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Conversion between the tidal current amplitude and phase lag parameters (for short, referred to as

ap-parameters hereafter) and tidal current ellipse parameters (referred to as e-parameters hereafter)

are not as trivial as conversion between Cartesian and polar coordinates. We spend time to �gure it

how to do so at one time and then forget it in half a year (or shorter, my e-folding memory scale is

short, how long is yours?) later. I have just completed a tidal data assimilation project, in which I

have done tons of such conversions with a sketchy MATLAB program. Recently some my colleagues

inquired on how to do the conversion. Given that such inquiries are heard from time to time, I decided

to pull all the relevant material together in one place for convenience in our future work. The rest

of this document consists of two parts: a theory on the conversion and two streamlined programs

(polished from my sketchy ones) in MATLAB (version 5 or higher).

1 Theory

1.1 Tidal ellipse and rotary components

Given tidal currents of u- (east or x-) and v- (north or y-) components, as

u = au cos(!t� �u) (1)

v = av cos(!t� �v) (2)

where au and �u are the amplitudes and phase lags for the u-components and likewise for av and �v,

and ! is the tidal angular frequency, we can form a complex tidal current w as

w = u+ iv (3)

where i =
p�1. If we trace w on a complex plane as time goes by a period (T=2�=!), we will see

an ellipse. Our interest here is not only in seeing the ellipse, but more would like have the following

ellipse parameters calculated:

� Maximum current velocity or semi-major axis (referred to as SEMA hereafter where appropriate).

� Eccentricity (ECC), the ratio of semi-minor to semi major axis, negative values indicating that

the ellipse is traversed in a clockwise rotation;

� Inclination (INC), or angle between east (x-) and semi-major axis;
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� Phase angle (PHA), i.e., the time of maximum velocity with respect to a chosen origin of time

(if the phase lag is relative to Greenwich time, then the time will be also the Greenwich time).

Let us continue from eq. 3:

w = u+ iv

= au cos(!t� �u) + iav cos(!t� �v)

= au
ei(!t��u) + e�i(!t��u)

2
+ iav

ei(!t��v) + e�i(!t��v)

2

=
aue

�i�u + iave
�i�v

2
ei!t +

aue
i�u + iave

i�v

2
e�i!t (4)

= w�pe
i!t + wme

�i!t (5)

or
= Wpe

i(!t+�p) +Wme
�i(!t��m) (6)

where we have introduced a complex conjugate operator notation �, and

w�p � (Wpe
�i�p)� � Wpe

i�p =
aue

�i�u + iave
�i�v

2
(7)

whereas wp itself is

wp � Wpe
�i�p =

aue
i�u � iave

i�v

2
(8)

and

wm � Wme
i�m =

aue
i�u + iave

i�v

2
(9)

where Wp, ��p, Wm and �m are the amplitudes and angles of the complex variable wp and wm

respectively, i.e.,

Wp =

�����aue
�i�u + iave

�i�v

2

����� (10)

�p = � tan�1
 
aue

�i�u + iave
�i�v

2

!
(11)

Wm =

�����aue
i�u + iave

i�v

2

����� (12)

�m = tan�1
 
aue

i�u + iave
i�v

2

!
: (13)

Note that we have de�ned the coe�cient of the anti-clockwise rotating term ei!t in eq. 4 as complex

conjugate of wp instead of wp itself. This small twist would not be needed here at all if we were only
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Figure 1: An ellipse can be constructed by two opposite rotating circles (red: anticlockwise circle,

green: clockwise circle, blue: ellipse). The circle with a longer radius dictates the rotating direction

of the ellipse.

concerned with the ap- and ep- parameters conversions. However, if we are further concerned with

linear tidal dynamic equations, we will �nd that so de�ned wp, together with wm, allows a coupling of

the two coupled momentum equations. (To decouple the momentum equations alone, one may de�ne

two complex velocities di�erently, but only wp and wm de�ned here can represent the two composite

circles of a tidal ellipse.)

Thus, we have decomposed an ellipse into two circular components: the term with ei!t in eq. 4

or eq. 6 describes an anticlockwise circle with a radius of Wp, and the term with e�i!t describes a

clockwise circle with a radius of Wm (�gure 1). Depending on whether Wp is greater than, equal to

or less than Wm, the ellipse will traverse either anti-clockwise, rectilinear, or clockwise.

When the two circular components are aligned in the same direction, the tidal current will reach

its maximum. From, eq. 6, we can see that will happen when

!t+ �p = �!t + �m + 2k� (14)

where integer k = 0;�1;�2;�3; � � �. Denote tmax as a t satisfying the above criterion, then the phase

angle as introduced above is !tmax, which is given by

PHA = !tmax =
�m � �p

2
+ k� (15)

4



We need only to take its minimum value (i.e., when k = 0).

Substitute eq. 15 into eq. 6, we can have a current vector whose speed is maximum,

wmax = Wpe
i(!tmax+�p) +Wme

�i(!tmax��m)

= Wpe
i

�
�m+�p

2
+k�

�
+Wme

i

�
�m+�p

2
�k�

�

= (Wp +Wm)e
i
�m+�p

2 since eik� = e�ik� = 1 (16)

Thus, the maximum current, or semi-major axis (SEMA), is

SEMA = jwmaxj = Wp +Wm (17)

and its direction, or the inclination, is

INC = tan�1(wmax) =
�m + �p

2
: (18)

When the two circular components are aligned in opposite directions, i.e.,

!t+ �p = �!t + �m + (2k+ 1)� (19)

then the tidal current reaches minimum in its speed. At this time, t = tmin

!tmin =
�m � �p

2
+ (k +

1

2
)� (20)

and

wmin = Wpe
i

�
�m+�p

2
+(k+ 1

2
)�

�
+Wme

i

�
�m+�p

2
�(k+ 1

2
)�

�

= Wpe
i

�
�m+�p

2

�
ei

�
2 +Wme

i

�
�m+�p

2

�
e�i

�
2

=
�
Wp +Wme

��
�
e
i

�
�m+�p

2
+�

2

�

= (Wp �Wm) e
i

�
�m+�p

2
+�

2

�
(21)

therefore, the minimum speed of the tidal current, or semi-minor axis (SEMI) is

SEMI = jwminj = Wp �Wm (22)

and its angle is

tan�1(wmin) =
�m + �p

2
+

�

2
(23)
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Thus, the eccentricity, ECC, is

ECC =
SEMI

SEMA
=

Wp �Wm

Wp +Wm

(24)

When Wm > Wp, ECC is negative and the ellipse rotates clockwisely.

The above is on conversion from ap-parameter to e-parameter, now let us be concerned with the

other way around: given the four e-parameters of SEMA, ECC, INC, and PHA, how can we recover

ap-parameters of au, �u, av and �v?

As a middle step, we need to recover Wp, �p, wp, Wm, �m and wm. From eqs. 17, 22 and 24, we

can have

Wp =
1 + ECC

2
SEMA (25)

Wm =
1� ECC

2
SEMA (26)

and from eqs. 15 (when k = 0) and 18, we can have

�p = INC � PHA (27)

�m = INC + PHA (28)

Hence we can know

wp = Wpe
�i�p (29)

wm = Wme
i�m (30)

We then can know further from eqs. 8 and 39 that

aue
i�u = wp + wm (31)

ave
i�v =

1

i
(wm � wp) (32)

or
= �i (wm � wp) (33)

So,

au = jwp + wmj
�u = tan�1 (wp + wm) (34)

6



and similarly,

av = j(wm � wp)j (35)

�v = tan�1
�
wm � wp

i

�
(36)

1.2 Decoupling of the linear tidal momentum equations

Consider

@u

@t
� fv = �g @�

@x
(37)

@u

@t
+ fu = �g @�

@y
(38)

where all the variables are real. By adding eq. 37 and i� eq. 38, and using w de�ned by eq. 5, we

can merge the above two equations into the following complex one,

@w

@t
+ ifw = �g

2
5 � (39)

where

5 � @

@x
+ i

@

@y
: (40)

Assume u and v of forms of eqs. 1 similarly for �, i.e.,

� = a� cos(!t� ��) (41)

which can be split into two circular parts as we did for u and v,

� = a� cos(!t� ��)

=
a�e

�i��

2
ei!t +

a�e
i��

2
e�i!t

=
~��

2
+

~�

2
; (42)

where

~� = a�e
i�� : (43)

Using the above equation and eqs. 5 we can rewrite eq. 39 as

�
i(f + !)w�p +

g

2
5 ~��

�
ei!t +

�
i(f � !)wm +

g

2
5 ~�

�
e�i!t = 0 (44)
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Since ei!t and e�i!t are linearly independent of each other, for the above eqution to hold, their

coe�cients must be zero, i.e.,

�i(f + !)wp +
g

2
5� ~� = 0 (45)

i(f � !)wm +
g

2
5 ~� = 0 (46)

where eq. 45 has been applied by an conjugate operator.

2 Programs

Two programs are included here: app2ep.m, which converts ap-parameters to e-parameters, and

ep2app.m which is the inverse of app2ep.m. See the comments in the programs for more details.

2.1 app2ep.m

function [SEMA, ECC, INC, PHA, w]=app2ep(Au, PHIu, Av, PHIv, plot_demo)

%

% Convert tidal amplitude and phase lag (ap-) parameters into tidal ellipse

% (e-) Parameters.

%

% Usage:

%

% [SEMA, ECC, INC, PHA, w]=app2ep(Au, PHIu, Av, PHIv, plot_demo)

%

% where:

%

% Au, PHIu, Av, PHIv are the amplitudes and phase lags of

% u- and v- tidal current components. They can be vectors or

% matrices;

%

% plot_demo is an optional argument, when is supplied as a non-zero

% number, the program will plot an ellipse corresponding to

% Au(1), PHIu(1), Av(1), and PHIv(1);

%

% SEMA: Semi-major axes, or the maximum speed;

% ECC: Eccentricity, the ration of the semi-major axes over the

% semi-minor axis;

% INC: Inclination, the angles between the semi-major axes and

% u-axis.

% PHA: Phase angles, the time (in angles) when the
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% tidal currents reach their maximum speeds, (i.e.

% PHA=omega*tmax)

%

% These four e-parameters will have the same dimensionality

% (i.e., vectors, or matrices) as the input ap-parameters.

%

% w: Optional. If it is requested, it will be output as matrices

% whose rows allow for plotting ellipses and whose columns are

% for different ellipses corresponding columnwise to SEMA. For

% example, plot(real(w(1,:)), imag(w(1,:))) will let you see

% the first ellipse.

%

% Document: tidal_ellipse_v2.tex and tidal_ellipse_v2.ps

if nargin < 5

plot_demo=0; % by default, no plot for the ellipse

end

% Transform the input data as column vectors

[sizeAu_m, sizeAu_n]=size(Au); % for later transform them back.

if sizeAu_n > 1

Au = Au(:);

Av = Av(:);

PHIu = PHIu(:);

PHIv = PHIv(:);

end

% Assume the input phase lags are in degrees and convert them in radians.

PHIu = PHIu/180*pi;

PHIv = PHIv/180*pi;

% Make complex amplitudes for u and v

i = sqrt(-1);

u = Au.*exp(i*PHIu);

v = Av.*exp(i*PHIv);

% Calculate complex radius of anticlockwise and clockwise circles:

wp = (u-i*v)/2; % for anticlockwise circles, and yes, it is (u-i*v)/2

wm = (u+i*v)/2; % for clockwise circles

% and their amplitudes and angles

Wp = abs(wp);

Wm = abs(wm);

THETAp = -angle(wp);
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THETAm = angle(wm);

% calculate e-parameters (ellipse parameters)

SEMA = Wp+Wm; % Semi Major Axis, or maximum speed

SEMI = Wp-Wm; % Semin Minor Axis, or minimum speed

ECC = SEMI/SEMA; % Eccentricity

PHA = (THETAm-THETAp)/2; % Phase angle, the time (in angle) when

% the velocity reaches the maximum

INC = (THETAm+THETAp)/2; % Inclination, the angle between the

% semi major axis and x-axis (or u-axis).

% convert to degrees for output

PHA = PHA/pi*180;

INC = INC/pi*180;

THETAp = THETAp/pi*180;

THETAm = THETAm/pi*180;

% flip THETAp and THETAm, PHA, and INC in the range of

% [-pi, 0) to [pi, 2*pi), which at least is my convention.

id = THETAp < 0; THETAp(id) = THETAp(id)+360;

id = THETAm < 0; THETAm(id) = THETAm(id)+360;

id = PHA < 0; PHA(id) = PHA(id)+360;

id = INC < 0; INC(id) = INC(id)+360;

%output e-parameter in the same matrix dimension as Au

if sizeAu_n > 1

SEMA = reshape(SEMA, sizeAu_m, sizeAu_n);

SEMI = reshape(SEMI, sizeAu_m, sizeAu_n);

PHA = reshape(PHA, sizeAu_m, sizeAu_n);

INC = reshape(INC, sizeAu_m, sizeAu_n);

ECC = reshape(ECC, sizeAu_m, sizeAu_n);

end

if nargout == 5 | plot_demo

dot=pi/18;

ot=[0:dot:2*pi-dot];

w=wp'*exp(i*ot)+wm*exp(-i*ot);

end

% Plot demo

if plot_demo

10





plot(real(b(n)), imag(b(n)), 'go');

plot(real(c(n)), imag(c(n)), 'bo');

set(hnd_ab, 'xdata',real([a(n) a(n)+b(n)]), 'ydata', ...

imag([a(n) a(n)+b(n)]))

set(hnd_ba, 'xdata',real([b(n) a(n)+b(n)]), 'ydata', ...

imag([b(n) a(n)+b(n)]))

end

end

%Author Info:

%_______________________________________________________________________

% Zhigang Xu, Ph.D.

% (pronounced as Tsi Gahng Hsu)

% Coastal Circulation

% Bedford Institute of Oceanography

% 1 Challenge Dr.

% P.O. Box 1006 Phone (902) 426-2307 (o)

% Dartmouth, Nova Scotia Fax (902) 426-7827

% CANADA B2Y 4A2 email zhigangx@emerald.bio.dfo.ca

%_______________________________________________________________________

2.2 ep2app.m

function [Au, PHIu, Av, PHIv, w]=ep2app(SEMA, ECC, INC, PHA)

%

% Convert tidal ellipse parameters into amplitude and phase lag parameters.

% Its inverse is app2ep.m

%

% Zhigang Xu

% April 6, 2000

%

% Document: tidal_ellipse_v2.tex and tidal_ellipse_v2.ps

%

Wp = (1+ECC)/2*SEMA;

Wm = (1-ECC)/2*SEMA;

THETAp = INC-PHA;
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THETAm = INC+PHA;

%convert degress into radians

THETAp = THETAp/180*pi;

THETAm = THETAm/180*pi;

%Calculate wp and wm.

wp = Wp.*exp(-i*THETAp);

wm = Wm.*exp( i*THETAm);

if nargout == 5

dot = pi/18;

ot = [0:dot:2*pi-dot];

w = wp'.*exp(i*ot)+wm.*exp(-i*ot);

end

% Calculate cAu, cAv --- complex amplitude of u and v

cAu = wp+wm;

cAv = -i*(wm-wp);

Au = abs(cAu);

Av = abs(cAv);

PHIu = angle(cAu)*180/pi;

PHIv = angle(cAv)*180/pi;

% flip angles in the range of [-180 0) to the range of [180 360).

id = PHIu < 0; PHIu(id) = PHIu(id) + 360;

id = PHIv < 0; PHIv(id) = PHIv(id) + 360;

%Author Info:

%_______________________________________________________________________

% Zhigang Xu, Ph.D.

% (pronounced as Tsi Gahng Hsu)

% Coastal Circulation

% Bedford Institute of Oceanography

% 1 Challenge Dr.

% P.O. Box 1006 Phone (902) 426-2307 (o)

% Dartmouth, Nova Scotia Fax (902) 426-7827

% CANADA B2Y 4A2 email zhigangx@emerald.bio.dfo.ca

%_______________________________________________________________________
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