MODULE state_dotprod_mod ! !svn $Id: state_dotprod.F 352 2009-05-29 20:57:39Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2009 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.txt ! !======================================================================= ! ! ! This routine computes the dot product between two model states: ! ! ! ! DotProd(0:NstateVars) = < s1, s2 > ! ! ! ! where ! ! ! ! DotProd(0) All state variable dot product ! ! DotProd(isUvel) 3D U-momentum contribution ! ! DotProd(isVvel) 3D V-momentum contribution ! ! DotProd(isTvar(:)) Tracer-type variables contribution ! ! DotProd(isFsur) Free-surface contribution ! ! ! !======================================================================= ! implicit none PUBLIC :: state_dotprod CONTAINS ! !*********************************************************************** SUBROUTINE state_dotprod (ng, tile, model, & & LBi, UBi, LBj, UBj, LBij, UBij, & & NstateVars, DotProd, & & rmask, umask, vmask, & & s1_t, s2_t, & & s1_u, s2_u, & & s1_v, s2_v, & & s1_zeta, s2_zeta) !*********************************************************************** ! USE mod_param USE mod_parallel USE mod_ncparam ! USE distribute_mod, ONLY : mp_reduce ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, model integer, intent(in) :: LBi, UBi, LBj, UBj, LBij, UBij integer, intent(in) :: NstateVars ! real(r8), intent(in) :: rmask(LBi:,LBj:) real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) real(r8), intent(in) :: s1_t(LBi:,LBj:,:,:) real(r8), intent(in) :: s2_t(LBi:,LBj:,:,:) real(r8), intent(in) :: s1_u(LBi:,LBj:,:) real(r8), intent(in) :: s2_u(LBi:,LBj:,:) real(r8), intent(in) :: s1_v(LBi:,LBj:,:) real(r8), intent(in) :: s2_v(LBi:,LBj:,:) real(r8), intent(in) :: s1_zeta(LBi:,LBj:) real(r8), intent(in) :: s2_zeta(LBi:,LBj:) ! real(r8), intent(out), dimension(0:NstateVars) :: DotProd ! ! Local variable declarations. ! integer :: NSUB, i, j, k integer :: ir, it real(r8) :: cff real(r8), dimension(0:NstateVars) :: my_DotProd character (len=3), dimension(0:NstateVars) :: op_handle ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrR, IstrT, IstrU, Iend, IendR, IendT integer :: Jstr, JstrR, JstrT, JstrV, Jend, JendR, JendT ! Istr =BOUNDS(ng)%Istr (tile) IstrR=BOUNDS(ng)%IstrR(tile) IstrT=BOUNDS(ng)%IstrT(tile) IstrU=BOUNDS(ng)%IstrU(tile) Iend =BOUNDS(ng)%Iend (tile) IendR=BOUNDS(ng)%IendR(tile) IendT=BOUNDS(ng)%IendT(tile) Jstr =BOUNDS(ng)%Jstr (tile) JstrR=BOUNDS(ng)%JstrR(tile) JstrT=BOUNDS(ng)%JstrT(tile) JstrV=BOUNDS(ng)%JstrV(tile) Jend =BOUNDS(ng)%Jend (tile) JendR=BOUNDS(ng)%JendR(tile) JendT=BOUNDS(ng)%JendT(tile) ! !----------------------------------------------------------------------- ! Compute dot product between S1 and S2 model state trajectories. !----------------------------------------------------------------------- ! DO i=0,NstateVars my_DotProd(i)=0.0_r8 END DO ! ! Free-surface. ! DO j=JstrR,JendR DO i=IstrR,IendR cff=s1_zeta(i,j)*s2_zeta(i,j) cff=cff*rmask(i,j) my_DotProd(0)=my_DotProd(0)+cff my_DotProd(isFsur)=my_DotProd(isFsur)+cff END DO END DO ! ! 3D U-momentum component. ! DO k=1,N(ng) DO j=JstrR,JendR DO i=Istr,IendR cff=s1_u(i,j,k)*s2_u(i,j,k) cff=cff*umask(i,j) my_DotProd(0)=my_DotProd(0)+cff my_DotProd(isUvel)=my_DotProd(isUvel)+cff END DO END DO END DO ! ! 3D V-momentum component. ! DO k=1,N(ng) DO j=Jstr,JendR DO i=IstrR,IendR cff=s1_v(i,j,k)*s2_v(i,j,k) cff=cff*vmask(i,j) my_DotProd(0)=my_DotProd(0)+cff my_DotProd(isVvel)=my_DotProd(isVvel)+cff END DO END DO END DO ! ! Tracers. ! DO it=1,NT(ng) DO k=1,N(ng) DO j=JstrR,JendR DO i=IstrR,IendR cff=s1_t(i,j,k,it)*s2_t(i,j,k,it) cff=cff*rmask(i,j) my_DotProd(0)=my_DotProd(0)+cff my_DotProd(isTvar(it))=my_DotProd(isTvar(it))+cff END DO END DO END DO END DO ! !----------------------------------------------------------------------- ! Perform parallel global reduction operations. !----------------------------------------------------------------------- ! IF ((Istr.eq.1).and.(Jstr.eq.1).and. & & (Iend.eq.Lm(ng)).and.(Jend.eq.Mm(ng))) THEN NSUB=1 ! non-tiled application ELSE NSUB=NtileX(ng)*NtileE(ng) ! tiled application END IF IF (tile_count.eq.0) THEN DO i=0,NstateVars DotProd(i)=0.0_r8 END DO END IF DO i=0,NstateVars DotProd(i)=DotProd(i)+my_DotProd(i) END DO tile_count=tile_count+1 IF (tile_count.eq.NSUB) THEN tile_count=0 DO i=0,NstateVars op_handle(i)='SUM' END DO CALL mp_reduce (ng, model, NstateVars+1, DotProd(0:), & & op_handle(0:)) END IF RETURN END SUBROUTINE state_dotprod END MODULE state_dotprod_mod