
Creating and Evaluating Surrogate Models

with Dakota and Surfpack

Dakota Development Team

September 8, 2015

This note offers a brief summary of ways to build and evaluate a Gaussian process surrogate model with
both Dakota and Surfpack, including integrating the surrogate evaluation into another application via a C
API. The discussion and examples here apply not only to Gaussian process models, but to the following
Dakota global surrogate types, all provided by the Surfpack sub-package:

• gaussian process surfpack (kriging surfpack)

• mars

• moving least squares

• neural network

• radial basis

• polynomial

The Dakota-only approaches described will also work for other Dakota surrogate models, but the Surfpack-
specific approaches will not. All examples here use a two variable form of the textbook example function
provided with Dakota, so are creating a surrogate model for the textbook function f(x1, x2).

Requirements: The Dakota option to save a Surfpack model file and some of the standalone Surfpack
capabilities require Dakota 5.4 or later. Saving (from Dakota or Surfpack) and later loading (and sub-
sequently evaluating) surrogate models with the Surfpack executable require the Surfpack standalone and
Boost serialization options to be enabled at compile time. Building and evaluating surrogate models directly
in Dakota has no special requirements.

The example described here can be found in dakota/examples/eval surrogate. It contains the following
input files:

build_points.dat Training data used to build the surrogate model
eval_points.dat Points at which to query the surrogate model
dakota_surrogate.in Dakota input to build/save/evaluate a surrogate
sp_build_surrogate.spk Surfpack commands to build/save a surrogate
sp_eval_surrogate.spk Surfpack commands to load/evaluate a surrogate

And the following example output files:

dak_gp_model.textbook.sps Surfpack model file generated by Dakota
dak_surrogate_evals.dat Dakota-generated evals of the surrogate model
sp_gp_model.textbook.sps Surfpack model file generated by Surfpack
sp_surrogate_evals.dat Surfpack-generated evals of the surrogate model

1

1 Building a Surrogate Model

1.1 Using Dakota

The examples B1 and B2 presented in this section demonstrate two ways to build a surrogate model, solely
using Dakota. Later, examples E1 and E2 demonstrate evaluating the previously built models using Dakota.
The Dakota build and evaluation examples are all based on running dakota -input dakota surrogate.in.
This input file is shown here.

Dakota input file based on dakota/test/dakota_textbook_lhs_approx.in
Build and evaluate a surrogate at a user-specified set of points

Top-level controls
environment
method_pointer = ’EvalSurrogate’
tabular_data
tabular_data_file = ’dak_surrogate_evals.dat’
custom_annotated header eval_id

Method to perform evaluations of the surrogate model
method
id_method = ’EvalSurrogate’
model_pointer = ’SurrogateModel’

Eval Option E1: Evaluate the surrogate model at 6 user-specified points
list_parameter_study
list_of_points
0.90 1.00
0.95 1.00
1.00 1.00
1.00 0.93
1.00 0.98
1.00 1.01

-- OR: Read the list of points from a file --
#import_points_file = ’eval_points.dat’
freeform

Eval Option E2: Perform Monte Carlo sampling on the surrogate model
#sampling
samples = 100 seed = 5
sample_type lhs

Surrogate model specification
model
id_model = ’SurrogateModel’
surrogate global

2

dace_method_pointer = ’DesignMethod’
gaussian_process surfpack

Build Data Option B2
Use this method with samples = 0 to build from a samples file
#import_points_file = ’build_points.dat’
freeform

Save the model to a Surfpack model file for later evaluation in Surfpack
Model Save option S1
export_model
filename_prefix = ’dak_gp_model’
formats
text_archive

variables,
uniform_uncertain = 2
lower_bounds = 0.9 0.9
upper_bounds = 1.1 1.1
descriptors = ’x1’ ’x2’

responses
response_functions = 1
descriptors ’textbook’

no_gradients
no_hessians

Build Data Option B1
Method to generate a design to build the surrogate
method
id_method = ’DesignMethod’
model_pointer = ’SimulationModel’
sampling
seed = 50
sample_type lhs

Build Data Option B1
samples = 10

Build Data Option B2
#samples = 0

The true simulation model to evaluate to build the surrogate model
model

3

id_model = ’SimulationModel’
single
interface_pointer = ’SimulationInterface’

interface,
id_interface = ’SimulationInterface’
fork
analysis_driver = ’text_book’

analysis_driver = ’rosenbrock’
analysis_driver = ’herbie’

B1: Dakota-generated points design

Build data option B1 uses the LHS method in Dakota to generate the x1, x2 points at which to build
the surrogate model. Dakota will generate 10 points at which to build the surrogate model and run the
simulation interface at each point to get the response function value. It will then construct the surrogate
model and write it to a Surfpack formatted model file dak gp model.textbook.sps.

B2: User-provided points file

With build data option B2, Dakota accepts a user-provided data file (here build points.dat) in freeform
data format (whitespace separated data with rows containing [x1, x2, function]). The surrogate model is con-
structed from these data, and again written to a Surfpack formatted model file dak gp model.textbook.sps.

Contents of the build data file build points.dat:

1.0294891612e+00 9.5843978608e-01 3.7396199783e-06
1.0569654527e+00 9.4991259535e-01 1.6824249658e-05
1.0072406749e+00 9.9501931870e-01 3.3640259779e-09
1.0810233015e+00 1.0553102643e+00 5.2455135591e-05
1.0192158401e+00 1.0250915474e+00 5.3272267830e-07
9.0729758306e-01 1.0945758444e+00 1.5385803120e-04
9.8752353230e-01 9.8087858825e-01 1.5791485252e-07
9.5516488408e-01 1.0348640423e+00 5.5182980289e-06
9.3066849028e-01 9.2677547445e-01 5.1855119335e-05
9.6964108621e-01 1.0018724977e+00 8.4947617106e-07

Dakota also supports an annotated input data file format with a header row of labels and a leading
column with point numbers. For this case the number of DesignMethod samples = 0 in the Dakota input
file, indicating that Dakota should not generate any additional DOE points beyond those provided in the
user data file.

1.2 Using the Surfpack Executable

To build the same surrogate model using the standalone Surfpack executable surfpack, use the Surfpack
instruction file sp build surrogate.spk, together with the data file build points.dat:

4

Load[name = textbook_build, file = ’build_points.dat’,
n_predictors= 2, n_responses = 1]

CreateSurface[name = textbook_gp, data = textbook_build, type = kriging]

Save[surface = textbook_gp, file = ’sp_gp_model.textbook.sps’]

To build, run surfpack sp build surrogate.spk, which will write the file sp gp model.textbook.sps.
In this example the Surfpack-generated GP model will differ slightly from that generated by Dakota. This
is being investigated.

2 Evaluating a Surrogate Model

This section discusses evaluating a surrogate model either in Dakota directly or in Surfpack after previously
saving in Dakota or Surfpack.

2.1 Using Dakota

The examples in this section use the Dakota input file dakota surrogate.in provided above. Dakota can
use a constructed surrogate model in any of its iterative methods, for example to perform optimization on the
surrogate model to find a best design. The simplest methods are to evaluate the surrogate at a user-specified
set of points and to randomly sample the surrogate with a Monte Carlo method. The Dakota input file
shown above demonstrates both.

To evaluate the surrogate model repeatedly at different sets of points without rerunning the expensive
simulation, change the evaluation method specification (E1 or E2) and use Dakota’s restart facility, e.g.,
dakota -input dakota surrogate.in -read restart dakota.rst

E1: User-provided list of points

The first example evaluates the surrogate model at the list of points provided in the Dakota input file.
Dakota writes the surrogate evaluations to a file dak surrogate evals.dat:

%eval_id x1 x2 textbook
1 0.9 1 5.695149128e-05
2 0.95 1 9.909938326e-06
3 1 1 -1.681528987e-06
4 1 0.93 3.257983696e-07
5 1 0.98 -2.025243345e-07
6 1 1.01 -3.01510746e-06

E2: Dakota-generated points design

In this example, Dakota generates a 100 sample LHS design and evaluates the surrogate model at the
generated points. Dakota writes the surrogate evaluations to a file dak surrogate evals.dat:

5

%eval_id x1 x2 textbook
1 1.035667472 0.9359510107 2.782730535e-06
2 0.9733842609 0.9604024011 5.039401052e-06
3 1.065423859 1.092537917 8.668835233e-05
4 0.9985319699 1.007958203 -2.912209131e-06
5 0.900985511 0.9988335608 5.608757991e-05

...
100 1.132894095 1.032154224 0.0001276646855

2.2 Using the Surfpack Executable

This example uses Surfpack to evaluate a saved surrogate at user provided points. Surfpack can also generate
simple designs at which to evaluate the surrogate using the CreateSample command. The commands for
evaluation are in sp eval surrogate.spk:

Load[name = eval_points, file = ’eval_points.dat’,
n_predictors = 2, n_responses = 0]

Load[name = textbook_gp, file = ’sp_gp_model.textbook.sps’]

Evaluate[surface = textbook_gp, data = eval_points]
Save[data = eval_points, file = ’sp_surrogate_evals.dat’]

Running surfpack sp eval surrogate.spk loads the surface from the file sp gp model.sps, loads a set of
evaluation points from eval points.dat:

0.90 1.00
0.95 1.00
1.00 1.00
1.00 0.93
1.00 0.98
1.00 1.01

and evaluates the model at them, writing sp surrogate evals.dat:

9.000000e-01 1.000000e+00 3.324085e-05
9.500000e-01 1.000000e+00 6.390078e-06
1.000000e+00 1.000000e+00 -1.007914e-06
1.000000e+00 9.300000e-01 2.761034e-05
1.000000e+00 9.800000e-01 -2.456697e-07
1.000000e+00 1.010000e+00 -2.285316e-06

The Surfpack phases for building and evaluating a surrogate model may be combined into a single
Surfpack command file if desired.

2.3 Using Surfpack from a C Program

While the C++ interface to Surfpack offers richer functionality, a limited C interface is provided to load and
evaluate a previously saved surrogate model from a C program.

6

Requirements: Linking to surfpack from C requires inclusion of surfpack c interface.h (which docu-
ments the API) and linking against (1) the surfpack libraries surfpack, surfpack fortran, (2) TPLs directly
used by surfpack ncsuopt, conmin, and (3) system libraries boost serialization, lapack, blas, and the
standard C++ libraries. The non-system dependencies are included in binary distributions of Surfpack and
Dakota in include/ or lib/.

Example: The source distribution example in surfpack/Examples/CInterface demonstrates loading
and evaluating a surfpack model from C. A representative CMakeLists.txt and eval model.c are included.
This example can also be obtained directly from
https://software.sandia.gov/trac/surfpack/browser/trunk/examples/CInterface, should a source distribution
not be available.

7

