#include "cppdefs.h" MODULE ad_exchange_2d_mod #if defined ADJOINT && (defined EW_PERIODIC || defined NS_PERIODIC) ! !svn $Id: ad_exchange_2d.F 294 2009-01-09 21:37:26Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This package contains adjoint periodic boundary conditions routines ! ! for 2D primitive variables. ! ! ! ! Routines: ! ! ! ! ad_exchange_p2d_tile periodic conditions at PSI-points ! ! ad_exchange_r2d_tile periodic conditions at RHO-points ! ! ad_exchange_u2d_tile periodic conditions at U-points ! ! ad_exchange_v2d_tile periodic conditions at V-points ! ! ! !======================================================================= ! implicit none CONTAINS ! !*********************************************************************** SUBROUTINE ad_exchange_p2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj) # endif ! ! Local variable declarations. ! integer :: i, j # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(-2,-2)=tl_A(Lm(ng)-2,Mm(ng)-2) !> ad_A(Lm(ng)-2,Mm(ng)-2)=ad_A(Lm(ng)-2,Mm(ng)-2)+ & & ad_A(-2,-2) ad_A(-2,-2)=0.0_r8 !> tl_A(-2,-1)=tl_A(Lm(ng)-2,Mm(ng)-1) !> ad_A(Lm(ng)-2,Mm(ng)-1)=ad_A(Lm(ng)-2,Mm(ng)-1)+ & & ad_A(-2,-1) ad_A(-2,-1)=0.0_r8 !> tl_A(-2, 0)=tl_A(Lm(ng)-2,Mm(ng) ) !> ad_A(Lm(ng)-2,Mm(ng) )=ad_A(Lm(ng)-2,Mm(ng) )+ & & ad_A(-2, 0) ad_A(-2, 0)=0.0_r8 !> tl_A(-1,-2)=tl_A(Lm(ng)-1,Mm(ng)-2) !> ad_A(Lm(ng)-1,Mm(ng)-2)=ad_A(Lm(ng)-1,Mm(ng)-2)+ & & ad_A(-1,-2) ad_A(-1,-2)=0.0_r8 !> tl_A(-1,-1)=tl_A(Lm(ng)-1,Mm(ng)-1) !> ad_A(Lm(ng)-1,Mm(ng)-1)=ad_A(Lm(ng)-1,Mm(ng)-1)+ & & ad_A(-1,-1) ad_A(-1,-1)=0.0_r8 !> tl_A(-1, 0)=tl_A(Lm(ng)-1,Mm(ng) ) !> ad_A(Lm(ng)-1,Mm(ng) )=ad_A(Lm(ng)-1,Mm(ng) )+ & & ad_A(-1, 0) ad_A(-1, 0)=0.0_r8 !> tl_A( 0,-2)=tl_A(Lm(ng) ,Mm(ng)-2) !> ad_A(Lm(ng) ,Mm(ng)-2)=ad_A(Lm(ng) ,Mm(ng)-2)+ & & ad_A( 0,-2) ad_A( 0,-2)=0.0_r8 !> tl_A( 0,-1)=tl_A(Lm(ng) ,Mm(ng)-1) !> ad_A(Lm(ng) ,Mm(ng)-1)=ad_A(Lm(ng) ,Mm(ng)-1)+ & & ad_A( 0,-1) ad_A( 0,-1)=0.0_r8 !> tl_A( 0, 0)=tl_A(Lm(ng) ,Mm(ng) ) !> ad_A(Lm(ng) ,Mm(ng) )=ad_A(Lm(ng) ,Mm(ng) )+ & & ad_A( 0, 0) ad_A( 0, 0)=0.0_r8 END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,-2)=tl_A(1 ,Mm(ng)-2) !> ad_A(1 ,Mm(ng)-2)=ad_A(1 ,Mm(ng)-2)+ & & ad_A(Lm(ng)+1,-2) ad_A(Lm(ng)+1,-2)=0.0_r8 !> tl_A(Lm(ng)+1,-1)=tl_A(1 ,Mm(ng)-1) !> ad_A(1 ,Mm(ng)-1)=ad_A(1 ,Mm(ng)-1)+ & & ad_A(Lm(ng)+1,-1) ad_A(Lm(ng)+1,-1)=0.0_r8 !> tl_A(Lm(ng)+1, 0)=tl_A(1 ,Mm(ng) ) !> ad_A(1 ,Mm(ng) )=ad_A(1 ,Mm(ng) )+ & & ad_A(Lm(ng)+1, 0) ad_A(Lm(ng)+1, 0)=0.0_r8 !> tl_A(Lm(ng)+2,-2)=tl_A(2 ,Mm(ng)-2) !> ad_A(2 ,Mm(ng)-2)=ad_A(2 ,Mm(ng)-2)+ & & ad_A(Lm(ng)+2,-2) ad_A(Lm(ng)+2,-2)=0.0_r8 !> tl_A(Lm(ng)+2,-1)=tl_A(2 ,Mm(ng)-1) !> ad_A(2 ,Mm(ng)-1)=ad_A(2 ,Mm(ng)-1)+ & & ad_A(Lm(ng)+2,-1) ad_A(Lm(ng)+2,-1)=0.0_r8 !> tl_A(Lm(ng)+2, 0)=tl_A(2 ,Mm(ng) ) !> ad_A(2 ,Mm(ng) )=ad_A(2 ,Mm(ng) )+ & & ad_A(Lm(ng)+2, 0) ad_A(Lm(ng)+2, 0)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2)=tl_A(3 ,Mm(ng)-2) !> ad_A(3 ,Mm(ng)-2)=ad_A(3 ,Mm(ng)-2)+ & & ad_A(Lm(ng)+3,-2) ad_A(Lm(ng)+3,-2)=0.0_r8 !> tl_A(Lm(ng)+3,-1)=tl_A(3 ,Mm(ng)-1) !> ad_A(3 ,Mm(ng)-1)=ad_A(3 ,Mm(ng)-1)+ & & ad_A(Lm(ng)+3,-1) ad_A(Lm(ng)+3,-1)=0.0_r8 !> tl_A(Lm(ng)+3, 0)=tl_A(3 ,Mm(ng) ) !> ad_A(3 ,Mm(ng) )=ad_A(3 ,Mm(ng) )+ & & ad_A(Lm(ng)+3, 0) ad_A(Lm(ng)+3, 0)=0.0_r8 # endif END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(-2,Mm(ng)+1)=tl_A(Lm(ng)-2, 1) !> ad_A(Lm(ng)-2, 1)=ad_A(Lm(ng)-2, 1)+ & & ad_A(-2,Mm(ng)+1) ad_A(-2,Mm(ng)+1)=0.0_r8 !> tl_A(-1,Mm(ng)+1)=tl_A(Lm(ng)-1, 1) !> ad_A(Lm(ng)-1, 1)=ad_A(Lm(ng)-1, 1)+ & & ad_A(-1,Mm(ng)+1) ad_A(-1,Mm(ng)+1)=0.0_r8 !> tl_A( 0,Mm(ng)+1)=tl_A(Lm(ng) , 1) !> ad_A(Lm(ng) , 1)=ad_A(Lm(ng) , 1)+ & & ad_A( 0,Mm(ng)+1) ad_A( 0,Mm(ng)+1)=0.0_r8 !> tl_A(-2,Mm(ng)+2)=tl_A(Lm(ng)-2, 2) !> ad_A(Lm(ng)-2, 2)=ad_A(Lm(ng)-2, 2)+ & & ad_A(-2,Mm(ng)+2) ad_A(-2,Mm(ng)+2)=0.0_r8 !> tl_A(-1,Mm(ng)+2)=tl_A(Lm(ng)-1, 2) !> ad_A(Lm(ng)-1, 2)=ad_A(Lm(ng)-1, 2)+ & & ad_A(-1,Mm(ng)+2) ad_A(-1,Mm(ng)+2)=0.0_r8 !> tl_A( 0,Mm(ng)+2)=tl_A(Lm(ng) , 2) !> ad_A(Lm(ng) , 2)=ad_A(Lm(ng) , 2)+ & & ad_A( 0,Mm(ng)+2) ad_A( 0,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3)=tl_A(Lm(ng)-2, 3) !> ad_A(Lm(ng)-2, 3)=ad_A(Lm(ng)-2, 3)+ & & ad_A(-2,Mm(ng)+3) ad_A(-2,Mm(ng)+3)=0.0_r8 !> tl_A(-1,Mm(ng)+3)=tl_A(Lm(ng)-1, 3) !> ad_A(Lm(ng)-1, 3)=ad_A(Lm(ng)-1, 3)+ & & ad_A(-1,Mm(ng)+3) ad_A(-1,Mm(ng)+3)=0.0_r8 !> tl_A( 0,Mm(ng)+3)=tl_A(Lm(ng) , 3) !> ad_A(Lm(ng) , 3)=ad_A(Lm(ng) , 3)+ & & ad_A( 0,Mm(ng)+3) ad_A( 0,Mm(ng)+3)=0.0_r8 # endif END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,Mm(ng)+1)=tl_A( 1, 1) !> ad_A( 1, 1)=ad_A( 1, 1)+ & & ad_A(Lm(ng)+1,Mm(ng)+1) ad_A(Lm(ng)+1,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2)=tl_A( 1, 2) !> ad_A( 1, 2)=ad_A( 1, 2)+ & & ad_A(Lm(ng)+1,Mm(ng)+2) ad_A(Lm(ng)+1,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3)=tl_A( 1, 3) !> ad_A( 1, 3)=ad_A( 1, 3)+ & & ad_A(Lm(ng)+1,Mm(ng)+3) ad_A(Lm(ng)+1,Mm(ng)+3)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1)=tl_A( 2, 1) !> ad_A( 2, 1)=ad_A( 2, 1)+ & & ad_A(Lm(ng)+2,Mm(ng)+1) ad_A(Lm(ng)+2,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2)=tl_A( 2, 2) !> ad_A( 2, 2)=ad_A( 2, 2)+ & & ad_A(Lm(ng)+2,Mm(ng)+2) ad_A(Lm(ng)+2,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3)=tl_A( 2, 3) !> ad_A( 2, 3)=ad_A( 2, 3)+ & & ad_A(Lm(ng)+2,Mm(ng)+3) ad_A(Lm(ng)+2,Mm(ng)+3)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1)=tl_A( 3, 1) !> ad_A( 3, 1)=ad_A( 3, 1)+ & & ad_A(Lm(ng)+3,Mm(ng)+1) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2)=tl_A( 3, 2) !> ad_A( 3, 2)=ad_A( 3, 2)+ & & ad_A(Lm(ng)+3,Mm(ng)+2) ad_A(Lm(ng)+3,Mm(ng)+2)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3)=tl_A( 3, 3) !> ad_A( 3, 3)=ad_A( 3, 3)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3)=0.0_r8 # endif END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE Istr,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,-2)=tl_A(i,Mm(ng)-2) !> ad_A(i,Mm(ng)-2)=ad_A(i,Mm(ng)-2)+ & & ad_A(i,-2) ad_A(i,-2)=0.0_r8 !> tl_A(i,-1)=tl_A(i,Mm(ng)-1) !> ad_A(i,Mm(ng)-1)=ad_A(i,Mm(ng)-1)+ & & ad_A(i,-1) ad_A(i,-1)=0.0_r8 !> tl_A(i, 0)=tl_A(i,Mm(ng) ) !> ad_A(i,Mm(ng) )=ad_A(i,Mm(ng) )+ & & ad_A(i, 0) ad_A(i, 0)=0.0_r8 END DO END IF IF (SOUTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,Mm(ng)+1)=tl_A(i,1) !> ad_A(i,1)=ad_A(i,1)+ & & ad_A(i,Mm(ng)+1) ad_A(i,Mm(ng)+1)=0.0_r8 !> tl_A(i,Mm(ng)+2)=tl_A(i,2) !> ad_A(i,2)=ad_A(i,2)+ & & ad_A(i,Mm(ng)+2) ad_A(i,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3)=tl_A(i,3) !> ad_A(i,3)=ad_A(i,3)+ & & ad_A(i,Mm(ng)+3) ad_A(i,Mm(ng)+3)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE Jstr,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO j=J_RANGE !> tl_A(-2,j)=tl_A(Lm(ng)-2,j) !> ad_A(Lm(ng)-2,j)=ad_A(Lm(ng)-2,j)+ & & ad_A(-2,j) ad_A(-2,j)=0.0_r8 !> tl_A(-1,j)=tl_A(Lm(ng)-1,j) !> ad_A(Lm(ng)-1,j)=ad_A(Lm(ng)-1,j)+ & & ad_A(-1,j) ad_A(-1,j)=0.0_r8 !> tl_A( 0,j)=tl_A(Lm(ng) ,j) !> ad_A(Lm(ng) ,j)=ad_A(Lm(ng) ,j)+ & & ad_A( 0,j) ad_A( 0,j)=0.0_r8 END DO END IF IF (WESTERN_EDGE) THEN DO j=J_RANGE !> tl_A(Lm(ng)+1,j)=tl_A(1,j) !> ad_A(1,j)=ad_A(1,j)+ & & ad_A(Lm(ng)+1,j) ad_A(Lm(ng)+1,j)=0.0_r8 !> tl_A(Lm(ng)+2,j)=tl_A(2,j) !> ad_A(2,j)=ad_A(2,j)+ & & ad_A(Lm(ng)+2,j) ad_A(Lm(ng)+2,j)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j)=ad_A(3,j)+ & & ad_A(Lm(ng)+3,j) ad_A(Lm(ng)+3,j)=0.0_r8 # endif END DO ENDIF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_p2d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj) # endif ! ! Local variable declarations. ! integer :: i, j # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(-2,-2)=tl_A(Lm(ng)-2,Mm(ng)-2) !> ad_A(Lm(ng)-2,Mm(ng)-2)=ad_A(Lm(ng)-2,Mm(ng)-2)+ & & ad_A(-2,-2) ad_A(-2,-2)=0.0_r8 !> tl_A(-2,-1)=tl_A(Lm(ng)-2,Mm(ng)-1) !> ad_A(Lm(ng)-2,Mm(ng)-1)=ad_A(Lm(ng)-2,Mm(ng)-1)+ & & ad_A(-2,-1) ad_A(-2,-1)=0.0_r8 !> tl_A(-2, 0)=tl_A(Lm(ng)-2,Mm(ng) ) !> ad_A(Lm(ng)-2,Mm(ng) )=ad_A(Lm(ng)-2,Mm(ng) )+ & & ad_A(-2, 0) ad_A(-2, 0)=0.0_r8 !> tl_A(-1,-2)=tl_A(Lm(ng)-1,Mm(ng)-2) !> ad_A(Lm(ng)-1,Mm(ng)-2)=ad_A(Lm(ng)-1,Mm(ng)-2)+ & & ad_A(-1,-2) ad_A(-1,-2)=0.0_r8 !> tl_A(-1,-1)=tl_A(Lm(ng)-1,Mm(ng)-1) !> ad_A(Lm(ng)-1,Mm(ng)-1)=ad_A(Lm(ng)-1,Mm(ng)-1)+ & & ad_A(-1,-1) ad_A(-1,-1)=0.0_r8 !> tl_A(-1, 0)=tl_A(Lm(ng)-1,Mm(ng) ) !> ad_A(Lm(ng)-1,Mm(ng) )=ad_A(Lm(ng)-1,Mm(ng) )+ & & ad_A(-1, 0) ad_A(-1, 0)=0.0_r8 !> tl_A( 0,-2)=tl_A(Lm(ng) ,Mm(ng)-2) !> ad_A(Lm(ng) ,Mm(ng)-2)=ad_A(Lm(ng) ,Mm(ng)-2)+ & & ad_A( 0,-2) ad_A( 0,-2)=0.0_r8 !> tl_A( 0,-1)=tl_A(Lm(ng) ,Mm(ng)-1) !> ad_A(Lm(ng) ,Mm(ng)-1)=ad_A(Lm(ng) ,Mm(ng)-1)+ & & ad_A( 0,-1) ad_A( 0,-1)=0.0_r8 !> tl_A( 0, 0)=tl_A(Lm(ng) ,Mm(ng) ) !> ad_A(Lm(ng) ,Mm(ng) )=ad_A(Lm(ng) ,Mm(ng) )+ & & ad_A( 0, 0) ad_A( 0, 0)=0.0_r8 END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,-2)=tl_A( 1,Mm(ng)-2) !> ad_A( 1,Mm(ng)-2)=ad_A( 1,Mm(ng)-2)+ & & ad_A(Lm(ng)+1,-2) ad_A(Lm(ng)+1,-2)=0.0_r8 !> tl_A(Lm(ng)+1,-1)=tl_A( 1,Mm(ng)-1) !> ad_A( 1,Mm(ng)-1)=ad_A( 1,Mm(ng)-1)+ & & ad_A(Lm(ng)+1,-1) ad_A(Lm(ng)+1,-1)=0.0_r8 !> tl_A(Lm(ng)+1, 0)=tl_A( 1,Mm(ng) ) !> ad_A( 1,Mm(ng) )=ad_A( 1,Mm(ng) )+ & & ad_A(Lm(ng)+1, 0) ad_A(Lm(ng)+1, 0)=0.0_r8 !> tl_A(Lm(ng)+2,-2)=tl_A( 2,Mm(ng)-2) !> ad_A( 2,Mm(ng)-2)=ad_A( 2,Mm(ng)-2)+ & & ad_A(Lm(ng)+2,-2) ad_A(Lm(ng)+2,-2)=0.0_r8 !> tl_A(Lm(ng)+2,-1)=tl_A( 2,Mm(ng)-1) !> ad_A( 2,Mm(ng)-1)=ad_A( 2,Mm(ng)-1)+ & & ad_A(Lm(ng)+2,-1) ad_A(Lm(ng)+2,-1)=0.0_r8 !> tl_A(Lm(ng)+2, 0)=tl_A( 2,Mm(ng) ) !> ad_A( 2,Mm(ng) )=ad_A( 2,Mm(ng) )+ & & ad_A(Lm(ng)+2, 0) ad_A(Lm(ng)+2, 0)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2)=tl_A(3 ,Mm(ng)-2) !> ad_A(3 ,Mm(ng)-2)=ad_A(3 ,Mm(ng)-2)+ & & ad_A(Lm(ng)+3,-2) ad_A(Lm(ng)+3,-2)=0.0_r8 !> tl_A(Lm(ng)+3,-1)=tl_A(3 ,Mm(ng)-1) !> ad_A(3 ,Mm(ng)-1)=ad_A(3 ,Mm(ng)-1)+ & & ad_A(Lm(ng)+3,-1) ad_A(Lm(ng)+3,-1)=0.0_r8 !> tl_A(Lm(ng)+3, 0)=tl_A(3 ,Mm(ng) ) !> ad_A(3 ,Mm(ng) )=ad_A(3 ,Mm(ng) )+ & & ad_A(Lm(ng)+3, 0) ad_A(Lm(ng)+3, 0)=0.0_r8 # endif END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(-2,Mm(ng)+1)=tl_A(Lm(ng)-2, 1) !> ad_A(Lm(ng)-2, 1)=ad_A(Lm(ng)-2, 1)+ & & ad_A(-2,Mm(ng)+1) ad_A(-2,Mm(ng)+1)=0.0_r8 !> tl_A(-1,Mm(ng)+1)=tl_A(Lm(ng)-1, 1) !> ad_A(Lm(ng)-1, 1)=ad_A(Lm(ng)-1, 1)+ & & ad_A(-1,Mm(ng)+1) ad_A(-1,Mm(ng)+1)=0.0_r8 !> tl_A( 0,Mm(ng)+1)=tl_A(Lm(ng) , 1) !> ad_A(Lm(ng) , 1)=ad_A(Lm(ng) , 1)+ & & ad_A( 0,Mm(ng)+1) ad_A( 0,Mm(ng)+1)=0.0_r8 !> tl_A(-2,Mm(ng)+2)=tl_A(Lm(ng)-2, 2) !> ad_A(Lm(ng)-2, 2)=ad_A(Lm(ng)-2, 2)+ & & ad_A(-2,Mm(ng)+2) ad_A(-2,Mm(ng)+2)=0.0_r8 !> tl_A(-1,Mm(ng)+2)=tl_A(Lm(ng)-1, 2) !> ad_A(Lm(ng)-1, 2)=ad_A(Lm(ng)-1, 2)+ & & ad_A(-1,Mm(ng)+2) ad_A(-1,Mm(ng)+2)=0.0_r8 !> tl_A( 0,Mm(ng)+2)=tl_A(Lm(ng) , 2) !> ad_A(Lm(ng) , 2)=ad_A(Lm(ng) , 2)+ & & ad_A( 0,Mm(ng)+2) ad_A( 0,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3)=tl_A(Lm(ng)-2, 3) !> ad_A(Lm(ng)-2, 3)=ad_A(Lm(ng)-2, 3)+ & & ad_A(-2,Mm(ng)+3) ad_A(-2,Mm(ng)+3)=0.0_r8 !> tl_A(-1,Mm(ng)+3)=tl_A(Lm(ng)-1, 3) !> ad_A(Lm(ng)-1, 3)=ad_A(Lm(ng)-1, 3)+ & & ad_A(-1,Mm(ng)+3) ad_A(-1,Mm(ng)+3)=0.0_r8 !> tl_A( 0,Mm(ng)+3)=tl_A(Lm(ng) , 3) !> ad_A(Lm(ng) , 3)=ad_A(Lm(ng) , 3)+ & & ad_A( 0,Mm(ng)+3) ad_A( 0,Mm(ng)+3)=0.0_r8 # endif END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,Mm(ng)+1)=tl_A(1 ,1 ) !> ad_A(1 ,1 )=ad_A(1 ,1 )+ & & ad_A(Lm(ng)+1,Mm(ng)+1) ad_A(Lm(ng)+1,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2)=tl_A(1 ,2) !> ad_A(1 ,2)=ad_A(1 ,2)+ & & ad_A(Lm(ng)+1,Mm(ng)+2) ad_A(Lm(ng)+1,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3)=tl_A( 1, 3) !> ad_A( 1, 3)=ad_A( 1, 3)+ & & ad_A(Lm(ng)+1,Mm(ng)+3) ad_A(Lm(ng)+1,Mm(ng)+3)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1)=tl_A(2,1 ) !> ad_A(2,1 )=ad_A(2,1 )+ & & ad_A(Lm(ng)+2,Mm(ng)+1) ad_A(Lm(ng)+2,Mm(ng)+1)=0.0_r8 !> A(Lm(ng)+2,Mm(ng)+2)=A(2,2) !> ad_A(2,2)=ad_A(2,2)+ & & ad_A(Lm(ng)+2,Mm(ng)+2) ad_A(Lm(ng)+2,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3)=tl_A( 2, 3) !> ad_A( 2, 3)=ad_A( 2, 3)+ & & ad_A(Lm(ng)+2,Mm(ng)+3) ad_A(Lm(ng)+2,Mm(ng)+3)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1)=tl_A( 3, 1) !> ad_A( 3, 1)=ad_A( 3, 1)+ & & ad_A(Lm(ng)+3,Mm(ng)+1) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2)=tl_A( 3, 2) !> ad_A( 3, 2)=ad_A( 3, 2)+ & & ad_A(Lm(ng)+3,Mm(ng)+2) ad_A(Lm(ng)+3,Mm(ng)+2)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3)=tl_A( 3, 3) !> ad_A( 3, 3)=ad_A( 3, 3)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3)=0.0_r8 # endif END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE IstrR,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,-2)=tl_A(i,Mm(ng)-2) !> ad_A(i,Mm(ng)-2)=ad_A(i,Mm(ng)-2)+ & & ad_A(i,-2) ad_A(i,-2)=0.0_r8 !> tl_A(i,-1)=tl_A(i,Mm(ng)-1) !> ad_A(i,Mm(ng)-1)=ad_A(i,Mm(ng)-1)+ & & ad_A(i,-1) ad_A(i,-1)=0.0_r8 !> tl_A(i, 0)=tl_A(i,Mm(ng) ) !> ad_A(i,Mm(ng) )=ad_A(i,Mm(ng) )+ & & ad_A(i, 0) ad_A(i, 0)=0.0_r8 END DO END IF IF (SOUTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,Mm(ng)+1)=tl_A(i,1) !> ad_A(i,1)=ad_A(i,1)+ & & ad_A(i,Mm(ng)+1) ad_A(i,Mm(ng)+1)=0.0_r8 !> tl_A(i,Mm(ng)+2)=tl_A(i,2) !> ad_A(i,2)=ad_A(i,2)+ & & ad_A(i,Mm(ng)+2) ad_A(i,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3)=tl_A(i,3) !> ad_A(i,3)=ad_A(i,3)+ & & ad_A(i,Mm(ng)+3) ad_A(i,Mm(ng)+3)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE JstrR,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO j=J_RANGE !> tl_A(-2,j)=tl_A(Lm(ng)-2,j) !> ad_A(Lm(ng)-2,j)=ad_A(Lm(ng)-2,j)+ & & ad_A(-2,j) ad_A(-2,j)=0.0_r8 !> tl_A(-1,j)=tl_A(Lm(ng)-1,j) !> ad_A(Lm(ng)-1,j)=ad_A(Lm(ng)-1,j)+ & & ad_A(-1,j) ad_A(-1,j)=0.0_r8 !> tl_A( 0,j)=tl_A(Lm(ng) ,j) !> ad_A(Lm(ng) ,j)=ad_A(Lm(ng) ,j)+ & & ad_A( 0,j) ad_A( 0,j)=0.0_r8 END DO END IF IF (WESTERN_EDGE) THEN DO j=J_RANGE !> tl_A(Lm(ng)+1,j)=tl_A(1,j) !> ad_A(1,j)=ad_A(1,j)+ & & ad_A(Lm(ng)+1,j) ad_A(Lm(ng)+1,j)=0.0_r8 !> tl_A(Lm(ng)+2,j)=tl_A(2,j) !> ad_A(2,j)=ad_A(2,j)+ & & ad_A(Lm(ng)+2,j) ad_A(Lm(ng)+2,j)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j)=ad_A(3,j)+ & & ad_A(Lm(ng)+3,j) ad_A(Lm(ng)+3,j)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_r2d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj) # endif ! ! Local variable declarations. ! integer :: i, j # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(-2,-2)=tl_A(Lm(ng)-2,Mm(ng)-2) !> ad_A(Lm(ng)-2,Mm(ng)-2)=ad_A(Lm(ng)-2,Mm(ng)-2)+ & & ad_A(-2,-2) ad_A(-2,-2)=0.0_r8 !> tl_A(-2,-1)=tl_A(Lm(ng)-2,Mm(ng)-1) !> ad_A(Lm(ng)-2,Mm(ng)-1)=ad_A(Lm(ng)-2,Mm(ng)-1)+ & & ad_A(-2,-1) ad_A(-2,-1)=0.0_r8 !> tl_A(-2, 0)=tl_A(Lm(ng)-2,Mm(ng) ) !> ad_A(Lm(ng)-2,Mm(ng) )=ad_A(Lm(ng)-2,Mm(ng) )+ & & ad_A(-2, 0) ad_A(-2, 0)=0.0_r8 !> tl_A(-1,-2)=tl_A(Lm(ng)-1,Mm(ng)-2) !> ad_A(Lm(ng)-1,Mm(ng)-2)=ad_A(Lm(ng)-1,Mm(ng)-2)+ & & ad_A(-1,-2) ad_A(-1,-2)=0.0_r8 !> tl_A(-1,-1)=tl_A(Lm(ng)-1,Mm(ng)-1) !> ad_A(Lm(ng)-1,Mm(ng)-1)=ad_A(Lm(ng)-1,Mm(ng)-1)+ & & ad_A(-1,-1) ad_A(-1,-1)=0.0_r8 !> tl_A(-1, 0)=tl_A(Lm(ng)-1,Mm(ng) ) !> ad_A(Lm(ng)-1,Mm(ng) )=ad_A(Lm(ng)-1,Mm(ng) )+ & & ad_A(-1, 0) ad_A(-1, 0)=0.0_r8 !> tl_A( 0,-2)=tl_A(Lm(ng) ,Mm(ng)-2) !> ad_A(Lm(ng) ,Mm(ng)-2)=ad_A(Lm(ng) ,Mm(ng)-2)+ & & ad_A( 0,-2) ad_A( 0,-2)=0.0_r8 !> tl_A( 0,-1)=tl_A(Lm(ng) ,Mm(ng)-1) !> ad_A(Lm(ng) ,Mm(ng)-1)=ad_A(Lm(ng) ,Mm(ng)-1)+ & & ad_A( 0,-1) ad_A( 0,-1)=0.0_r8 !> tl_A( 0, 0)=tl_A(Lm(ng) ,Mm(ng) ) !> ad_A(Lm(ng) ,Mm(ng) )=ad_A(Lm(ng) ,Mm(ng) )+ & & ad_A( 0, 0) ad_A( 0, 0)=0.0_r8 END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,-2)=tl_A( 1,Mm(ng)-2) !> ad_A( 1,Mm(ng)-2)=ad_A( 1,Mm(ng)-2)+ & & ad_A(Lm(ng)+1,-2) ad_A(Lm(ng)+1,-2)=0.0_r8 !> tl_A(Lm(ng)+1,-1)=tl_A( 1,Mm(ng)-1) !> ad_A( 1,Mm(ng)-1)=ad_A( 1,Mm(ng)-1)+ & & ad_A(Lm(ng)+1,-1) ad_A(Lm(ng)+1,-1)=0.0_r8 !> tl_A(Lm(ng)+1, 0)=tl_A( 1,Mm(ng) ) !> ad_A( 1,Mm(ng) )=ad_A( 1,Mm(ng) )+ & & ad_A(Lm(ng)+1, 0) ad_A(Lm(ng)+1, 0)=0.0_r8 !> tl_A(Lm(ng)+2,-2)=tl_A( 2,Mm(ng)-2) !> ad_A( 2,Mm(ng)-2)=ad_A( 2,Mm(ng)-2)+ & & ad_A(Lm(ng)+2,-2) ad_A(Lm(ng)+2,-2)=0.0_r8 !> tl_A(Lm(ng)+2,-1)=tl_A( 2,Mm(ng)-1) !> ad_A( 2,Mm(ng)-1)=ad_A( 2,Mm(ng)-1)+ & & ad_A(Lm(ng)+2,-1) ad_A(Lm(ng)+2,-1)=0.0_r8 !> tl_A(Lm(ng)+2, 0)=tl_A( 2,Mm(ng) ) !> ad_A( 2,Mm(ng) )=ad_A( 2,Mm(ng) )+ & & ad_A(Lm(ng)+2, 0) ad_A(Lm(ng)+2, 0)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2)=tl_A(3 ,Mm(ng)-2) !> ad_A(3 ,Mm(ng)-2)=ad_A(3 ,Mm(ng)-2)+ & & ad_A(Lm(ng)+3,-2) ad_A(Lm(ng)+3,-2)=0.0_r8 !> tl_A(Lm(ng)+3,-1)=tl_A(3 ,Mm(ng)-1) !> ad_A(3 ,Mm(ng)-1)=ad_A(3 ,Mm(ng)-1)+ & & ad_A(Lm(ng)+3,-1) ad_A(Lm(ng)+3,-1)=0.0_r8 !> tl_A(Lm(ng)+3, 0)=tl_A(3 ,Mm(ng) ) !> ad_A(3 ,Mm(ng) )=ad_A(3 ,Mm(ng) )+ & & ad_A(Lm(ng)+3, 0) ad_A(Lm(ng)+3, 0)=0.0_r8 # endif END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(-2,Mm(ng)+1)=tl_A(Lm(ng)-2, 1) !> ad_A(Lm(ng)-2, 1)=ad_A(Lm(ng)-2, 1)+ & & ad_A(-2,Mm(ng)+1) ad_A(-2,Mm(ng)+1)=0.0_r8 !> tl_A(-1,Mm(ng)+1)=tl_A(Lm(ng)-1, 1) !> ad_A(Lm(ng)-1, 1)=ad_A(Lm(ng)-1, 1)+ & & ad_A(-1,Mm(ng)+1) ad_A(-1,Mm(ng)+1)=0.0_r8 !> tl_A( 0,Mm(ng)+1)=tl_A(Lm(ng) , 1) !> ad_A(Lm(ng) , 1)=ad_A(Lm(ng) , 1)+ & & ad_A( 0,Mm(ng)+1) ad_A( 0,Mm(ng)+1)=0.0_r8 !> tl_A(-2,Mm(ng)+2)=tl_A(Lm(ng)-2, 2) !> ad_A(Lm(ng)-2, 2)=ad_A(Lm(ng)-2, 2)+ & & ad_A(-2,Mm(ng)+2) ad_A(-2,Mm(ng)+2)=0.0_r8 !> tl_A(-1,Mm(ng)+2)=tl_A(Lm(ng)-1, 2) !> ad_A(Lm(ng)-1, 2)=ad_A(Lm(ng)-1, 2)+ & & ad_A(-1,Mm(ng)+2) ad_A(-1,Mm(ng)+2)=0.0_r8 !> tl_A( 0,Mm(ng)+2)=tl_A(Lm(ng) , 2) !> ad_A(Lm(ng) , 2)=ad_A(Lm(ng) , 2)+ & & ad_A( 0,Mm(ng)+2) ad_A( 0,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3)=tl_A(Lm(ng)-2, 3) !> ad_A(Lm(ng)-2, 3)=ad_A(Lm(ng)-2, 3)+ & & ad_A(-2,Mm(ng)+3) ad_A(-2,Mm(ng)+3)=0.0_r8 !> tl_A(-1,Mm(ng)+3)=tl_A(Lm(ng)-1, 3) !> ad_A(Lm(ng)-1, 3)=ad_A(Lm(ng)-1, 3)+ & & ad_A(-1,Mm(ng)+3) ad_A(-1,Mm(ng)+3)=0.0_r8 !> tl_A( 0,Mm(ng)+3)=tl_A(Lm(ng) , 3) !> ad_A(Lm(ng) , 3)=ad_A(Lm(ng) , 3)+ & & ad_A( 0,Mm(ng)+3) ad_A( 0,Mm(ng)+3)=0.0_r8 # endif END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,Mm(ng)+1)=tl_A( 1, 1) !> ad_A( 1, 1)=ad_A( 1, 1)+ & & ad_A(Lm(ng)+1,Mm(ng)+1) ad_A(Lm(ng)+1,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2)=tl_A( 1, 2) !> ad_A( 1, 2)=ad_A( 1, 2)+ & & ad_A(Lm(ng)+1,Mm(ng)+2) ad_A(Lm(ng)+1,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3)=tl_A( 1, 3) !> ad_A( 1, 3)=ad_A( 1, 3)+ & & ad_A(Lm(ng)+1,Mm(ng)+3) ad_A(Lm(ng)+1,Mm(ng)+3)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1)=tl_A( 2, 1) !> ad_A( 2, 1)=ad_A( 2, 1)+ & & ad_A(Lm(ng)+2,Mm(ng)+1) ad_A(Lm(ng)+2,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2)=tl_A( 2, 2) !> ad_A( 2, 2)=ad_A( 2, 2)+ & & ad_A(Lm(ng)+2,Mm(ng)+2) ad_A(Lm(ng)+2,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3)=tl_A( 2, 3) !> ad_A( 2, 3)=ad_A( 2, 3)+ & & ad_A(Lm(ng)+2,Mm(ng)+3) ad_A(Lm(ng)+2,Mm(ng)+3)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1)=tl_A( 3, 1) !> ad_A( 3, 1)=ad_A( 3, 1)+ & & ad_A(Lm(ng)+3,Mm(ng)+1) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2)=tl_A( 3, 2) !> ad_A( 3, 2)=ad_A( 3, 2)+ & & ad_A(Lm(ng)+3,Mm(ng)+2) ad_A(Lm(ng)+3,Mm(ng)+2)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3)=tl_A( 3, 3) !> ad_A( 3, 3)=ad_A( 3, 3)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3)=0.0_r8 # endif END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE Istr,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,-2)=tl_A(i,Mm(ng)-2) !> ad_A(i,Mm(ng)-2)=ad_A(i,Mm(ng)-2)+ & & ad_A(i,-2) ad_A(i,-2)=0.0_r8 !> tl_A(i,-1)=tl_A(i,Mm(ng)-1) !> ad_A(i,Mm(ng)-1)=ad_A(i,Mm(ng)-1)+ & & ad_A(i,-1) ad_A(i,-1)=0.0_r8 !> tl_A(i, 0)=tl_A(i,Mm(ng) ) !> ad_A(i,Mm(ng) )=ad_A(i,Mm(ng) )+ & & ad_A(i, 0) ad_A(i, 0)=0.0_r8 END DO END IF IF (SOUTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,Mm(ng)+1)=tl_A(i,1) !> ad_A(i,1)=ad_A(i,1)+ & & ad_A(i,Mm(ng)+1) ad_A(i,Mm(ng)+1)=0.0_r8 !> tl_A(i,Mm(ng)+2)=tl_A(i,2) !> ad_A(i,2)=ad_A(i,2)+ & & ad_A(i,Mm(ng)+2) ad_A(i,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3)=tl_A(i,3) !> ad_A(i,3)=ad_A(i,3)+ & & ad_A(i,Mm(ng)+3) ad_A(i,Mm(ng)+3)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE JstrR,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO j=J_RANGE !> tl_A(-2,j)=tl_A(Lm(ng)-2,j) !> ad_A(Lm(ng)-2,j)=ad_A(Lm(ng)-2,j)+ & & ad_A(-2,j) ad_A(-2,j)=0.0_r8 !> tl_A(-1,j)=tl_A(Lm(ng)-1,j) !> ad_A(Lm(ng)-1,j)=ad_A(Lm(ng)-1,j)+ & & ad_A(-1,j) ad_A(-1,j)=0.0_r8 !> tl_A( 0,j)=tl_A(Lm(ng) ,j) !> ad_A(Lm(ng) ,j)=ad_A(Lm(ng) ,j)+ & & ad_A( 0,j) ad_A( 0,j)=0.0_r8 END DO END IF IF (WESTERN_EDGE) THEN DO j=J_RANGE !> tl_A(Lm(ng)+1,j)=tl_A(1,j) !> ad_A(1,j)=ad_A(1,j)+ & & ad_A(Lm(ng)+1,j) ad_A(Lm(ng)+1,j)=0.0_r8 !> tl_A(Lm(ng)+2,j)=tl_A(2,j) !> ad_A(2,j)=ad_A(2,j)+ & & ad_A(Lm(ng)+2,j) ad_A(Lm(ng)+2,j)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j)=ad_A(3,j)+ & & ad_A(Lm(ng)+3,j) ad_A(Lm(ng)+3,j)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_u2d_tile ! !*********************************************************************** SUBROUTINE ad_exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_A) !*********************************************************************** ! USE mod_param ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: ad_A(LBi:,LBj:) # else real(r8), intent(inout) :: ad_A(LBi:UBi,LBj:UBj) # endif ! ! Local variable declarations. ! integer :: i, j # include "set_bounds.h" # if defined EW_PERIODIC && defined NS_PERIODIC ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF ((NtileI(ng).eq.1).and.(NtileJ(ng).eq.1)) THEN # endif IF ((EASTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(-2,-2)=tl_A(Lm(ng)-2,Mm(ng)-2) !> ad_A(Lm(ng)-2,Mm(ng)-2)=ad_A(Lm(ng)-2,Mm(ng)-2)+ & & ad_A(-2,-2) ad_A(-2,-2)=0.0_r8 !> tl_A(-2,-1)=tl_A(Lm(ng)-2,Mm(ng)-1) !> ad_A(Lm(ng)-2,Mm(ng)-1)=ad_A(Lm(ng)-2,Mm(ng)-1)+ & & ad_A(-2,-1) ad_A(-2,-1)=0.0_r8 !> tl_A(-2, 0)=tl_A(Lm(ng)-2,Mm(ng) ) !> ad_A(Lm(ng)-2,Mm(ng) )=ad_A(Lm(ng)-2,Mm(ng) )+ & & ad_A(-2, 0) ad_A(-2, 0)=0.0_r8 !> tl_A(-1,-2)=tl_A(Lm(ng)-1,Mm(ng)-2) !> ad_A(Lm(ng)-1,Mm(ng)-2)=ad_A(Lm(ng)-1,Mm(ng)-2)+ & & ad_A(-1,-2) ad_A(-1,-2)=0.0_r8 !> tl_A(-1,-1)=tl_A(Lm(ng)-1,Mm(ng)-1) !> ad_A(Lm(ng)-1,Mm(ng)-1)=ad_A(Lm(ng)-1,Mm(ng)-1)+ & & ad_A(-1,-1) ad_A(-1,-1)=0.0_r8 !> tl_A(-1, 0)=tl_A(Lm(ng)-1,Mm(ng) ) !> ad_A(Lm(ng)-1,Mm(ng) )=ad_A(Lm(ng)-1,Mm(ng) )+ & & ad_A(-1, 0) ad_A(-1, 0)=0.0_r8 !> tl_A( 0,-2)=tl_A(Lm(ng) ,Mm(ng)-2) !> ad_A(Lm(ng) ,Mm(ng)-2)=ad_A(Lm(ng) ,Mm(ng)-2)+ & & ad_A( 0,-2) ad_A( 0,-2)=0.0_r8 !> tl_A( 0,-1)=tl_A(Lm(ng) ,Mm(ng)-1) !> ad_A(Lm(ng) ,Mm(ng)-1)=ad_A(Lm(ng) ,Mm(ng)-1)+ & & ad_A( 0,-1) ad_A( 0,-1)=0.0_r8 !> tl_A( 0, 0)=tl_A(Lm(ng) ,Mm(ng) ) !> ad_A(Lm(ng) ,Mm(ng) )=ad_A(Lm(ng) ,Mm(ng) )+ & & ad_A( 0, 0) ad_A( 0, 0)=0.0_r8 END IF IF ((WESTERN_EDGE).and.(NORTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,-2)=tl_A( 1,Mm(ng)-2) !> ad_A( 1,Mm(ng)-2)=ad_A( 1,Mm(ng)-2)+ & & ad_A(Lm(ng)+1,-2) ad_A(Lm(ng)+1,-2)=0.0_r8 !> tl_A(Lm(ng)+1,-1)=tl_A( 1,Mm(ng)-1) !> ad_A( 1,Mm(ng)-1)=ad_A( 1,Mm(ng)-1)+ & & ad_A(Lm(ng)+1,-1) ad_A(Lm(ng)+1,-1)=0.0_r8 !> tl_A(Lm(ng)+1, 0)=tl_A( 1,Mm(ng) ) !> ad_A( 1,Mm(ng) )=ad_A( 1,Mm(ng) )+ & & ad_A(Lm(ng)+1, 0) ad_A(Lm(ng)+1, 0)=0.0_r8 !> tl_A(Lm(ng)+2,-2)=tl_A( 2,Mm(ng)-2) !> ad_A( 2,Mm(ng)-2)=ad_A( 2,Mm(ng)-2)+ & & ad_A(Lm(ng)+2,-2) ad_A(Lm(ng)+2,-2)=0.0_r8 !> tl_A(Lm(ng)+2,-1)=tl_A( 2,Mm(ng)-1) !> ad_A( 2,Mm(ng)-1)=ad_A( 2,Mm(ng)-1)+ & & ad_A(Lm(ng)+2,-1) ad_A(Lm(ng)+2,-1)=0.0_r8 !> tl_A(Lm(ng)+2, 0)=tl_A( 2,Mm(ng) ) !> ad_A( 2,Mm(ng) )=ad_A( 2,Mm(ng) )+ & & ad_A(Lm(ng)+2, 0) ad_A(Lm(ng)+2, 0)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,-2)=tl_A(3 ,Mm(ng)-2) !> ad_A(3 ,Mm(ng)-2)=ad_A(3 ,Mm(ng)-2)+ & & ad_A(Lm(ng)+3,-2) ad_A(Lm(ng)+3,-2)=0.0_r8 !> tl_A(Lm(ng)+3,-1)=tl_A(3 ,Mm(ng)-1) !> ad_A(3 ,Mm(ng)-1)=ad_A(3 ,Mm(ng)-1)+ & & ad_A(Lm(ng)+3,-1) ad_A(Lm(ng)+3,-1)=0.0_r8 !> tl_A(Lm(ng)+3, 0)=tl_A(3 ,Mm(ng) ) !> ad_A(3 ,Mm(ng) )=ad_A(3 ,Mm(ng) )+ & & ad_A(Lm(ng)+3, 0) ad_A(Lm(ng)+3, 0)=0.0_r8 # endif END IF IF ((EASTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(-2,Mm(ng)+1)=tl_A(Lm(ng)-2, 1) !> ad_A(Lm(ng)-2, 1)=ad_A(Lm(ng)-2, 1)+ & & ad_A(-2,Mm(ng)+1) ad_A(-2,Mm(ng)+1)=0.0_r8 !> tl_A(-1,Mm(ng)+1)=tl_A(Lm(ng)-1, 1) !> ad_A(Lm(ng)-1, 1)=ad_A(Lm(ng)-1, 1)+ & & ad_A(-1,Mm(ng)+1) ad_A(-1,Mm(ng)+1)=0.0_r8 !> tl_A( 0,Mm(ng)+1)=tl_A(Lm(ng) , 1) !> ad_A(Lm(ng) , 1)=ad_A(Lm(ng) , 1)+ & & ad_A( 0,Mm(ng)+1) ad_A( 0,Mm(ng)+1)=0.0_r8 !> tl_A(-2,Mm(ng)+2)=tl_A(Lm(ng)-2, 2) !> ad_A(Lm(ng)-2, 2)=ad_A(Lm(ng)-2, 2)+ & & ad_A(-2,Mm(ng)+2) ad_A(-2,Mm(ng)+2)=0.0_r8 !> tl_A(-1,Mm(ng)+2)=tl_A(Lm(ng)-1, 2) !> ad_A(Lm(ng)-1, 2)=ad_A(Lm(ng)-1, 2)+ & & ad_A(-1,Mm(ng)+2) ad_A(-1,Mm(ng)+2)=0.0_r8 !> tl_A( 0,Mm(ng)+2)=tl_A(Lm(ng) , 2) !> ad_A(Lm(ng) , 2)=ad_A(Lm(ng) , 2)+ & & ad_A( 0,Mm(ng)+2) ad_A( 0,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(-2,Mm(ng)+3)=tl_A(Lm(ng)-2, 3) !> ad_A(Lm(ng)-2, 3)=ad_A(Lm(ng)-2, 3)+ & & ad_A(-2,Mm(ng)+3) ad_A(-2,Mm(ng)+3)=0.0_r8 !> tl_A(-1,Mm(ng)+3)=tl_A(Lm(ng)-1, 3) !> ad_A(Lm(ng)-1, 3)=ad_A(Lm(ng)-1, 3)+ & & ad_A(-1,Mm(ng)+3) ad_A(-1,Mm(ng)+3)=0.0_r8 !> tl_A( 0,Mm(ng)+3)=tl_A(Lm(ng) , 3) !> ad_A(Lm(ng) , 3)=ad_A(Lm(ng) , 3)+ & & ad_A( 0,Mm(ng)+3) ad_A( 0,Mm(ng)+3)=0.0_r8 # endif END IF IF ((WESTERN_EDGE).and.(SOUTHERN_EDGE)) THEN !> tl_A(Lm(ng)+1,Mm(ng)+1)=tl_A( 1, 1) !> ad_A( 1, 1)=ad_A( 1, 1)+ & & ad_A(Lm(ng)+1,Mm(ng)+1) ad_A(Lm(ng)+1,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+1,Mm(ng)+2)=tl_A( 1 , 2) !> ad_A( 1, 2)=ad_A( 1, 2)+ & & ad_A(Lm(ng)+1,Mm(ng)+2) ad_A(Lm(ng)+1,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+1,Mm(ng)+3)=tl_A( 1, 3) !> ad_A( 1, 3)=ad_A( 1, 3)+ & & ad_A(Lm(ng)+1,Mm(ng)+3) ad_A(Lm(ng)+1,Mm(ng)+3)=0.0_r8 # endif !> tl_A(Lm(ng)+2,Mm(ng)+1)=tl_A(2,1 ) !> ad_A( 2, 1)=ad_A( 2, 1 )+ & & ad_A(Lm(ng)+2,Mm(ng)+1) ad_A(Lm(ng)+2,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+2,Mm(ng)+2)=tl_A( 2, 2) !> ad_A( 2, 2)=ad_A( 2, 2)+ & & ad_A(Lm(ng)+2,Mm(ng)+2) ad_A(Lm(ng)+2,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+2,Mm(ng)+3)=tl_A( 2, 3) !> ad_A( 2, 3)=ad_A( 2, 3)+ & & ad_A(Lm(ng)+2,Mm(ng)+3) ad_A(Lm(ng)+2,Mm(ng)+3)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+1)=tl_A( 3, 1) !> ad_A( 3, 1)=ad_A( 3, 1)+ & & ad_A(Lm(ng)+3,Mm(ng)+1) ad_A(Lm(ng)+3,Mm(ng)+1)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+2)=tl_A( 3, 2) !> ad_A( 3, 2)=ad_A( 3, 2)+ & & ad_A(Lm(ng)+3,Mm(ng)+2) ad_A(Lm(ng)+3,Mm(ng)+2)=0.0_r8 !> tl_A(Lm(ng)+3,Mm(ng)+3)=tl_A( 3, 3) !> ad_A( 3, 3)=ad_A( 3, 3)+ & & ad_A(Lm(ng)+3,Mm(ng)+3) ad_A(Lm(ng)+3,Mm(ng)+3)=0.0_r8 # endif END IF # ifdef DISTRIBUTE END IF # endif # endif # ifdef NS_PERIODIC # ifdef EW_PERIODIC # define I_RANGE Istr,Iend # else # define I_RANGE IstrR,IendR # endif ! !----------------------------------------------------------------------- ! North-South periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileJ(ng).eq.1) THEN # endif IF (NORTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,-2)=tl_A(i,Mm(ng)-2) !> ad_A(i,Mm(ng)-2)=ad_A(i,Mm(ng)-2)+ & & ad_A(i,-2) ad_A(i,-2)=0.0_r8 !> tl_A(i,-1)=tl_A(i,Mm(ng)-1) !> ad_A(i,Mm(ng)-1)=ad_A(i,Mm(ng)-1)+ & & ad_A(i,-1) ad_A(i,-1)=0.0_r8 !> tl_A(i, 0)=tl_A(i,Mm(ng) ) !> ad_A(i,Mm(ng) )=ad_A(i,Mm(ng) )+ & & ad_A(i, 0) ad_A(i, 0)=0.0_r8 END DO END IF IF (SOUTHERN_EDGE) THEN DO i=I_RANGE !> tl_A(i,Mm(ng)+1)=tl_A(i,1) !> ad_A(i,1)=ad_A(i,1)+ & & ad_A(i,Mm(ng)+1) ad_A(i,Mm(ng)+1)=0.0_r8 !> tl_A(i,Mm(ng)+2)=tl_A(i,2) !> ad_A(i,2)=ad_A(i,2)+ & & ad_A(i,Mm(ng)+2) ad_A(i,Mm(ng)+2)=0.0_r8 # ifdef THREE_GHOST !> tl_A(i,Mm(ng)+3)=tl_A(i,3) !> ad_A(i,3)=ad_A(i,3)+ & & ad_A(i,Mm(ng)+3) ad_A(i,Mm(ng)+3)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef I_RANGE # endif # ifdef EW_PERIODIC # ifdef NS_PERIODIC # define J_RANGE Jstr,Jend # else # define J_RANGE Jstr,JendR # endif ! !----------------------------------------------------------------------- ! East-West periodic boundary conditions. !----------------------------------------------------------------------- ! # ifdef DISTRIBUTE IF (NtileI(ng).eq.1) THEN # endif IF (EASTERN_EDGE) THEN DO j=J_RANGE !> tl_A(-2,j)=tl_A(Lm(ng)-2,j) !> ad_A(Lm(ng)-2,j)=ad_A(Lm(ng)-2,j)+ & & ad_A(-2,j) ad_A(-2,j)=0.0_r8 !> tl_A(-1,j)=tl_A(Lm(ng)-1,j) !> ad_A(Lm(ng)-1,j)=ad_A(Lm(ng)-1,j)+ & & ad_A(-1,j) ad_A(-1,j)=0.0_r8 !> tl_A( 0,j)=tl_A(Lm(ng) ,j) !> ad_A(Lm(ng) ,j)=ad_A(Lm(ng) ,j)+ & & ad_A( 0,j) ad_A( 0,j)=0.0_r8 END DO END IF IF (WESTERN_EDGE) THEN DO j=J_RANGE !> tl_A(Lm(ng)+1,j)=tl_A(1 ,j) !> ad_A(1 ,j)=ad_A(1 ,j)+ & & ad_A(Lm(ng)+1,j) ad_A(Lm(ng)+1,j)=0.0_r8 !> tl_A(Lm(ng)+2,j)=tl_A(2,j) !> ad_A(2,j)=ad_A(2,j)+ & & ad_A(Lm(ng)+2,j) ad_A(Lm(ng)+2,j)=0.0_r8 # ifdef THREE_GHOST !> tl_A(Lm(ng)+3,j)=tl_A(3,j) !> ad_A(3,j)=ad_A(3,j)+ & & ad_A(Lm(ng)+3,j) ad_A(Lm(ng)+3,j)=0.0_r8 # endif END DO END IF # ifdef DISTRIBUTE END IF # endif # undef J_RANGE # endif RETURN END SUBROUTINE ad_exchange_v2d_tile #endif END MODULE ad_exchange_2d_mod