MODULE zetabc_mod ! !svn $Id: zetabc.F 294 2009-01-09 21:37:26Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine sets lateral boundary conditions for free-surface. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: zetabc_tile CONTAINS ! !*********************************************************************** SUBROUTINE zetabc (ng, tile, kout) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, kout ! ! Local variable declarations. ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private storage ! arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J)- and MAX(I,J)-directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), kout, & & OCEAN(ng) % zeta) RETURN END SUBROUTINE zetabc ! !*********************************************************************** SUBROUTINE zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, kout, & & zeta) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_grid USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: krhs, kstp, kout real(r8), intent(inout) :: zeta(LBi:,LBj:,:) ! ! Local variable declarations. ! integer :: i, j, know real(r8), parameter :: eps =1.0E-20_r8 real(r8) :: Ce, Cx real(r8) :: cff, cff1, cff2, dt2d, dZde, dZdt, dZdx, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrR, IstrT, IstrU, Iend, IendR, IendT integer :: Jstr, JstrR, JstrT, JstrV, Jend, JendR, JendT ! Istr =BOUNDS(ng)%Istr (tile) IstrR=BOUNDS(ng)%IstrR(tile) IstrT=BOUNDS(ng)%IstrT(tile) IstrU=BOUNDS(ng)%IstrU(tile) Iend =BOUNDS(ng)%Iend (tile) IendR=BOUNDS(ng)%IendR(tile) IendT=BOUNDS(ng)%IendT(tile) Jstr =BOUNDS(ng)%Jstr (tile) JstrR=BOUNDS(ng)%JstrR(tile) JstrT=BOUNDS(ng)%JstrT(tile) JstrV=BOUNDS(ng)%JstrV(tile) Jend =BOUNDS(ng)%Jend (tile) JendR=BOUNDS(ng)%JendR(tile) JendT=BOUNDS(ng)%JendT(tile) ! !----------------------------------------------------------------------- ! Set time-indices !----------------------------------------------------------------------- ! IF (iif(ng).eq.1) THEN know=krhs dt2d=dtfast(ng) ELSE IF (PREDICTOR_2D_STEP(ng)) THEN know=krhs dt2d=2.0_r8*dtfast(ng) ELSE know=kstp dt2d=dtfast(ng) END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (Istr.eq.1) THEN ! ! Western edge, Chapman boundary condition. ! DO j=Jstr,Jend cff=dt2d*GRID(ng)%pm(Istr,j) cff1=SQRT(g*(GRID(ng)%h(Istr,j)+ & & zeta(Istr,j,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) zeta(Istr-1,j,kout)=cff2*(zeta(Istr-1,j,know)+ & & Cx*zeta(Istr,j,kout)) zeta(Istr-1,j,kout)=zeta(Istr-1,j,kout)* & & GRID(ng)%rmask(Istr-1,j) END DO END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (Iend.eq.Lm(ng)) THEN ! ! Eastern edge, Chapman boundary condition. ! DO j=Jstr,Jend cff=dt2d*GRID(ng)%pm(Iend,j) cff1=SQRT(g*(GRID(ng)%h(Iend,j)+ & & zeta(Iend,j,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) zeta(Iend+1,j,kout)=cff2*(zeta(Iend+1,j,know)+ & & Cx*zeta(Iend,j,kout)) zeta(Iend+1,j,kout)=zeta(Iend+1,j,kout)* & & GRID(ng)%rmask(Iend+1,j) END DO END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (Jstr.eq.1) THEN ! ! Southern edge, Chapman boundary condition. ! DO i=Istr,Iend cff=dt2d*GRID(ng)%pn(i,Jstr) cff1=SQRT(g*(GRID(ng)%h(i,Jstr)+ & & zeta(i,Jstr,know))) Ce=cff*cff1 cff2=1.0_r8/(1.0_r8+Ce) zeta(i,Jstr-1,kout)=cff2*(zeta(i,Jstr-1,know)+ & & Ce*zeta(i,Jstr,kout)) zeta(i,Jstr-1,kout)=zeta(i,Jstr-1,kout)* & & GRID(ng)%rmask(i,Jstr-1) END DO END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (Jend.eq.Mm(ng)) THEN ! ! Northern edge, closed boundary condition. ! DO i=Istr,Iend zeta(i,Jend+1,kout)=zeta(i,Jend,kout) zeta(i,Jend+1,kout)=zeta(i,Jend+1,kout)* & & GRID(ng)%rmask(i,Jend+1) END DO END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF ((Jstr.eq.1).and.(Istr.eq.1)) THEN zeta(Istr-1,Jstr-1,kout)=0.5_r8*(zeta(Istr ,Jstr-1,kout)+ & & zeta(Istr-1,Jstr ,kout)) END IF IF ((Jstr.eq.1).and.(Iend.eq.Lm(ng))) THEN zeta(Iend+1,Jstr-1,kout)=0.5_r8*(zeta(Iend ,Jstr-1,kout)+ & & zeta(Iend+1,Jstr ,kout)) END IF IF ((Jend.eq.Mm(ng)).and.(Istr.eq.1)) THEN zeta(Istr-1,Jend+1,kout)=0.5_r8*(zeta(Istr-1,Jend ,kout)+ & & zeta(Istr ,Jend+1,kout)) END IF IF ((Jend.eq.Mm(ng)).and.(Iend.eq.Lm(ng))) THEN zeta(Iend+1,Jend+1,kout)=0.5_r8*(zeta(Iend+1,Jend ,kout)+ & & zeta(Iend ,Jend+1,kout)) END IF ! !----------------------------------------------------------------------- ! Ensure that water level on boundary cells is above bed elevation. !----------------------------------------------------------------------- ! cff=Dcrit(ng)-eps IF (Istr.eq.1) THEN DO j=Jstr,Jend IF (zeta(Istr-1,j,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Istr-1,j))) THEN zeta(Istr-1,j,kout)=cff-GRID(ng)%h(Istr-1,j) END IF END DO END IF IF (Iend.eq.Lm(ng)) THEN DO j=Jstr,Jend IF (zeta(Iend+1,j,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Iend+1,j))) THEN zeta(Iend+1,j,kout)=cff-GRID(ng)%h(Iend+1,j) END IF END DO END IF IF (Jstr.eq.1) THEN DO i=Istr,Iend IF (zeta(i,Jstr-1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(i,Jstr-1))) THEN zeta(i,Jstr-1,kout)=cff-GRID(ng)%h(i,Jstr-1) END IF END DO END IF IF (Jend.eq.Mm(ng)) THEN DO i=Istr,Iend IF (zeta(i,Jend+1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(i,Jend+1))) THEN zeta(i,Jend+1,kout)=cff-GRID(ng)%h(i,Jend+1) END IF END DO END IF IF ((Jstr.eq.1).and.(Istr.eq.1)) THEN IF (zeta(Istr-1,Jstr-1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Istr-1,Jstr-1))) THEN zeta(Istr-1,Jstr-1,kout)=cff-GRID(ng)%h(Istr-1,Jstr-1) END IF END IF IF ((Jstr.eq.1).and.(Iend.eq.Lm(ng))) THEN IF (zeta(Iend+1,Jstr-1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Iend+1,Jstr-1))) THEN zeta(Iend+1,Jstr-1,kout)=cff-GRID(ng)%h(Iend+1,Jstr-1) END IF END IF IF ((Jend.eq.Mm(ng)).and.(Istr.eq.1)) THEN IF (zeta(Istr-1,Jend+1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Istr-1,Jend+1))) THEN zeta(Istr-1,Jend+1,kout)=cff-GRID(ng)%h(Istr-1,Jend+1) END IF END IF IF ((Jend.eq.Mm(ng)).and.(Iend.eq.Lm(ng))) THEN IF (zeta(Iend+1,Jend+1,kout).le. & & (Dcrit(ng)-GRID(ng)%h(Iend+1,Jend+1))) THEN zeta(Iend+1,Jend+1,kout)=cff-GRID(ng)%h(Iend+1,Jend+1) END IF END IF RETURN END SUBROUTINE zetabc_tile END MODULE zetabc_mod