !> tl_A(Lm(ng)+2, 0,k)=tl_A( 2,Mm(ng) ,k) !> ad_A( 2,Mm(ng) ,k)=ad_A( 2,Mm(ng) ,k)+ & & ad_A(Lm(ng)+2, 0,k) ad_A(Lm(ng)+2, 0,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2,k)=tl_A(3 ,Mm(ng)-2,k) !> ad_A(3 ,Mm(ng)-2,k)=ad_A(3 ,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+3,-2,k) ad_A(Lm(ng)+3,-2,k)=0.0_r8 !> tl_A(Lm(ng)+3,-1,k)=tl_A(3 ,Mm(ng)-1,k) !> ad_A(3 ,Mm(ng)-1,k)=ad_A(3 ,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+3,-1,k) ad_A(Lm(ng)+3,-1,k)=0.0_r8 !> tl_A(Lm(ng)+3, 0,k)=tl_A(3 ,Mm(ng) ,k) !> ad_A(3 ,Mm(ng) ,k)=ad_A(3 ,Mm(ng) ,k)+ & & ad_A(Lm(ng)+3, 0,k) ad_A(Lm(ng)+3, 0,k)=0.0_r8 # endif END DO END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,Mm(ng)+1,k)=tl_A(Lm(ng)-2, 1,k) !> ad_A(Lm(ng)-2, 1,k)=ad_A(Lm(ng)-2, 1,k)+ & & ad_A(-2,Mm(ng)+1,k) ad_A(-2,Mm(ng)+1,k)=0.0_r8 !> tl_A(-1,Mm(ng)+1,k)=tl_A(Lm(ng)-1, 1,k) !> ad_A(Lm(ng)-1, 1,k)=ad_A(Lm(ng)-1, 1,k)+ & & ad_A(-1,Mm(ng)+1,k) ad_A(-1,Mm(ng)+1,k)=0.0_r8 !> tl_A( 0,Mm(ng)+1,k)=tl_A(Lm(ng) , 1,k) !> ad_A(Lm(ng) , 1,k)=ad_A(Lm(ng) , 1,k)+ & & ad_A( 0,Mm(ng)+1,k) ad_A( 0,Mm(ng)+1,k)=0.0_r8 !> tl_A(-2,Mm(ng)+2,k)=tl_A(Lm(ng)-2, 2,k) !> ad_A(Lm(ng)-2, 2,k)=ad_A(Lm(ng)-2, 2,k)+ & & ad_A(-2,Mm(ng)+2,k) ad_A(-2,Mm(ng)+2,k)=0.0_r8 !> tl_A(-1,Mm(ng)+2,k)=tl_A(Lm(ng)-1, 2,k) !> ad_A(Lm(ng)-1, 2,k)=ad_A(Lm(ng)-1, 2,k)+ & & ad_A(-1,Mm(ng)+2,k) ad_A(-1,Mm(ng)+2,k)=0.0_r8 !> tl_A( 0,Mm(ng)+2,k)=tl_A(Lm(ng) , 2,k) !> ad_A(Lm(ng) , 2,k)=ad_A(Lm(ng) , 2,k)+ & & ad_A( 0,Mm(ng)+2,k) ad_A( 0,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3,k)=tl_A(Lm(ng)-2, 3,k) !> ad_A(Lm(ng)-2, 3,k)=ad_A(Lm(ng)-2, 3,k)+ & & ad_A(-2,Mm(ng)+3,k) ad_A(-2,Mm(ng)+3,k)=0.0_r8 !> tl_A(-1,Mm(ng)+3,k)=tl_A(Lm(ng)-1, 3,k) !> ad_A(Lm(ng)-1, 3,k)=ad_A(Lm(ng)-1, 3,k)+ & & ad_A(-1,Mm(ng)+3,k) ad_A(-1,Mm(ng)+3,k)=0.0_r8 !> tl_A( 0,Mm(ng)+3,k)=tl_A(Lm(ng) , 3,k) !> ad_A(Lm(ng) , 3,k)=ad_A(Lm(ng) , 3,k)+ & & ad_A( 0,Mm(ng)+3,k) ad_A( 0,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,Mm(ng)+1,k)=tl_A( 1 , 1 ,k) !> ad_A( 1, 1,k)=ad_A( 1, 1,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+1,k) ad_A(Lm(ng)+1,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2,k)=tl_A( 1 , 2,k) !> ad_A( 1, 2,k)=ad_A( 1, 2,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+2,k) ad_A(Lm(ng)+1,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3,k)=tl_A( 1, 3,k) !> ad_A( 1, 3,k)=ad_A( 1, 3,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+3,k) ad_A(Lm(ng)+1,Mm(ng)+3,k)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1,k)=tl_A( 2, 1 ,k) !> ad_A( 2, 1,k)=ad_A( 2, 1,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+1,k) ad_A(Lm(ng)+2,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2,k)=tl_A( 2, 2,k) !> ad_A( 2, 2,k)=ad_A( 2, 2,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+2,k) ad_A(Lm(ng)+2,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3,k)=tl_A( 2, 3,k) !> ad_A( 2, 3,k)=ad_A( 2, 3,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+3,k) ad_A(Lm(ng)+2,Mm(ng)+3,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1,k)=tl_A( 3, 1,k) !> ad_A( 3, 1,k)=ad_A( 3, 1,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+1,k) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2,k)=tl_A( 3, 2,k) !> ad_A( 3, 2,k)=ad_A( 3, 2,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+2,k) ad_A(Lm(ng)+3,Mm(ng)+2,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3,k)=tl_A( 3, 3,k) !> ad_A( 3, 3,k)=ad_A( 3, 3,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE Istr,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,-2,k)=tl_A(i,Mm(ng)-2,k) !> ad_A(i,Mm(ng)-2,k)=ad_A(i,Mm(ng)-2,k)+ & & ad_A(i,-2,k) ad_A(i,-2,k)=0.0_r8 !> tl_A(i,-1,k)=tl_A(i,Mm(ng)-1,k) !> ad_A(i,Mm(ng)-1,k)=ad_A(i,Mm(ng)-1,k)+ & & ad_A(i,-1,k) ad_A(i,-1,k)=0.0_r8 !> tl_A(i, 0,k)=tl_A(i,Mm(ng) ,k) !> ad_A(i,Mm(ng) ,k)=ad_A(i,Mm(ng) ,k)+ & & ad_A(i, 0,k) ad_A(i, 0,k)=0.0_r8 END DO END DO END IF IF (SOUTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,Mm(ng)+1,k)=tl_A(i,1,k) !> ad_A(i,1,k)=ad_A(i,1,k)+ & & ad_A(i,Mm(ng)+1,k) ad_A(i,Mm(ng)+1,k)=0.0_r8 !> tl_A(i,Mm(ng)+2,k)=tl_A(i, 2,k) !> ad_A(i,2,k)=ad_A(i,2,k)+ & & ad_A(i,Mm(ng)+2,k) ad_A(i,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3,k)=tl_A(i,3,k) !> ad_A(i,3,k)=ad_A(i,3,k)+ & & ad_A(i,Mm(ng)+3,k) ad_A(i,Mm(ng)+3,k)=0.0_r8 # endif END DO END DO ENDIF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE JstrR,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(-2,j,k)=tl_A(Lm(ng)-2,j,k) !> ad_A(Lm(ng)-2,j,k)=ad_A(Lm(ng)-2,j,k)+ & & ad_A(-2,j,k) ad_A(-2,j,k)=0.0_r8 !> tl_A(-1,j,k)=tl_A(Lm(ng)-1,j,k) !> ad_A(Lm(ng)-1,j,k)=ad_A(Lm(ng)-1,j,k)+ & & ad_A(-1,j,k) ad_A(-1,j,k)=0.0_r8 !> tl_A( 0,j,k)=tl_A(Lm(ng) ,j,k) !> ad_A(Lm(ng) ,j,k)=ad_A(Lm(ng) ,j,k)+ & & ad_A( 0,j,k) ad_A( 0,j,k)=0.0_r8 END DO END DO END IF IF (WESTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(Lm(ng)+1,j,k)=tl_A(1,j,k) !> ad_A(1,j,k)=ad_A(1,j,k)+ & & ad_A(Lm(ng)+1,j,k) ad_A(Lm(ng)+1,j,k)=0.0_r8 !> tl_A(Lm(ng)+2,j,k)=tl_A( 2,j,k) !> ad_A(2,j,k)=ad_A(2,j,k)+ & & ad_A(Lm(ng)+2,j,k) ad_A(Lm(ng)+2,j,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j,k)=ad_A(3,j,k)+ & & ad_A(Lm(ng)+3,j,k) ad_A(Lm(ng)+3,j,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_u3d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_v3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, LBk, UBk, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, LBk, UBk ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:,LBk:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj,LBk:UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,-2,k)=tl_A(Lm(ng)-2,Mm(ng)-2,k) !> ad_A(Lm(ng)-2,Mm(ng)-2,k)=ad_A(Lm(ng)-2,Mm(ng)-2,k)+ & & ad_A(-2,-2,k) ad_A(-2,-2,k)=0.0_r8 !> tl_A(-2,-1,k)=tl_A(Lm(ng)-2,Mm(ng)-1,k) !> ad_A(Lm(ng)-2,Mm(ng)-1,k)=ad_A(Lm(ng)-2,Mm(ng)-1,k)+ & & ad_A(-2,-1,k) ad_A(-2,-1,k)=0.0_r8 !> tl_A(-2, 0,k)=tl_A(Lm(ng)-2,Mm(ng) ,k) !> ad_A(Lm(ng)-2,Mm(ng) ,k)=ad_A(Lm(ng)-2,Mm(ng) ,k)+ & & ad_A(-2, 0,k) ad_A(-2, 0,k)=0.0_r8 !> tl_A(-1,-2,k)=tl_A(Lm(ng)-1,Mm(ng)-2,k) !> ad_A(Lm(ng)-1,Mm(ng)-2,k)=ad_A(Lm(ng)-1,Mm(ng)-2,k)+ & & ad_A(-1,-2,k) ad_A(-1,-2,k)=0.0_r8 !> tl_A(-1,-1,k)=tl_A(Lm(ng)-1,Mm(ng)-1,k) !> ad_A(Lm(ng)-1,Mm(ng)-1,k)=ad_A(Lm(ng)-1,Mm(ng)-1,k)+ & & ad_A(-1,-1,k) ad_A(-1,-1,k)=0.0_r8 !> tl_A(-1, 0,k)=tl_A(Lm(ng)-1,Mm(ng) ,k) !> ad_A(Lm(ng)-1,Mm(ng) ,k)=ad_A(Lm(ng)-1,Mm(ng) ,k)+ & & ad_A(-1, 0,k) ad_A(-1, 0,k)=0.0_r8 !> tl_A( 0,-2,k)=tl_A(Lm(ng) ,Mm(ng)-2,k) !> ad_A(Lm(ng) ,Mm(ng)-2,k)=ad_A(Lm(ng) ,Mm(ng)-2,k)+ & & ad_A( 0,-2,k) ad_A( 0,-2,k)=0.0_r8 !> tl_A( 0,-1,k)=tl_A(Lm(ng) ,Mm(ng)-1,k) !> ad_A(Lm(ng) ,Mm(ng)-1,k)=ad_A(Lm(ng) ,Mm(ng)-1,k)+ & & ad_A( 0,-1,k) ad_A( 0,-1,k)=0.0_r8 !> tl_A( 0, 0,k)=tl_A(Lm(ng) ,Mm(ng) ,k) !> ad_A(Lm(ng) ,Mm(ng) ,k)=ad_A(Lm(ng) ,Mm(ng) ,k)+ & & ad_A( 0, 0,k) ad_A( 0, 0,k)=0.0_r8 END DO END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,-2,k)=tl_A( 1,Mm(ng)-2,k) !> ad_A( 1,Mm(ng)-2,k)=ad_A( 1,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+1,-2,k) ad_A(Lm(ng)+1,-2,k)=0.0_r8 !> tl_A(Lm(ng)+1,-1,k)=tl_A( 1,Mm(ng)-1,k) !> ad_A( 1,Mm(ng)-1,k)=ad_A( 1,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+1,-1,k) ad_A(Lm(ng)+1,-1,k)=0.0_r8 !> tl_A(Lm(ng)+1, 0,k)=tl_A( 1,Mm(ng) ,k) !> ad_A( 1,Mm(ng) ,k)=ad_A( 1,Mm(ng) ,k)+ & & ad_A(Lm(ng)+1, 0,k) ad_A(Lm(ng)+1, 0,k)=0.0_r8 !> tl_A(Lm(ng)+2,-2,k)=tl_A( 2,Mm(ng)-2,k) !> ad_A( 2,Mm(ng)-2,k)=ad_A( 2,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+2,-2,k) ad_A(Lm(ng)+2,-2,k)=0.0_r8 !> tl_A(Lm(ng)+2,-1,k)=tl_A( 2,Mm(ng)-1,k) !> ad_A( 2,Mm(ng)-1,k)=ad_A( 2,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+2,-1,k) ad_A(Lm(ng)+2,-1,k)=0.0_r8 !> tl_A(Lm(ng)+2, 0,k)=tl_A( 2,Mm(ng) ,k) !> ad_A( 2,Mm(ng) ,k)=ad_A( 2,Mm(ng) ,k)+ & & ad_A(Lm(ng)+2, 0,k) ad_A(Lm(ng)+2, 0,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2,k)=tl_A(3 ,Mm(ng)-2,k) !> ad_A(3 ,Mm(ng)-2,k)=ad_A(3 ,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+3,-2,k) ad_A(Lm(ng)+3,-2,k)=0.0_r8 !> tl_A(Lm(ng)+3,-1,k)=tl_A(3 ,Mm(ng)-1,k) !> ad_A(3 ,Mm(ng)-1,k)=ad_A(3 ,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+3,-1,k) ad_A(Lm(ng)+3,-1,k)=0.0_r8 !> tl_A(Lm(ng)+3, 0,k)=tl_A(3 ,Mm(ng) ,k) !> ad_A(3 ,Mm(ng) ,k)=ad_A(3 ,Mm(ng) ,k)+ & & ad_A(Lm(ng)+3, 0,k) ad_A(Lm(ng)+3, 0,k)=0.0_r8 # endif END DO END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(-2,Mm(ng)+1,k)=tl_A(Lm(ng)-2, 1,k) !> ad_A(Lm(ng)-2, 1,k)=ad_A(Lm(ng)-2, 1,k)+ & & ad_A(-2,Mm(ng)+1,k) ad_A(-2,Mm(ng)+1,k)=0.0_r8 !> tl_A(-1,Mm(ng)+1,k)=tl_A(Lm(ng)-1, 1,k) !> ad_A(Lm(ng)-1, 1,k)=ad_A(Lm(ng)-1, 1,k)+ & & ad_A(-1,Mm(ng)+1,k) ad_A(-1,Mm(ng)+1,k)=0.0_r8 !> tl_A( 0,Mm(ng)+1,k)=tl_A(Lm(ng) , 1,k) !> ad_A(Lm(ng) , 1,k)=ad_A(Lm(ng) , 1,k)+ & & ad_A( 0,Mm(ng)+1,k) ad_A( 0,Mm(ng)+1,k)=0.0_r8 !> tl_A(-2,Mm(ng)+2,k)=tl_A(Lm(ng)-2, 2,k) !> ad_A(Lm(ng)-2, 2,k)=ad_A(Lm(ng)-2, 2,k)+ & & ad_A(-2,Mm(ng)+2,k) ad_A(-2,Mm(ng)+2,k)=0.0_r8 !> tl_A(-1,Mm(ng)+2,k)=tl_A(Lm(ng)-1, 2,k) !> ad_A(Lm(ng)-1, 2,k)=ad_A(Lm(ng)-1, 2,k)+ & & ad_A(-1,Mm(ng)+2,k) ad_A(-1,Mm(ng)+2,k)=0.0_r8 !> tl_A( 0,Mm(ng)+2,k)=tl_A(Lm(ng) , 2,k) !> ad_A(Lm(ng) , 2,k)=ad_A(Lm(ng) , 2,k)+ & & ad_A( 0,Mm(ng)+2,k) ad_A( 0,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3,k)=tl_A(Lm(ng)-2, 3,k) !> ad_A(Lm(ng)-2, 3,k)=ad_A(Lm(ng)-2, 3,k)+ & & ad_A(-2,Mm(ng)+3,k) ad_A(-2,Mm(ng)+3,k)=0.0_r8 !> tl_A(-1,Mm(ng)+3,k)=tl_A(Lm(ng)-1, 3,k) !> ad_A(Lm(ng)-1, 3,k)=ad_A(Lm(ng)-1, 3,k)+ & & ad_A(-1,Mm(ng)+3,k) ad_A(-1,Mm(ng)+3,k)=0.0_r8 !> tl_A( 0,Mm(ng)+3,k)=tl_A(Lm(ng) , 3,k) !> ad_A(Lm(ng) , 3,k)=ad_A(Lm(ng) , 3,k)+ & & ad_A( 0,Mm(ng)+3,k) ad_A( 0,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=1,N(ng) !> tl_A(Lm(ng)+1,Mm(ng)+1,k)=tl_A( 1, 1,k) !> ad_A( 1, 1,k)=ad_A( 1, 1,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+1,k) ad_A(Lm(ng)+1,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2,k)=tl_A( 1, 2,k) !> ad_A( 1, 2,k)=ad_A( 1, 2,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+2,k) ad_A(Lm(ng)+1,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3,k)=tl_A( 1, 3,k) !> ad_A( 1, 3,k)=ad_A( 1, 3,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+3,k) ad_A(Lm(ng)+1,Mm(ng)+3,k)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1,k)=tl_A( 2, 1,k) !> ad_A( 2, 1,k)=ad_A( 2, 1,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+1,k) ad_A(Lm(ng)+2,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2,k)=tl_A( 2, 2,k) !> ad_A( 2, 2,k)=ad_A( 2, 2,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+2,k) ad_A(Lm(ng)+2,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3,k)=tl_A( 2, 3,k) !> ad_A( 2, 3,k)=ad_A( 2, 3,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+3,k) ad_A(Lm(ng)+2,Mm(ng)+3,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1,k)=tl_A( 3, 1,k) !> ad_A( 3, 1,k)=ad_A( 3, 1,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+1,k) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2,k)=tl_A( 3, 2,k) !> ad_A( 3, 2,k)=ad_A( 3, 2,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+2,k) ad_A(Lm(ng)+3,Mm(ng)+2,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3,k)=tl_A( 3, 3,k) !> ad_A( 3, 3,k)=ad_A( 3, 3,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE IstrR,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,-2,k)=tl_A(i,Mm(ng)-2,k) !> ad_A(i,Mm(ng)-2,k)=ad_A(i,Mm(ng)-2,k)+ & & ad_A(i,-2,k) ad_A(i,-2,k)=0.0_r8 !> tl_A(i,-1,k)=tl_A(i,Mm(ng)-1,k) !> ad_A(i,Mm(ng)-1,k)=ad_A(i,Mm(ng)-1,k)+ & & ad_A(i,-1,k) ad_A(i,-1,k)=0.0_r8 !> tl_A(i, 0,k)=tl_A(i,Mm(ng) ,k) !> ad_A(i,Mm(ng) ,k)=ad_A(i,Mm(ng) ,k)+ & & ad_A(i, 0,k) ad_A(i, 0,k)=0.0_r8 END DO END DO END IF IF (SOUTHERN_EDGE) THEN DO k=1,N(ng) DO i=I_RANGE !> tl_A(i,Mm(ng)+1,k)=tl_A(i,1,k) !> ad_A(i,1,k)=ad_A(i,1,k)+ & & ad_A(i,Mm(ng)+1,k) ad_A(i,Mm(ng)+1,k)=0.0_r8 !> tl_A(i,Mm(ng)+2,k)=tl_A(i, 2,k) !> ad_A(i,2,k)=ad_A(i,2,k)+ & & ad_A(i,Mm(ng)+2,k) ad_A(i,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3,k)=tl_A(i,3,k) !> ad_A(i,3,k)=ad_A(i,3,k)+ & & ad_A(i,Mm(ng)+3,k) ad_A(i,Mm(ng)+3,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE Jstr,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(-2,j,k)=tl_A(Lm(ng)-2,j,k) !> ad_A(Lm(ng)-2,j,k)=ad_A(Lm(ng)-2,j,k)+ & & ad_A(-2,j,k) ad_A(-2,j,k)=0.0_r8 !> tl_A(-1,j,k)=tl_A(Lm(ng)-1,j,k) !> ad_A(Lm(ng)-1,j,k)=ad_A(Lm(ng)-1,j,k)+ & & ad_A(-1,j,k) ad_A(-1,j,k)=0.0_r8 !> tl_A( 0,j,k)=tl_A(Lm(ng) ,j,k) !> ad_A(Lm(ng) ,j,k)=ad_A(Lm(ng) ,j,k)+ & & ad_A( 0,j,k) ad_A( 0,j,k)=0.0_r8 END DO END DO END IF IF (WESTERN_EDGE) THEN DO k=1,N(ng) DO j=J_RANGE !> tl_A(Lm(ng)+1,j,k)=tl_A(1,j,k) !> ad_A(1,j,k)=ad_A(1,j,k)+ & & ad_A(Lm(ng)+1,j,k) ad_A(Lm(ng)+1,j,k)=0.0_r8 !> tl_A(Lm(ng)+2,j,k)=tl_A( 2,j,k) !> ad_A(2,j,k)=ad_A(2,j,k)+ & & ad_A(Lm(ng)+2,j,k) ad_A(Lm(ng)+2,j,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j,k)=ad_A(3,j,k)+ & & ad_A(Lm(ng)+3,j,k) ad_A(Lm(ng)+3,j,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_v3d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, LBk, UBk, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, LBk, UBk ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:,LBk:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj,LBk:UBk) # endif ! ! Local variable declarations. ! integer :: i, j, k # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=0,N(ng) !> tl_A(-2,-2,k)=tl_A(Lm(ng)-2,Mm(ng)-2,k) !> ad_A(Lm(ng)-2,Mm(ng)-2,k)=ad_A(Lm(ng)-2,Mm(ng)-2,k)+ & & ad_A(-2,-2,k) ad_A(-2,-2,k)=0.0_r8 !> tl_A(-2,-1,k)=tl_A(Lm(ng)-2,Mm(ng)-1,k) !> ad_A(Lm(ng)-2,Mm(ng)-1,k)=ad_A(Lm(ng)-2,Mm(ng)-1,k)+ & & ad_A(-2,-1,k) ad_A(-2,-1,k)=0.0_r8 !> tl_A(-2, 0,k)=tl_A(Lm(ng)-2,Mm(ng) ,k) !> ad_A(Lm(ng)-2,Mm(ng) ,k)=ad_A(Lm(ng)-2,Mm(ng) ,k)+ & & ad_A(-2, 0,k) ad_A(-2, 0,k)=0.0_r8 !> tl_A(-1,-2,k)=tl_A(Lm(ng)-1,Mm(ng)-2,k) !> ad_A(Lm(ng)-1,Mm(ng)-2,k)=ad_A(Lm(ng)-1,Mm(ng)-2,k)+ & & ad_A(-1,-2,k) ad_A(-1,-2,k)=0.0_r8 !> tl_A(-1,-1,k)=tl_A(Lm(ng)-1,Mm(ng)-1,k) !> ad_A(Lm(ng)-1,Mm(ng)-1,k)=ad_A(Lm(ng)-1,Mm(ng)-1,k)+ & & ad_A(-1,-1,k) ad_A(-1,-1,k)=0.0_r8 !> tl_A(-1, 0,k)=tl_A(Lm(ng)-1,Mm(ng) ,k) !> ad_A(Lm(ng)-1,Mm(ng) ,k)=ad_A(Lm(ng)-1,Mm(ng) ,k)+ & & ad_A(-1, 0,k) ad_A(-1, 0,k)=0.0_r8 !> tl_A( 0,-2,k)=tl_A(Lm(ng) ,Mm(ng)-2,k) !> ad_A(Lm(ng) ,Mm(ng)-2,k)=ad_A(Lm(ng) ,Mm(ng)-2,k)+ & & ad_A( 0,-2,k) ad_A( 0,-2,k)=0.0_r8 !> tl_A( 0,-1,k)=tl_A(Lm(ng) ,Mm(ng)-1,k) !> ad_A(Lm(ng) ,Mm(ng)-1,k)=ad_A(Lm(ng) ,Mm(ng)-1,k)+ & & ad_A( 0,-1,k) ad_A( 0,-1,k)=0.0_r8 !> tl_A( 0, 0,k)=tl_A(Lm(ng) ,Mm(ng) ,k) !> ad_A(Lm(ng) ,Mm(ng) ,k)=ad_A(Lm(ng) ,Mm(ng) ,k)+ & & ad_A( 0, 0,k) ad_A( 0, 0,k)=0.0_r8 END DO END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN DO k=0,N(ng) !> tl_A(Lm(ng)+1,-2,k)=tl_A( 1,Mm(ng)-2,k) !> ad_A( 1,Mm(ng)-2,k)=ad_A( 1,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+1,-2,k) ad_A(Lm(ng)+1,-2,k)=0.0_r8 !> tl_A(Lm(ng)+1,-1,k)=tl_A( 1,Mm(ng)-1,k) !> ad_A( 1,Mm(ng)-1,k)=ad_A( 1,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+1,-1,k) ad_A(Lm(ng)+1,-1,k)=0.0_r8 !> tl_A(Lm(ng)+1, 0,k)=tl_A( 1,Mm(ng) ,k) !> ad_A( 1,Mm(ng) ,k)=ad_A( 1,Mm(ng) ,k)+ & & ad_A(Lm(ng)+1, 0,k) ad_A(Lm(ng)+1, 0,k)=0.0_r8 !> tl_A(Lm(ng)+2,-2,k)=tl_A( 2,Mm(ng)-2,k) !> ad_A( 2,Mm(ng)-2,k)=ad_A( 2,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+2,-2,k) ad_A(Lm(ng)+2,-2,k)=0.0_r8 !> tl_A(Lm(ng)+2,-1,k)=tl_A( 2,Mm(ng)-1,k) !> ad_A( 2,Mm(ng)-1,k)=ad_A( 2,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+2,-1,k) ad_A(Lm(ng)+2,-1,k)=0.0_r8 !> tl_A(Lm(ng)+2, 0,k)=tl_A( 2,Mm(ng) ,k) !> ad_A( 2,Mm(ng) ,k)=ad_A( 2,Mm(ng) ,k)+ & & ad_A(Lm(ng)+2, 0,k) ad_A(Lm(ng)+2, 0,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2,k)=tl_A(3 ,Mm(ng)-2,k) !> ad_A(3 ,Mm(ng)-2,k)=ad_A(3 ,Mm(ng)-2,k)+ & & ad_A(Lm(ng)+3,-2,k) ad_A(Lm(ng)+3,-2,k)=0.0_r8 !> tl_A(Lm(ng)+3,-1,k)=tl_A(3 ,Mm(ng)-1,k) !> ad_A(3 ,Mm(ng)-1,k)=ad_A(3 ,Mm(ng)-1,k)+ & & ad_A(Lm(ng)+3,-1,k) ad_A(Lm(ng)+3,-1,k)=0.0_r8 !> tl_A(Lm(ng)+3, 0,k)=tl_A(3 ,Mm(ng) ,k) !> ad_A(3 ,Mm(ng) ,k)=ad_A(3 ,Mm(ng) ,k)+ & & ad_A(Lm(ng)+3, 0,k) ad_A(Lm(ng)+3, 0,k)=0.0_r8 # endif END DO END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=0,N(ng) !> tl_A(-2,Mm(ng)+1,k)=tl_A(Lm(ng)-2, 1,k) !> ad_A(Lm(ng)-2, 1,k)=ad_A(Lm(ng)-2, 1,k)+ & & ad_A(-2,Mm(ng)+1,k) ad_A(-2,Mm(ng)+1,k)=0.0_r8 !> tl_A(-1,Mm(ng)+1,k)=tl_A(Lm(ng)-1, 1,k) !> ad_A(Lm(ng)-1, 1,k)=ad_A(Lm(ng)-1, 1,k)+ & & ad_A(-1,Mm(ng)+1,k) ad_A(-1,Mm(ng)+1,k)=0.0_r8 !> tl_A( 0,Mm(ng)+1,k)=tl_A(Lm(ng) , 1,k) !> ad_A(Lm(ng) , 1,k)=ad_A(Lm(ng) , 1,k)+ & & ad_A( 0,Mm(ng)+1,k) ad_A( 0,Mm(ng)+1,k)=0.0_r8 !> tl_A(-2,Mm(ng)+2,k)=tl_A(Lm(ng)-2, 2,k) !> ad_A(Lm(ng)-2, 2,k)=ad_A(Lm(ng)-2, 2,k)+ & & ad_A(-2,Mm(ng)+2,k) ad_A(-2,Mm(ng)+2,k)=0.0_r8 !> tl_A(-1,Mm(ng)+2,k)=tl_A(Lm(ng)-1, 2,k) !> ad_A(Lm(ng)-1, 2,k)=ad_A(Lm(ng)-1, 2,k)+ & & ad_A(-1,Mm(ng)+2,k) ad_A(-1,Mm(ng)+2,k)=0.0_r8 !> tl_A( 0,Mm(ng)+2,k)=tl_A(Lm(ng) , 2,k) !> ad_A(Lm(ng) , 2,k)=ad_A(Lm(ng) , 2,k)+ & & ad_A( 0,Mm(ng)+2,k) ad_A( 0,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3,k)=tl_A(Lm(ng)-2, 3,k) !> ad_A(Lm(ng)-2, 3,k)=ad_A(Lm(ng)-2, 3,k)+ & & ad_A(-2,Mm(ng)+3,k) ad_A(-2,Mm(ng)+3,k)=0.0_r8 !> tl_A(-1,Mm(ng)+3,k)=tl_A(Lm(ng)-1, 3,k) !> ad_A(Lm(ng)-1, 3,k)=ad_A(Lm(ng)-1, 3,k)+ & & ad_A(-1,Mm(ng)+3,k) ad_A(-1,Mm(ng)+3,k)=0.0_r8 !> tl_A( 0,Mm(ng)+3,k)=tl_A(Lm(ng) , 3,k) !> ad_A(Lm(ng) , 3,k)=ad_A(Lm(ng) , 3,k)+ & & ad_A( 0,Mm(ng)+3,k) ad_A( 0,Mm(ng)+3,k)=0.0_r8 # endif END DO END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN DO k=0,N(ng) !> tl_A(Lm(ng)+1,Mm(ng)+1,k)=tl_A( 1, 1,k) !> ad_A( 1, 1,k)=ad_A( 1, 1,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+1,k) ad_A(Lm(ng)+1,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2,k)=tl_A( 1, 2,k) !> ad_A( 1, 2,k)=ad_A( 1, 2,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+2,k) ad_A(Lm(ng)+1,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3,k)=tl_A( 1, 3,k) !> ad_A( 1, 3,k)=ad_A( 1, 3,k)+ & & ad_A(Lm(ng)+1,Mm(ng)+3,k) ad_A(Lm(ng)+1,Mm(ng)+3,k)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1,k)=tl_A( 2, 1,k) !> ad_A( 2, 1,k)=ad_A( 2, 1,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+1,k) ad_A(Lm(ng)+2,Mm(ng)+1,k)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2,k)=tl_A( 2, 2,k) !> ad_A( 2, 2,k)=ad_A( 2, 2,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+2,k) ad_A(Lm(ng)+2,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3,k)=tl_A( 2, 3,k) !> ad_A( 2, 3,k)=ad_A( 2, 3,k)+ & & ad_A(Lm(ng)+2,Mm(ng)+3,k) ad_A(Lm(ng)+2,Mm(ng)+3,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1,k)=tl_A( 3, 1,k) !> ad_A( 3, 1,k)=ad_A( 3, 1,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+1,k) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2,k)=tl_A( 3, 2,k) !> ad_A( 3, 2,k)=ad_A( 3, 2,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+2,k) ad_A(Lm(ng)+3,Mm(ng)+2,k)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3,k)=tl_A( 3, 3,k) !> ad_A( 3, 3,k)=ad_A( 3, 3,k)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3,k)=0.0_r8 # endif END DO ENDIF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE IstrR,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO k=0,N(ng) DO i=I_RANGE !> tl_A(i,-2,k)=tl_A(i,Mm(ng)-2,k) !> ad_A(i,Mm(ng)-2,k)=ad_A(i,Mm(ng)-2,k)+ & & ad_A(i,-2,k) ad_A(i,-2,k)=0.0_r8 !> tl_A(i,-1,k)=tl_A(i,Mm(ng)-1,k) !> ad_A(i,Mm(ng)-1,k)=ad_A(i,Mm(ng)-1,k)+ & & ad_A(i,-1,k) ad_A(i,-1,k)=0.0_r8 !> tl_A(i, 0,k)=tl_A(i,Mm(ng) ,k) !> ad_A(i,Mm(ng) ,k)=ad_A(i,Mm(ng) ,k)+ & & ad_A(i, 0,k) ad_A(i, 0,k)=0.0_r8 END DO END DO END IF IF (SOUTHERN_EDGE) THEN DO k=0,N(ng) DO i=I_RANGE !> tl_A(i,Mm(ng)+1,k)=tl_A(i,1,k) !> ad_A(i,1,k)=ad_A(i,1 ,k)+ & & ad_A(i,Mm(ng)+1,k) ad_A(i,Mm(ng)+1,k)=0.0_r8 !> tl_A(i,Mm(ng)+2,k)=tl_A(i,2,k) !> ad_A(i,2,k)=ad_A(i,2,k)+ & & ad_A(i,Mm(ng)+2,k) ad_A(i,Mm(ng)+2,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3,k)=tl_A(i,3,k) !> ad_A(i,3,k)=ad_A(i,3,k)+ & & ad_A(i,Mm(ng)+3,k) ad_A(i,Mm(ng)+3,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE JstrR,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO k=0,N(ng) DO j=J_RANGE !> tl_A(-2,j,k)=tl_A(Lm(ng)-2,j,k) !> ad_A(Lm(ng)-2,j,k)=ad_A(Lm(ng)-2,j,k)+ & & ad_A(-2,j,k) ad_A(-2,j,k)=0.0_r8 !> tl_A(-1,j,k)=tl_A(Lm(ng)-1,j,k) !> ad_A(Lm(ng)-1,j,k)=ad_A(Lm(ng)-1,j,k)+ & & ad_A(-1,j,k) ad_A(-1,j,k)=0.0_r8 !> tl_A( 0,j,k)=tl_A(Lm(ng) ,j,k) !> ad_A(Lm(ng) ,j,k)=ad_A(Lm(ng) ,j,k)+ & & ad_A( 0,j,k) ad_A( 0,j,k)=0.0_r8 END DO END DO END IF IF (WESTERN_EDGE) THEN DO k=0,N(ng) DO j=J_RANGE !> tl_A(Lm(ng)+1,j,k)=tl_A(1,j,k) !> ad_A(1,j,k)=ad_A(1,j,k)+ & & ad_A(Lm(ng)+1,j,k) ad_A(Lm(ng)+1,j,k)=0.0_r8 !> tl_A(Lm(ng)+2,j,k)=tl_A( 2,j,k) !> ad_A(2,j,k)=ad_A(2,j,k)+ & & ad_A(Lm(ng)+2,j,k) ad_A(Lm(ng)+2,j,k)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j,k)=ad_A(3,j,k)+ & & ad_A(Lm(ng)+3,j,k) ad_A(Lm(ng)+3,j,k)=0.0_r8 # endif END DO END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_w3d_tile #endif END MODULE ad_exchange_3d_mod