Difference between revisions of "User:WikiSysop"

From CSDMS
(Undo revision 47375 by WikiSysop (talk))
Line 1: Line 1:
 
{{Signup information member
 
{{Signup information member
|First name member=Albert
+
|First name member=Albert  
 
|Last name member=Kettner
 
|Last name member=Kettner
 
|Institute member=University of Colorado
 
|Institute member=University of Colorado

Revision as of 14:32, 19 December 2012




Albert Kettner, website username login: WikiSysop

Upload photo
Home.png
University of Colorado
INSTAAR / CSDMS-IF
Campus Box 450
(Or to visit 4001 Discovery drive)
Boulder, Colorado
80309-0450
United States
Phone.png
(Office)+1 (303) 735-5486
(Fax)+1 (303) 492-6388
Mail.png
Kettner@colorado.edu
World.png
http://instaar.colorado.edu/people/albert-j-kettner/

Loading map...

Member of the following CSDMS groups

  • Terrestrial Working Group
  • Coastal Working Group
  • Education and Knowledge Transfer (EKT) Working Group
  • Cyberinformatics and Numerics Working Group
  • Hydrology Focus Research Group
  • Carbonate Focus Research Group"Carbonate Focus Research Group" is not in the list (Terrestrial Working Group, Coastal Working Group, Marine Working Group, Education and Knowledge Transfer (EKT) Working Group, Cyberinformatics and Numerics Working Group, Hydrology Focus Research Group, Carbonates and Biogenics Focus Research Group, Chesapeake Focus Research Group, Critical Zone Focus Research Group, Human Dimensions Focus Research Group, ...) of allowed values for the "Working group member" property.

Signed up for the mailing list:

CSDMS-related interest

I'm part of the CSDMS Integration Facility

List of models that do not hand out the source code


ProgramDescriptionDeveloperStatus
1D Hillslope MCMC Monte Carlo chain of 1D non-linear diffusion hillslope model to find most likely boundary conditions Hurst, Martin Green1.png IRF bw.png
1D Hillslope MCMC , Red1.png
1D Hillslope MCMC , Red1.png
1D Hillslope MCMC , Red1.png
1D Particle-Based Hillslope Evolution Model 1D probabilistic, particle-based model of hillslope evolution for studying hillslope equilibration and response to perturbations. Calvert, Jacob Green1.png IRF bw.png
1D Particle-Based Hillslope Evolution Model , Red1.png
1D Particle-Based Hillslope Evolution Model , Red1.png
1D Particle-Based Hillslope Evolution Model , Red1.png
1D Particle-Based Hillslope Evolution Model , Red1.png
1DBreachingTurbidityCurrent 1D Breaching Turbidity current model for generating continuous turbidity currents Eke, Esther Green1.png IRF bw.png
1DBreachingTurbidityCurrent , Red1.png
1DBreachingTurbidityCurrent , Red1.png
1DBreachingTurbidityCurrent , Red1.png
2DFLOWVEL Tidal & wind-driven coastal circulation routine Slingerland, Rudy Green1.png IRF bw.png
2DFLOWVEL , Red1.png
2DFLOWVEL , Red1.png
2DFLOWVEL , Red1.png
ACADIA A finite element formulation of the non-conservative form of the vertically integrated advection/diffusion/reaction (ADR) equation Gentleman, Wendy Green1.png* IRF bw.png
ACADIA , Red1.png
ACADIA , Red1.png
ACADIA , Red1.png
ADCIRC Coastal Circulation and Storm Surge Model Luettich, Rick Green1.png* IRF bw.png
ADCIRC , Red1.png
ADCIRC , Red1.png
ADCIRC , Red1.png
ADI-2D Read note in extended description. Advection Diffusion Implicit (ADI) method for solving 2D diffusion equation Pelletier, Jon Green1.png IRF bw.png
ADI-2D , Red1.png
ADI-2D , Red1.png
ADI-2D , Red1.png
ALFRESCO Alaskan Frame‐based Ecosystem Code Bennett, Alec Green1.png* IRF bw.png
ALFRESCO , Red1.png
ALFRESCO , Red1.png
ALFRESCO , Red1.png
Acronym1 E-book: program for computing bedload transport in gravel rivers. Parker, Gary Green1.png IRF compatible.png
Acronym1 , Red1.png
Acronym1 , Red1.png
Acronym1 , Red1.png
Acronym1 , Red1.png
Acronym1D E-book: program for computing bedload transport in gravel rivers over time. Parker, Gary Green1.png IRF compatible.png
Acronym1D , Red1.png
Acronym1D , Red1.png
Acronym1D , Red1.png
Acronym1D , Red1.png
Acronym1R E-book: program for computing bedload transport in gravel rivers with a Manning-Strickler relation for flow resistance. Parker, Gary Green1.png IRF compatible.png
Acronym1R , Red1.png
Acronym1R , Red1.png
Acronym1R , Red1.png
Acronym1R , Red1.png
AeoLiS AeoLiS is a process-based model for simulating aeolian sediment transport in situations where supply-limiting factors are important, like in coastal environments. Hoonhout, Bas Green1.png* IRF compatible.png
AeoLiS , Red1.png
AeoLiS , Red1.png
AeoLiS , Red1.png
AgDegBW E-book: Calculator for aggradation and degradation of a river reach using a backwater formulation. Parker, Gary Green1.png IRF compatible.png
AgDegBW , Red1.png
AgDegBW , Red1.png
AgDegBW , Red1.png
AgDegBW , Red1.png
AgDegNormGravMixPW E-book: calculator for aggradation and degradation of sediment mixtures in gravel-bed streams Parker, Gary Green1.png IRF compatible.png
AgDegNormGravMixPW , Red1.png
AgDegNormGravMixPW , Red1.png
AgDegNormGravMixPW , Red1.png
AgDegNormGravMixPW , Red1.png
AgDegNormGravMixSubPW E-book: calculator for evolution of upward-concave bed profiles in rivers carrying sediment mixtures in subsiding basins. Parker, Gary Green1.png IRF compatible.png
AgDegNormGravMixSubPW , Red1.png
AgDegNormGravMixSubPW , Red1.png
AgDegNormGravMixSubPW , Red1.png
AgDegNormGravMixSubPW , Red1.png
AgDegNormal E-book: illustration of calculation of aggradation and degradation of a river reach using the normal flow approximation. Parker, Gary Green1.png IRF compatible.png
AgDegNormal , Red1.png
AgDegNormal , Red1.png
AgDegNormal , Red1.png
AgDegNormal , Red1.png
AgDegNormalFault E-book: Illustration of calculation of aggradation and degradation of a river reach using the normal flow approximation; with an extension for calculation of the response to a sudden fault along the reach. Parker, Gary Green1.png IRF compatible.png
AgDegNormalFault , Red1.png
AgDegNormalFault , Red1.png
AgDegNormalFault , Red1.png
AgDegNormalFault , Red1.png
AgDegNormalGravMixHyd E-book: A module that calculates the evolution of a gravel bed river under an imposed cycled hydrograph. Parker, Gary Green1.png IRF compatible.png
AgDegNormalGravMixHyd , Red1.png
AgDegNormalGravMixHyd , Red1.png
AgDegNormalGravMixHyd , Red1.png
AgDegNormalGravMixHyd , Red1.png
AgDegNormalSub E-book: Program to calculate the evolution of upward-concave bed profiles in rivers carrying uniform sediment in subsiding basins. Parker, Gary Green1.png IRF compatible.png
AgDegNormalSub , Red1.png
AgDegNormalSub , Red1.png
AgDegNormalSub , Red1.png
AgDegNormalSub , Red1.png
AlluvStrat Rules-based model to generate a 2-dimensional cross section of alluvial stratigraphy based on fluvial processes Wickert, Andy Red1.png IRF bw.png
AlluvStrat , Red1.png
AlluvStrat , Red1.png
AlluvStrat , Red1.png
AlluvStrat , Red1.png
Alpine3D 3D model of alpine surface processes Bavay, Mathias Green1.png* IRF bw.png
Alpine3D , Red1.png
Alpine3D , Red1.png
Alpine3D , Red1.png
Anuga ANUGA is a hydrodynamic modelling tool that allows users to model realistic flow problems in complex 2D geometries. Habili, Nariman Green1.png* IRF bw.png
Anuga , Red1.png
Anuga , Red1.png
Anuga , Red1.png
AnugaSed Add-on package to ANUGA with modules for sediment transport and vegetation drag Perignon, Mariela Green1.png* IRF bw.png
AnugaSed , Red1.png
AnugaSed , Red1.png
AnugaSed , Red1.png
AnugaSed , Red1.png
ApsimX The Agricultural Production Systems sIMulator (APSIM) Holzworth, Dean Green1.png* IRF bw.png
ApsimX , Red1.png
ApsimX , Red1.png
ApsimX , Red1.png
AquaTellUs Fluvial-dominated delta sedimentation model Overeem, Irina Green1.png IRF bw.png
AquaTellUs , Red1.png
AquaTellUs , Red1.png
AquaTellUs , Red1.png
Area-Slope Equation Calculator Pixel scale Area-Slope equation calculator Cohen, Sagy Green1.png IRF bw.png
Area-Slope Equation Calculator , Red1.png
Area-Slope Equation Calculator , Red1.png
Area-Slope Equation Calculator , Red1.png
Auto marsh Cellula automata model for salt marsh evolution with variable soil resistance under wind waves attack Leonardi, Nicoletta Green1.png* IRF bw.png
Auto marsh , Red1.png
Auto marsh , Red1.png
Auto marsh , Red1.png
Avulsion Stream avulsion model Hutton, Eric Green1.png* IRF compatible.png
Avulsion , Red1.png
Avulsion , Red1.png
Avulsion , Red1.png
BEDLOAD Bedload transport model Slingerland, Rudy Green1.png IRF bw.png
BEDLOAD , Red1.png
BEDLOAD , Red1.png
BEDLOAD , Red1.png
BITM Barrier Island Translation model Masetti, Riccardo Red1.png IRF bw.png
BITM , Red1.png
BITM , Red1.png
BITM , Red1.png
BITM , Red1.png
BOM Bergen Ocean Model Berntsen, Jarle Green1.png* IRF bw.png
BOM , Red1.png
BOM , Red1.png
BOM , Red1.png
BRaKE Computes evolution of a bedrock river longitudinal profile in the presence of large, hillslope-derived blocks. Shobe, Charles Red1.png IRF bw.png
BRaKE , Red1.png
BRaKE , Red1.png
BRaKE , Red1.png
BTLESS Regional Ecological Model for Coastal Wetlands Reyes, Enrique Red1.png IRF bw.png
BTLESS , Red1.png
BTLESS , Red1.png
BTLESS , Red1.png
BTLESS , Red1.png
BackwaterCalculator E-book: program for backwater calculations in open channel flow Parker, Gary Green1.png IRF compatible.png
BackwaterCalculator , Red1.png
BackwaterCalculator , Red1.png
BackwaterCalculator , Red1.png
BackwaterCalculator , Red1.png
BackwaterWrightParker E-book: calculator for backwater curves in sand-bed streams, including the effects of both skin friction and form drag due to skin friction Parker, Gary Green1.png IRF compatible.png
BackwaterWrightParker , Red1.png
BackwaterWrightParker , Red1.png
BackwaterWrightParker , Red1.png
BackwaterWrightParker , Red1.png
Badlands Basin and landscape dynamics Salles, Tristan Green1.png* IRF bw.png
Badlands , Red1.png
Badlands , Red1.png
Badlands , Red1.png
Barrier Inlet Environment (BRIE) Model Coastal barrier island transgression model Nienhuis, Jaap Green1.png* IRF bw.png
Barrier Inlet Environment (BRIE) Model , Red1.png
Barrier Inlet Environment (BRIE) Model , Red1.png
Barrier Inlet Environment (BRIE) Model , Red1.png
BatTri A graphical Matlab interface to the C language 2-D quality finite element grid generator Triangle. Shewchuk, Jonathan Green1.png* IRF bw.png
BatTri , Red1.png
BatTri , Red1.png
BatTri , Red1.png
Bedrock Erosion Model Read note in extended description. Knickpoint propagation in the 2D sediment-flux-driven bedrock erosion model Pelletier, Jon Green1.png IRF bw.png
Bedrock Erosion Model , Red1.png
Bedrock Erosion Model , Red1.png
Bedrock Erosion Model , Red1.png
Bedrock Fault Scarp This is a two-dimensional numerical model that computes the topographic evolution of the facet slope in the footwall of an active normal fault. Tucker, Greg Green1.png IRF compatible.png
Bedrock Fault Scarp , Red1.png
Bedrock Fault Scarp , Red1.png
Bedrock Fault Scarp , Red1.png
BedrockAlluvialTransition E-book: calculator for aggradation and degradation with a migrating bedrock-alluvial transition at the upstream end. Parker, Gary Green1.png IRF compatible.png
BedrockAlluvialTransition , Red1.png
BedrockAlluvialTransition , Red1.png
BedrockAlluvialTransition , Red1.png
BedrockAlluvialTransition , Red1.png
Bifurcation Flow-partitioning and avulsion in a river delta bifurcation Salter, Gerard Green1.png IRF compatible.png
Bifurcation , Red1.png
Bifurcation , Red1.png
Bifurcation , Red1.png
Bing Submarine debris flows Hutton, Eric Green1.png* IRF bw.png
Bing , Red1.png
Bing , Red1.png
Bing , Red1.png
Bio Biogenic mixing of marine sediments Hutton, Eric Green1.png* IRF bw.png
Bio , Red1.png
Bio , Red1.png
Bio , Red1.png
BlockLab BlockLab computes landscape evolution in the presence of large blocks of rock on hillslopes and in channels. Shobe, Charles Green1.png* IRF bw.png
BlockLab , Red1.png
BlockLab , Red1.png
BlockLab , Red1.png
CAESAR Lisflood Caesar Lisflood is a morphodynamic / Landscape evolution model that simulates erosion and deposition in river catchments and reaches over time scales from hours to 1000's of years. Coulthard, Tom Green1.png*
CAESAR Lisflood , Red1.png
CAESAR Lisflood , Red1.png
CAESAR Lisflood , Red1.png
CAESAR Lisflood , Red1.png
CAESAR Lisflood , Red1.png
CAESAR Lisflood , Red1.png
CAESAR Lisflood , Red1.png
CAM-CARMA A GCM for Titan that incorporates aerosols Larson, Eric Green1.png* IRF bw.png
CAM-CARMA , Red1.png
CAM-CARMA , Red1.png
CAM-CARMA , Red1.png
CASCADE Large scale SPM based on irregular spatial discretization Braun, Jean Red1.png IRF bw.png
CASCADE , Red1.png
CASCADE , Red1.png
CASCADE , Red1.png
CASCADE , Red1.png
CBIRM Coupled Barrier Island-Resort Model McNamara, Dylan Red1.png IRF bw.png
CBIRM , Red1.png
CBIRM , Red1.png
CBIRM , Red1.png
CBIRM , Red1.png
CBOFS2 The Second Generation Chesapeake Bay Operational Forecast System (CBOFS2): A ROMS‐Based Modeling System Lanerolle, Lyon Green1.png* IRF compatible.png
CBOFS2 , Red1.png
CBOFS2 , Red1.png
CBOFS2 , Red1.png
CELLS Landscape simulation model Sklar, Fred Red1.png IRF bw.png
CELLS , Red1.png
CELLS , Red1.png
CELLS , Red1.png
CELLS , Red1.png
CEM Coastline evolution model Murray, A. Brad Green1.png IRF compatible.png
CEM , Red1.png
CEM , Red1.png
CEM , Red1.png
CHILD Landscape Evolution Model Tucker, Greg Green1.png* IRF compatible.png
CHILD , Red1.png
CHILD , Red1.png
CHILD , Red1.png
CICE Los Alamos sea ice model Hunke, Elizabeth Green1.png* IRF bw.png
CICE , Red1.png
CICE , Red1.png
CICE , Red1.png
CLUMondo The CLUMondo model is a spatially explicit and dynamics land system change model Verburg, Peter Green1.png* IRF bw.png
CLUMondo , Red1.png
CLUMondo , Red1.png
CLUMondo , Red1.png
CMFT Coupled salt Marsh - tidal Flat Transect model Mariotti, Giulio Green1.png IRF bw.png
CMFT , Red1.png
CMFT , Red1.png
CMFT , Red1.png
CMIP Data component provides monthly mean temperature for Permafrost Region 1902-2100 Overeem, Irina Green1.png* IRF bw.png
CMIP , Red1.png
CMIP , Red1.png
CMIP , Red1.png
CREST The Coupled Routing and Excess STorage (CREST) model is a distributed hydrologic model developed to simulate the spatial and temporal variation of atmospheric, land surface, and subsurface water fluxes and storages by cell-to-cell simulation. Wang, Jiahu Green1.png* IRF bw.png
CREST , Red1.png
CREST , Red1.png
CREST , Red1.png
CSt ASMITA Aggregate scale morphodynamic model of integrated coastal systems Niedoroda, Alan Red1.png IRF bw.png
CSt ASMITA , Red1.png
CSt ASMITA , Red1.png
CSt ASMITA , Red1.png
CSt ASMITA , Red1.png
CVFEM Rift2D multi-physics numerical model that simulates rock deformation, fluid flow, solute transport and heat transfer in response to ice sheet loading of multiple cycles Zhang, Yipeng Green1.png IRF bw.png
CVFEM Rift2D , Red1.png
CVFEM Rift2D , Red1.png
CVFEM Rift2D , Red1.png
CVFEM Rift2D , Red1.png
CVPM Multidimensional heat-transfer modeling system for permafrost with advanced unfrozen water physics Clow, Gary Green1.png
CVPM , Red1.png
CVPM , Red1.png
CVPM , Red1.png
Caesar Cellular landscape evolution model Coulthard, Tom Green1.png* IRF bw.png
Caesar , Red1.png
Caesar , Red1.png
Caesar , Red1.png
CarboCAT Carbonate cellular automatacyclicity Burgess, Peter Green1.png IRF bw.png
CarboCAT , Red1.png
CarboCAT , Red1.png
CarboCAT , Red1.png
CarboLOT Population-ecology based model of shallow-ocean benthic carbonate accumulation Jenkins, Chris Red1.png IRF bw.png
CarboLOT , Red1.png
CarboLOT , Red1.png
CarboLOT , Red1.png
CarboLOT , Red1.png
CellularFanDelta Coarse-grained delta dynamics and stratigraphy Wolinsky, Matthew Red1.png IRF bw.png
CellularFanDelta , Red1.png
CellularFanDelta , Red1.png
CellularFanDelta , Red1.png
CellularFanDelta , Red1.png
Channel-Oscillation Read note in extended description. Simulates Oscillations in arid alluvial channels Pelletier, Jon Green1.png IRF bw.png
Channel-Oscillation , Red1.png
Channel-Oscillation , Red1.png
Channel-Oscillation , Red1.png
ChannelProfiler The ChannelProfiler extracts and plots channel networks from a landlab grid. Barnhart, Katy Green1.png*
ChannelProfiler , Red1.png
ChannelProfiler , Red1.png
ChannelProfiler , Red1.png
ChannelProfiler , Red1.png
ChannelProfiler , Red1.png
ChannelProfiler , Red1.png
ChannelProfiler , Red1.png
ChesROMS Chesapeake Bay ROMS Community Model (ChesROMS), special case of ROMS Long, Wen Green1.png* IRF compatible.png
ChesROMS , Red1.png
ChesROMS , Red1.png
ChesROMS , Red1.png
Chi analysis tools Tool for examining channel profiles in chi-elevation space using the integral method of channel analysis Mudd, Simon Green1.png IRF bw.png
Chi analysis tools , Red1.png
Chi analysis tools , Red1.png
Chi analysis tools , Red1.png
Chi analysis tools , Red1.png
ChiFinder Calculate Chi Indices Hobley, Daniel Green1.png*
ChiFinder , Red1.png
ChiFinder , Red1.png
ChiFinder , Red1.png
ChiFinder , Red1.png
ChiFinder , Red1.png
ChiFinder , Red1.png
ChiFinder , Red1.png
ChiFinder , Red1.png
Cliffs Numerical model to compute tsunami propagation and runup on land in the shallow-water approximation Tolkova, Elena Green1.png* IRF bw.png
Cliffs , Red1.png
Cliffs , Red1.png
Cliffs , Red1.png
CoastMorpho2D Long term 2D morphodynamics of coastal areas Mariotti, Giulio Green1.png*
CoastMorpho2D , Red1.png
CoastMorpho2D , Red1.png
CoastMorpho2D , Red1.png
CoastMorpho2D , Red1.png
Coastal Dune Model Evolution of Coastal Foredunes Durán Vinent, Orencio Green1.png IRF bw.png
Coastal Dune Model , Red1.png
Coastal Dune Model , Red1.png
Coastal Dune Model , Red1.png
Compact Sediment compaction Hutton, Eric Green1.png* IRF bw.png
Compact , Red1.png
Compact , Red1.png
Compact , Red1.png
CosmoLand 2-D model tracking cosmogenic nuclides and mixing in landslide terrain Yanites, Brian Green1.png IRF bw.png
CosmoLand , Red1.png
CosmoLand , Red1.png
CosmoLand , Red1.png
Coupled1D Read note in extended description. Coupled 1D bedrock-alluvial channel evolution Pelletier, Jon Green1.png IRF bw.png
Coupled1D , Red1.png
Coupled1D , Red1.png
Coupled1D , Red1.png
CrevasseFlow The module calculates crevasse splay morphology and water discharge outflow of a crevasse splay. Chen, Yunzhen Green1.png IRF bw.png
CrevasseFlow , Red1.png
CrevasseFlow , Red1.png
CrevasseFlow , Red1.png
CrevasseFlow , Red1.png
Cross Shore Sediment Flux Cross-Shore Sediment Flux Equations Ortiz, Alejandra Green1.png IRF bw.png
Cross Shore Sediment Flux , Red1.png
Cross Shore Sediment Flux , Red1.png
Cross Shore Sediment Flux , Red1.png
CruAKTemp cruAKtemp is a data component to access a subsample of CRU NCEP data temperature for Alaska Stewart, Scott Red1.png IRF compatible.png
CruAKTemp , Red1.png
CruAKTemp , Red1.png
CruAKTemp , Red1.png
CruAKTemp , Red1.png
CryoGrid3 CryoGrid 3 is a simple land-surface scheme dedicated to modeling of ground temperatures in permafrost environments. Westermann, Sebastian Green1.png* Not IRF.png
CryoGrid3 , Red1.png
CryoGrid3 , Red1.png
CryoGrid3 , Red1.png
Cyclopath A 2D/3D model of carbonate cyclicity Burgess, Peter Green1.png IRF bw.png
Cyclopath , Red1.png
Cyclopath , Red1.png
Cyclopath , Red1.png
D'Alpaos model Tidal network and marsh model D'Alpaos, Andrea Red1.png IRF bw.png
D'Alpaos model , Red1.png
D'Alpaos model , Red1.png
D'Alpaos model , Red1.png
D'Alpaos model , Red1.png
DECAL Aeolian dune landscape model Baas, Andreas Red1.png IRF bw.png
DECAL , Red1.png
DECAL , Red1.png
DECAL , Red1.png
DECAL , Red1.png
DELTA Simulates circulation and sedimentation in a 2D turbulent plane jet and resulting delta growth Slingerland, Rudy Green1.png IRF bw.png
DELTA , Red1.png
DELTA , Red1.png
DELTA , Red1.png
DHSVM DHSVM is a distributed hydrologic model that explicitly represents the effects of topography and vegetation on water fluxes through the landscape. DHSVM, Administrator Green1.png* IRF bw.png
DHSVM , Red1.png
DHSVM , Red1.png
DHSVM , Red1.png
DLBRM Distributed Large Basin Runoff Model Croley, Thomas Green1.png* IRF bw.png
DLBRM , Red1.png
DLBRM , Red1.png
DLBRM , Red1.png
DR3M Distributed Routing Rainfall-Runoff Model--version II U.S., Geological Survey Green1.png* IRF bw.png
DR3M , Red1.png
DR3M , Red1.png
DR3M , Red1.png
DROG3D 3-DIMENSIONAL DROGUE TRACKING ALGORITHM FOR A FINITE ELEMENT GRID WITH LINEAR FINITE ELEMENTS Blanton, Brian Green1.png* IRF bw.png
DROG3D , Red1.png
DROG3D , Red1.png
DROG3D , Red1.png
Dakotathon A Python API for the Dakota iterative systems analysis toolkit. Piper, Mark Green1.png* IRF compatible.png
Dakotathon , Red1.png
Dakotathon , Red1.png
Dakotathon , Red1.png
Dakotathon , Red1.png
Delft3D 3D hydrodynamic and sediment transport model Delft3D, Support Green1.png* IRF bw.png
Delft3D , Red1.png
Delft3D , Red1.png
Delft3D , Red1.png
DeltaBW E-book: Calculator for evolution of long profile of a river ending in a 1D migrating delta, using a backwater formulation. Parker, Gary Green1.png IRF compatible.png
DeltaBW , Red1.png
DeltaBW , Red1.png
DeltaBW , Red1.png
DeltaBW , Red1.png
DeltaClassification Geometry classification of delta islands Perignon, Mariela Green1.png Not IRF.png
DeltaClassification , Red1.png
DeltaClassification , Red1.png
DeltaClassification , Red1.png
DeltaClassification , Red1.png
DeltaNorm E-book: Calculator for evolution of long profile of a river ending in a 1D migrating delta, using the normal flow approximation. Parker, Gary Green1.png IRF compatible.png
DeltaNorm , Red1.png
DeltaNorm , Red1.png
DeltaNorm , Red1.png
DeltaNorm , Red1.png
DeltaRCM River delta formation and evolution model with channel dynamics Liang, Man Green1.png IRF compatible.png
DeltaRCM Vegetation Delta-building model DeltaRCM expanded to include vegetation Lauzon, Rebecca Green1.png IRF bw.png
DeltaRCM Vegetation , Red1.png
DeltaRCM Vegetation , Red1.png
DeltaRCM Vegetation , Red1.png
DeltaRCM , Red1.png
DeltaRCM , Red1.png
DeltaRCM , Red1.png
DeltaSIM Process-response model simulating the evolution and stratigraphy of fluvial dominated deltaic systems Hoogendoorn, Bob Green1.png IRF bw.png
DeltaSIM , Red1.png
DeltaSIM , Red1.png
DeltaSIM , Red1.png
Demeter Demeter - A Land Use and Land Cover Change Disaggregation Model Vernon, Chris Green1.png* IRF bw.png
Demeter , Red1.png
Demeter , Red1.png
Demeter , Red1.png
DepDistTotLoadCalc E-book: Illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river. Parker, Gary Green1.png IRF compatible.png
DepDistTotLoadCalc , Red1.png
DepDistTotLoadCalc , Red1.png
DepDistTotLoadCalc , Red1.png
DepDistTotLoadCalc , Red1.png
DepressionFinderAndRouter Find depressions on a topographic surface. Hobley, Dan Green1.png*
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepressionFinderAndRouter , Red1.png
DepthDependentDiffuser Soil depth-dependent linear hillslope diffuser Glade, Rachel Green1.png* IRF compatible.png
DepthDependentDiffuser , Red1.png
DepthDependentDiffuser , Red1.png
DepthDependentDiffuser , Red1.png
DepthDependentDiffuser , Red1.png
DepthDependentTaylorDiffuser This component implements a depth-dependent Taylor series diffusion rule, combining concepts of Ganti et al. (2012) and Johnstone and Hilley (2014). Glade, Rachel Green1.png*
DepthDependentTaylorDiffuser , Red1.png
DepthDependentTaylorDiffuser , Red1.png
DepthDependentTaylorDiffuser , Red1.png
DetachmentLtdErosion Simulate detachment limited sediment transport. Adams, Jordan Green1.png*
DetachmentLtdErosion , Red1.png
DetachmentLtdErosion , Red1.png
DetachmentLtdErosion , Red1.png
DetachmentLtdErosion , Red1.png
Detrital Thermochron Code for estimating long-term exhumation histories and spatial patterns of short-term erosion from the detrital thermochronometric data. Avdeev, Boris Green1.png* IRF bw.png
Detrital Thermochron , Red1.png
Detrital Thermochron , Red1.png
Detrital Thermochron , Red1.png
Diffusion Diffusion of marine sediments due to waves, bioturbation Hutton, Eric Green1.png* IRF bw.png
Diffusion , Red1.png
Diffusion , Red1.png
Diffusion , Red1.png
Dionisos 3D basin-scale stratigraphic model Granjeon, Didier Red1.png IRF bw.png
Dionisos , Red1.png
Dionisos , Red1.png
Dionisos , Red1.png
Dionisos , Red1.png
DrEICH algorithm Algorithm for extracting channel networks from high resolution topographic data Clubb, Fiona Green1.png IRF bw.png
DrEICH algorithm , Red1.png
DrEICH algorithm , Red1.png
DrEICH algorithm , Red1.png
Drainage Density Component for calculating drainage density in Landlab given a channel network Shobe, Charles Green1.png* IRF compatible.png
Drainage Density , Red1.png
Drainage Density , Red1.png
Drainage Density , Red1.png
Drainage Density , Red1.png
DredgeSlotBW E-book: calculator for aggradation and degradation of sediment mixtures in gravel-bed streams subject to cyclic hydrographs. Parker, Gary Green1.png IRF compatible.png
DredgeSlotBW , Red1.png
DredgeSlotBW , Red1.png
DredgeSlotBW , Red1.png
DredgeSlotBW , Red1.png
DynEarthSol3D DynEarthSol3D is a finite element solver that models the momentum balance and the heat transfer of elasto-visco-plastic material in the Lagrangian form. Tan, Eh Green1.png* IRF bw.png
DynEarthSol3D , Red1.png
DynEarthSol3D , Red1.png
DynEarthSol3D , Red1.png
ECSimpleSnow A simple snow model Wang, Kang Green1.png* IRF compatible.png
ECSimpleSnow , Red1.png
ECSimpleSnow , Red1.png
ECSimpleSnow , Red1.png
EF5 Ensemble Framework For Flash Flood Forecasting Flamig, Zac Green1.png* IRF bw.png
EF5 , Red1.png
EF5 , Red1.png
EF5 , Red1.png
ELCIRC Eulerian-Lagrangian CIRCulation Zhang, Yinglong Green1.png* IRF bw.png
ELCIRC , Red1.png
ELCIRC , Red1.png
ELCIRC , Red1.png
ENTRAIN Simulates critical shear stress of median grain sizes Slingerland, Rudy Green1.png IRF bw.png
ENTRAIN , Red1.png
ENTRAIN , Red1.png
ENTRAIN , Red1.png
ENTRAINH Simulates critical shields theta for median grain sizes Slingerland, Rudy Green1.png IRF bw.png
ENTRAINH , Red1.png
ENTRAINH , Red1.png
ENTRAINH , Red1.png
ESCAPE parallel global-scale landscape evolution model Salles, Tristan Green1.png* IRF bw.png
ESCAPE , Red1.png
ESCAPE , Red1.png
ESCAPE , Red1.png
Ecopath with Ecosim Ecopath with Ecosim (EwE) is an ecological modeling software suite for personal computers Christensen, Villy Green1.png* IRF bw.png
Ecopath with Ecosim , Red1.png
Ecopath with Ecosim , Red1.png
Ecopath with Ecosim , Red1.png
Elv-GST Numerical 1D research code Elv applied to gravel-sand transitions Blom, Astrid Green1.png IRF bw.png
Elv-GST , Red1.png
Elv-GST , Red1.png
Elv-GST , Red1.png
Eolian Dune Model Read note in extended description. Werner's model for eolian dune formation and evolution Pelletier, Jon Green1.png IRF bw.png
Eolian Dune Model , Red1.png
Eolian Dune Model , Red1.png
Eolian Dune Model , Red1.png
Erode Fluvial landscape evolution model Peckham, Scott Green1.png IRF compatible.png
Erode , Red1.png
Erode , Red1.png
Erode , Red1.png
Erode-D8-Local Fluvial Landscape Evolution Model Peckham, Scott Red1.png IRF bw.png
Erode-D8-Local , Red1.png
Erode-D8-Local , Red1.png
Erode-D8-Local , Red1.png
Erode-D8-Local , Red1.png
ErosionDeposition Landlab component for fluvial erosion/deposition. Shobe, Charles Green1.png* IRF compatible.png
ErosionDeposition , Red1.png
ErosionDeposition , Red1.png
ErosionDeposition , Red1.png
ErosionDeposition , Red1.png
EstuarineMorphologyEstimator Empirical Assessment Tool for Bathymetry, Flow Velocity and Salinity in Estuaries Based on Tidal Amplitude and Remotely-Sensed Imagery Leuven, Jasper Green1.png* IRF bw.png
EstuarineMorphologyEstimator , Red1.png
EstuarineMorphologyEstimator , Red1.png
EstuarineMorphologyEstimator , Red1.png
ExponentialWeatherer Exponential soil production function in the style of Ahnert (1976) Glade, Rachel Green1.png*
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
ExponentialWeatherer , Red1.png
FACET Floodplain and Channel Evaluation Tool (FACET) Lamont, Samuel Green1.png* IRF bw.png
FACET , Red1.png
FACET , Red1.png
FACET , Red1.png
FACET , Red1.png
FLDTA Simulates flow characteristics based on gradually varied flow equation Slingerland, Rudy Green1.png IRF bw.png
FLDTA , Red1.png
FLDTA , Red1.png
FLDTA , Red1.png
FTCS1D-NonLinear Read note in extended description. Forward Time Centered Space (FTCS) method for 1D nonlinear diffusion equation Pelletier, Jon Green1.png IRF bw.png
FTCS1D-NonLinear , Red1.png
FTCS1D-NonLinear , Red1.png
FTCS1D-NonLinear , Red1.png
FTCS2D Read note in extended description. Forward Time Centered Space (FTCS) method for 2D diffusion equation Pelletier, Jon Green1.png IRF bw.png
FTCS2D , Red1.png
FTCS2D , Red1.png
FTCS2D , Red1.png
FTCS2D-TerraceDiffusion Read note in extended description. Forward Time Centered Space (FTCS) method for 2D Terrace diffusion Pelletier, Jon Green1.png IRF bw.png
FTCS2D-TerraceDiffusion , Red1.png
FTCS2D-TerraceDiffusion , Red1.png
FTCS2D-TerraceDiffusion , Red1.png
FUNDY a 3-D diagnostic model for continental shelf circulation studies Naimie, Christopher Green1.png* IRF bw.png
FUNDY , Red1.png
FUNDY , Red1.png
FUNDY , Red1.png
FUNWAVE Fully Nonlinear Boussinesq Wave Model Kirby, Jim Green1.png* IRF bw.png
FUNWAVE , Red1.png
FUNWAVE , Red1.png
FUNWAVE , Red1.png
FVCOM The Unstructured Grid Finite Volume Coastal Ocean Model Chen, Changsheng Green1.png* IRF bw.png
FVCOM , Red1.png
FVCOM , Red1.png
FVCOM , Red1.png
FVshock Finite Volume two-dimensional shock-capturing model. Canestrelli, Alberto Green1.png IRF bw.png
FVshock , Red1.png
FVshock , Red1.png
FVshock , Red1.png
FallVelocity E-book: Particle fall velocity calculator Parker, Gary Green1.png IRF compatible.png
FallVelocity , Red1.png
FallVelocity , Red1.png
FallVelocity , Red1.png
FallVelocity , Red1.png
FastscapeEroder Compute fluvial erosion using stream power theory (“fastscape” algorithm) Hobley, Daniel Green1.png*
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FastscapeEroder , Red1.png
FillinPitsFlatsDEM Read note in extended description. Filling in pits and flats in a DEM Pelletier, Jon Green1.png IRF bw.png
FillinPitsFlatsDEM , Red1.png
FillinPitsFlatsDEM , Red1.png
FillinPitsFlatsDEM , Red1.png
FineSed3D A turbulence-resolving numerical model for fine sediment transport in bottom boundary layer Cheng, Zhen Green1.png IRF bw.png
FineSed3D , Red1.png
FineSed3D , Red1.png
FineSed3D , Red1.png
FineSed3D , Red1.png
FireGenerator This component generates a random fire event or fire time series from the Weibull statistical distribution. Adams, Jordan Green1.png*
FireGenerator , Red1.png
FireGenerator , Red1.png
FireGenerator , Red1.png
FireGenerator , Red1.png
Flex1D Read note in extended description. Fourier filtering in 1D while solving the flexure equation Pelletier, Jon Green1.png IRF bw.png
Flex1D , Red1.png
Flex1D , Red1.png
Flex1D , Red1.png
Flex2D Read note in extended description. Fourier filtering in 2D while solving the flexure equation Pelletier, Jon Green1.png IRF bw.png
Flex2D , Red1.png
Flex2D , Red1.png
Flex2D , Red1.png
Flex2D-ADI Read note in extended description. Solving the flexure equation applying Advection Diffusion Implicit (ADI) method Pelletier, Jon Green1.png IRF bw.png
Flex2D-ADI , Red1.png
Flex2D-ADI , Red1.png
Flex2D-ADI , Red1.png
Flexure Deform the lithosphere with 1D or 2D flexure. Hutton, Eric Green1.png*
Flexure , Red1.png
Flexure , Red1.png
Flexure , Red1.png
Flexure , Red1.png
FlowAccumulator Component to accumulate flow and calculate drainage area. Barnhart, Katy Green1.png*
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowAccumulator , Red1.png
FlowDirectorD8 Single-path (steepest direction) flow direction with diagonals on rasters. Barnhart, Katy Green1.png*
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorD8 , Red1.png
FlowDirectorDinf Flow direction on a raster grid by the D infinity method. Barnhart, Katy Green1.png*
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorDinf , Red1.png
FlowDirectorMFD Multiple-path flow direction with or without out diagonals. Barnhart, Katy Green1.png*
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorMFD , Red1.png
FlowDirectorSteepest Single-path (steepest direction) flow direction without diagonals. Barnhart, Katy Green1.png*
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FlowDirectorSteepest , Red1.png
FluidMud Wave-phase resolving numerical model for fluid mud transport Hsu, Tian-Jian Red1.png IRF bw.png
FluidMud , Red1.png
FluidMud , Red1.png
FluidMud , Red1.png
FluidMud , Red1.png
Fourier-Bessel-integration Read note in extended description. Numerical integration of Fourier-Bessel terms Pelletier, Jon Green1.png IRF bw.png
Fourier-Bessel-integration , Red1.png
Fourier-Bessel-integration , Red1.png
Fourier-Bessel-integration , Red1.png
FractionalNoises1D Read note in extended description. 1D fractional-noise generation with Fourier-filtering method Pelletier, Jon Green1.png IRF bw.png
FractionalNoises1D , Red1.png
FractionalNoises1D , Red1.png
FractionalNoises1D , Red1.png
FractionalNoises2D Read note in extended description. 2D Gaussian fractional-noise generation with Fourier-filtering method Pelletier, Jon Green1.png IRF bw.png
FractionalNoises2D , Red1.png
FractionalNoises2D , Red1.png
FractionalNoises2D , Red1.png
FractureGridGenerator Create a 2D grid with randomly generated fractures. Tucker, Greg Green1.png*
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
FractureGridGenerator , Red1.png
Frost Model Frost model predicts the likelihood of occurrence of permafrost in the land surface based on the monthly temperature distribution Overeem, Irina Green1.png* IRF compatible.png
Frost Model , Red1.png
Frost Model , Red1.png
Frost Model , Red1.png
Frost Model , Red1.png
FuzzyReef Fuzzy logic model to model microbial reef development Parcell, William Red1.png IRF bw.png
FuzzyReef , Red1.png
FuzzyReef , Red1.png
FuzzyReef , Red1.png
FuzzyReef , Red1.png
FwDET Calculate floodwater depth based on an inundation polygon (e.g. from remote sensing) and a DEM Cohen, Sagy Green1.png IRF compatible.png
FwDET , Red1.png
FwDET , Red1.png
FwDET , Red1.png
GENESIS GENEralized model for SImulating Shoreline change Gravens, Mark Red1.png IRF bw.png
GENESIS , Red1.png
GENESIS , Red1.png
GENESIS , Red1.png
GENESIS , Red1.png
GEOMBEST Geomorphic Model of Barrier, Estuarine, and Shoreface Translations Moore, Laura Green1.png IRF bw.png
GEOMBEST , Red1.png
GEOMBEST , Red1.png
GEOMBEST , Red1.png
GEOMBEST++ Geomorphic model of barrier, estaurine, and shoreface translations plus dynamic marsh plus waves Lauzon, Rebecca Green1.png
GEOMBEST++ , Red1.png
GEOMBEST++ , Red1.png
GEOMBEST++ , Red1.png
GEOMBEST++ , Red1.png
GEOMBEST++Seagrass Geomorphic Model of Barrier, Estuarine, and Shoreface Translations + Marsh + Seagrass Reeves, Ian Green1.png IRF bw.png
GEOMBEST++Seagrass , Red1.png
GEOMBEST++Seagrass , Red1.png
GEOMBEST++Seagrass , Red1.png
GEOMBEST++Seagrass , Red1.png
GEOMBEST-Plus 2D cross-shore geomorphological model of barrier island and marsh response to sea level rise. Walters, David Green1.png IRF bw.png
GEOMBEST-Plus , Red1.png
GEOMBEST-Plus , Red1.png
GEOMBEST-Plus , Red1.png
GEOMBEST-Plus , Red1.png
GEOtop Distributed hydrological model, water and energy budgets Rigon, Riccardo Green1.png* IRF bw.png
GEOtop , Red1.png
GEOtop , Red1.png
GEOtop , Red1.png
GFlex Multiple solution methods for isostasy and lithospheric flexure Wickert, Andy Red1.png IRF compatible.png
GFlex , Red1.png
GFlex , Red1.png
GFlex , Red1.png
GIPL GIPL(Geophysical Institute Permafrost Laboratory) is an implicit finite difference one-dimensional heat flow numerical model. Jafarov, Elchin Green1.png* IRF bw.png
GIPL , Red1.png
GIPL , Red1.png
GIPL , Red1.png
GISKnickFinder This python code can be used to find knickpoints and extract information about streams, it utilizes built-in functions of ArcGIS. Rengers, Francis Green1.png IRF bw.png
GISKnickFinder , Red1.png
GISKnickFinder , Red1.png
GISKnickFinder , Red1.png
GISKnickFinder , Red1.png
GISS AOM GISS Atmosphere-Ocean Model Rind, David Green1.png* IRF bw.png
GISS AOM , Red1.png
GISS AOM , Red1.png
GISS AOM , Red1.png
GISS GCM ModelE GISS GCM ModelE Schmidt, Gavin Green1.png* IRF bw.png
GISS GCM ModelE , Red1.png
GISS GCM ModelE , Red1.png
GISS GCM ModelE , Red1.png
GLUDM Global future agricultural land use dynamics model Cohen, Sagy Green1.png IRF bw.png
GLUDM , Red1.png
GLUDM , Red1.png
GLUDM , Red1.png
GNE Set of biogeochemical sub-models that predicts river export Seitzinger, Sybil Green1.png* IRF bw.png
GNE , Red1.png
GNE , Red1.png
GNE , Red1.png
GOLEM Landscape evolution model Tucker, Greg Green1.png IRF bw.png
GOLEM , Red1.png
GOLEM , Red1.png
GOLEM , Red1.png
GPM Sedimentary process modeling software Tetzlaff, Daniel Red1.png IRF bw.png
GPM , Red1.png
GPM , Red1.png
GPM , Red1.png
GPM , Red1.png
GRLP Evolves gravel-bed river long profiles Wickert, Andrew Green1.png* IRF bw.png
GRLP , Red1.png
GRLP , Red1.png
GRLP , Red1.png
GRLP , Red1.png
GSDCalculator E-book: Calculator for statistical characteristics of grain size distributions. Parker, Gary Green1.png IRF compatible.png
GSDCalculator , Red1.png
GSDCalculator , Red1.png
GSDCalculator , Red1.png
GSDCalculator , Red1.png
GSFLOW Ground-water and Surface-water FLOW model Markstrom, Steve Green1.png* IRF bw.png
GSFLOW , Red1.png
GSFLOW , Red1.png
GSFLOW , Red1.png
GSFLOW-GRASS Quickly generates input files for and runs GSFLOW, and visualizes the output Wickert, Andrew Red1.png IRF bw.png
GSFLOW-GRASS , Red1.png
GSFLOW-GRASS , Red1.png
GSFLOW-GRASS , Red1.png
GSFLOW-GRASS , Red1.png
GSSHA Coupled distributed engineering hydrology, sediment, contaminant fate/transport Ogden, Fred Red1.png IRF bw.png
GSSHA , Red1.png
GSSHA , Red1.png
GSSHA , Red1.png
GSSHA , Red1.png
GST-extendedmodel Extended GST model: combination of an analytical GST migration model combined with closure relations based on the assumption of quasi-equilibrium conditions Blom, Astrid Green1.png IRF bw.png
GST-extendedmodel , Red1.png
GST-extendedmodel , Red1.png
GST-extendedmodel , Red1.png
Gc2d Glacier / ice sheet evolution model Kessler, Mark Green1.png IRF compatible.png
Gc2d , Red1.png
Gc2d , Red1.png
Gc2d , Red1.png
GeoClaw Depth-averaged fluid dynamics for modeling geophysical flows and wave propagation LeVeque, Randall Green1.png* IRF bw.png
GeoClaw , Red1.png
GeoClaw , Red1.png
GeoClaw , Red1.png
Glimmer-CISM Dynamic thermo-mechanical ice sheet model Hagdorn, Magnus Green1.png* IRF bw.png
Glimmer-CISM , Red1.png
Glimmer-CISM , Red1.png
Glimmer-CISM , Red1.png
Gospl Global Scalable Paleo Landscape Evolution Salles, Tristan Green1.png*
Gospl , Red1.png
Gospl , Red1.png
Gospl , Red1.png
Gospl , Red1.png
Gospl , Red1.png
Gospl , Red1.png
Gospl , Red1.png
Gospl , Red1.png
GrainHill Cellular automaton model of hillslope evolution Tucker, Gregory Red1.png IRF bw.png
GrainHill , Red1.png
GrainHill , Red1.png
GrainHill , Red1.png
GravelSandTransition E-book: Calculator for evolution of long profile of river with a migrating gravel-sand transition and subject to subsidence or base level rise. Parker, Gary Green1.png IRF compatible.png
GravelSandTransition , Red1.png
GravelSandTransition , Red1.png
GravelSandTransition , Red1.png
GravelSandTransition , Red1.png
GreenAmptInfiltrationModel The Green-Ampt method of infiltration estimation. Jiang, Peishi Green1.png IRF bw.png
GreenAmptInfiltrationModel , Red1.png
GreenAmptInfiltrationModel , Red1.png
GreenAmptInfiltrationModel , Red1.png
GreenAmptInfiltrationModel , Red1.png
GridMET Data Component A CSDMS data component for fetching and caching gridMET meteorological data. McDonald, Rich Green1.png* IRF compatible.png
GridMET Data Component , Red1.png
GridMET Data Component , Red1.png
GridMET Data Component , Red1.png
GroundwaterDupuitPercolator The GroundwaterDupuitPercolator solves the Boussinesq equation for flow in an unconfined aquifer over an impermeable aquifer base and calculates groundwater return flow to the surface. Litwin, David Green1.png*
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GroundwaterDupuitPercolator , Red1.png
GullyErosionProfiler1D This model is designed to simulate longitudinal profiles with headward advancing headcuts. Rengers, Francis Green1.png IRF bw.png
GullyErosionProfiler1D , Red1.png
GullyErosionProfiler1D , Red1.png
GullyErosionProfiler1D , Red1.png
Gvg3Dp 3D Numerical Simulation of Turbidity Currents Nasr Azadani, Mohamad Mehdi Red1.png IRF bw.png
Gvg3Dp , Red1.png
Gvg3Dp , Red1.png
Gvg3Dp , Red1.png
Gvg3Dp , Red1.png
HAMSOM 3D free surface and baroclinic hydrodynamic model Mayer, Dr. Bernhard Red1.png IRF bw.png
HAMSOM , Red1.png
HAMSOM , Red1.png
HAMSOM , Red1.png
HBV HBV model is a rainfall-runoff model Craven, John Green1.png* IRF bw.png
HBV , Red1.png
HBV , Red1.png
HBV , Red1.png
HEBEM Hydrologically Enhanced Basin Evolution Model Niemann, Jeffrey Red1.png IRF bw.png
HEBEM , Red1.png
HEBEM , Red1.png
HEBEM , Red1.png
HEBEM , Red1.png
HIM Hallberg Isopycnal Model Hallberg, Robert Green1.png* IRF bw.png
HIM , Red1.png
HIM , Red1.png
HIM , Red1.png
HSPF a comprehensive package for simulation of watershed hydrology and water quality for both conventional and toxic organic pollutants Bicknell, Bob Red1.png IRF bw.png
HSPF , Red1.png
HSPF , Red1.png
HSPF , Red1.png
HackCalculator Calculate Hack parameters. Barnhart, Katy Green1.png*
HackCalculator , Red1.png
HackCalculator , Red1.png
HackCalculator , Red1.png
HackCalculator , Red1.png
HackCalculator , Red1.png
HackCalculator , Red1.png
HackCalculator , Red1.png
HackCalculator , Red1.png
HexWatershed A watershed delineation model based on hexagonal mesh grid Liao, Chang Green1.png*
HexWatershed , Red1.png
HexWatershed , Red1.png
HexWatershed , Red1.png
HexWatershed , Red1.png
Hilltop and hillslope morphology extraction Tools for extracting hilltops and analysing hillslope morphology Hurst, Martin Green1.png IRF bw.png
Hilltop and hillslope morphology extraction , Red1.png
Hilltop and hillslope morphology extraction , Red1.png
Hilltop and hillslope morphology extraction , Red1.png
Hilltop flow routing Algorithm for directly measuring hillslope length from high resolution topographic data Grieve, Stuart Green1.png IRF bw.png
Hilltop flow routing , Red1.png
Hilltop flow routing , Red1.png
Hilltop flow routing , Red1.png
Hogback Evolution of a hogback Glade, Rachel Green1.png*
Hogback , Red1.png
Hogback , Red1.png
Hogback , Red1.png
HydroTrend Climate driven hydrological transport model Kettner, Albert Green1.png* IRF compatible.png
HydroTrend , Red1.png
HydroTrend , Red1.png
HydroTrend , Red1.png
Hydromad Hydrological Model Assessment and Development Guillaume, Joseph Green1.png* IRF bw.png
Hydromad , Red1.png
Hydromad , Red1.png
Hydromad , Red1.png
Hyper 2D Turbidity Current model Imran, Jasim Green1.png IRF bw.png
Hyper , Red1.png
Hyper , Red1.png
Hyper , Red1.png
IDA An implementation of the Implicit Drainage Area method (regular and hybrid versions) for calculating drainage area from flow directions using parallel iterative solvers. Richardson, Alan Green1.png IRF bw.png
IDA , Red1.png
IDA , Red1.png
IDA , Red1.png
ILAMB The International Land Model Benchmarking (ILAMB) toolkit Collier, Nathan Green1.png* IRF compatible.png
ILAMB , Red1.png
ILAMB , Red1.png
ILAMB , Red1.png
ISSM Ice Sheet System Model (ISSM) Larour, Eric Green1.png* IRF bw.png
ISSM , Red1.png
ISSM , Red1.png
ISSM , Red1.png
Ice-sheet-Glacier-reconstruction Read note in extended description. Sandpile method for ice-sheet and glacier reconstruction Pelletier, Jon Green1.png IRF bw.png
Ice-sheet-Glacier-reconstruction , Red1.png
Ice-sheet-Glacier-reconstruction , Red1.png
Ice-sheet-Glacier-reconstruction , Red1.png
IceFlow 2D semi-implicit shallow ice approximation glacier model Wickert, Andy Green1.png* IRF bw.png
IceFlow , Red1.png
IceFlow , Red1.png
IceFlow , Red1.png
IceFlow , Red1.png
Iceages Read note in extended description. Stochastic-resonance subroutine of Pleistocene ice ages Pelletier, Jon Green1.png IRF bw.png
Iceages , Red1.png
Iceages , Red1.png
Iceages , Red1.png
Icepack Icepack is a Python package for simulating the flow of glaciers and ice sheets, as well as for solving glaciological data assimilation problems. Shapero, Daniel Green1.png*
Icepack , Red1.png
Icepack , Red1.png
Icepack , Red1.png
Icepack , Red1.png
Inflow Steady-state hyperpycnal flow model Hutton, Eric Green1.png* IRF bw.png
Inflow , Red1.png
Inflow , Red1.png
Inflow , Red1.png
KWAVE A model representing infiltration, interception, and runoff using the kinematic wave approximation McGuire, Luke Green1.png Not IRF.png
KWAVE , Red1.png
KWAVE , Red1.png
KWAVE , Red1.png
Kirwan marsh model Ecomorphoydamic model of marsh elevation and channel evolution Kirwan, Matthew Red1.png IRF bw.png
Kirwan marsh model , Red1.png
Kirwan marsh model , Red1.png
Kirwan marsh model , Red1.png
Kirwan marsh model , Red1.png
KnickZone-Picker Matlab-based scripts to extract topometrics for catchments and identify river knickpoints. Bookhagen, Bodo Green1.png* IRF compatible.png
KnickZone-Picker , Red1.png
KnickZone-Picker , Red1.png
KnickZone-Picker , Red1.png
KnickZone-Picker , Red1.png
Kudryavtsev Model Permafrost Active Layer Thickness Model based on Kudryavtsev's parametrization Overeem, Irina Green1.png* IRF compatible.png
Kudryavtsev Model , Red1.png
Kudryavtsev Model , Red1.png
Kudryavtsev Model , Red1.png
Kudryavtsev Model , Red1.png
LEMming LEMming landscape evolution model: a 2-D, regular-grid, rules-based, hybrid finite-difference / cellular automaton model that is designed to explore the effect of multiple rock types on landscape evolution. Ward, Dylan Green1.png IRF bw.png
LEMming , Red1.png
LEMming , Red1.png
LEMming , Red1.png
LEMming2 2D model that simulates the retreat of hard-capped cliffs Ward, Dylan Green1.png* IRF bw.png
LEMming2 , Red1.png
LEMming2 , Red1.png
LEMming2 , Red1.png
LISFLOOD LISFLOOD - a distributed hydrological rainfall-runoff model de Roo, Ad Green1.png* IRF bw.png
LISFLOOD , Red1.png
LISFLOOD , Red1.png
LISFLOOD , Red1.png
LITHFLEX1 Lithospheric flexure solution Furlong, Kevin Green1.png IRF bw.png
LITHFLEX1 , Red1.png
LITHFLEX1 , Red1.png
LITHFLEX1 , Red1.png
LITHFLEX2 Lithospheric flexure solution for a broken plate Furlong, Kevin Green1.png IRF bw.png
LITHFLEX2 , Red1.png
LITHFLEX2 , Red1.png
LITHFLEX2 , Red1.png
LOADEST Software for estimating constituent loads in streams and rivers Runkel, Rob Green1.png* IRF bw.png
LOADEST , Red1.png
LOADEST , Red1.png
LOADEST , Red1.png
LOGDIST Logrithmic velocity distribution solution Slingerland, Rudy Green1.png IRF bw.png
LOGDIST , Red1.png
LOGDIST , Red1.png
LOGDIST , Red1.png
LONGPRO Dynamic evolution of longitudinal profiles Slingerland, Rudy Green1.png IRF bw.png
LONGPRO , Red1.png
LONGPRO , Red1.png
LONGPRO , Red1.png
LTRANS The Larval TRANSport Lagrangian model (LTRANS) is an off-line particle-tracking model that runs with the stored predictions of a 3D hydrodynamic model, specifically the Regional Ocean Modeling System (ROMS). North, Elizabeth Green1.png* IRF compatible.png
LTRANS , Red1.png
LTRANS , Red1.png
LTRANS , Red1.png
LaMEM LaMEM - Lithosphere and Mantle Evolution Model Popov, Anton Green1.png* IRF bw.png
LaMEM , Red1.png
LaMEM , Red1.png
LaMEM , Red1.png
Lake-Permafrost with Subsidence 1-D lake-permafrost thermal model with subsidence. Matell, Nora Red1.png IRF bw.png
Lake-Permafrost with Subsidence , Red1.png
Lake-Permafrost with Subsidence , Red1.png
Lake-Permafrost with Subsidence , Red1.png
Lake-Permafrost with Subsidence , Red1.png
LakeMapperBarnes Temporarily fills depressions and reroutes flow across them Hobley, Daniel Green1.png*
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
LakeMapperBarnes , Red1.png
Landlab Python software framework for writing, assembling, and running 2D numerical models Tucker, Greg Green1.png* IRF bw.png
Landlab , Red1.png
Landlab , Red1.png
Landlab , Red1.png
Landslides Landlab component that simulates landslide probability of failure as well as mean relative wetness and probability of saturation. Strauch, Ronda Green1.png*
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
Landslides , Red1.png
LateralEroder Laterally erode neighbor node through fluvial erosion. Langston, Abigail Green1.png*
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralEroder , Red1.png
LateralVerticalIncision Geometric model to explore autogenic increase of vertical incision rate in entrenching alluvial rivers. Malatesta, Luca Green1.png IRF bw.png
LateralVerticalIncision , Red1.png
LateralVerticalIncision , Red1.png
LateralVerticalIncision , Red1.png
LavaFlow2D Read note in extended description. 2D radially symmetric lava flow model Pelletier, Jon Green1.png IRF bw.png
LavaFlow2D , Red1.png
LavaFlow2D , Red1.png
LavaFlow2D , Red1.png
LinearDiffuser Landlab component that models soil creep as a linear diffusion process Tucker, Greg Green1.png* IRF compatible.png
LinearDiffuser , Red1.png
LinearDiffuser , Red1.png
LinearDiffuser , Red1.png
LinearDiffuser , Red1.png
Lithology Create a Lithology object with different properties Barnhart, Katy Green1.png*
Lithology , Red1.png
Lithology , Red1.png
Lithology , Red1.png
Lithology , Red1.png
Lithology , Red1.png
Lithology , Red1.png
Lithology , Red1.png
LossyFlowAccumulator Component to calculate drainage area and accumulate flow, while permitting dynamic loss or gain of flow downstream. Hobley, Dan Green1.png*
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LossyFlowAccumulator , Red1.png
LuSS A set of MATLAB functions to model how luminescence evolves in different geomorphic scenarios. Brown, Nathan Red1.png Not IRF.png
LuSS , Red1.png
LuSS , Red1.png
LuSS , Red1.png
LuSS , Red1.png
LumSoilMixer This is a model to simulate the non-dimensionalized luminescence in a mixing soil. Gray, Harrison Green1.png
LumSoilMixer , Red1.png
LumSoilMixer , Red1.png
LumSoilMixer , Red1.png
LumSoilMixer , Red1.png
MARM5D Landscape-scale soil evolution model Cohen, Sagy Green1.png IRF compatible.png
MARM5D , Red1.png
MARM5D , Red1.png
MARM5D , Red1.png
MARSSIM Landform evolution model Howard, Alan Green1.png IRF bw.png
MARSSIM , Red1.png
MARSSIM , Red1.png
MARSSIM , Red1.png
MCPM A stand alone model for the morphological evolution of an idealized transect across a marsh channel-and-platform. Mariotti, Giulio Red1.png IRF bw.png
MCPM , Red1.png
MCPM , Red1.png
MCPM , Red1.png
MCPM , Red1.png
MFDrouting Read note in extended description. Multiple Flow Direction (MFD) flow routing method Pelletier, Jon Green1.png IRF bw.png
MFDrouting , Red1.png
MFDrouting , Red1.png
MFDrouting , Red1.png
MFDrouting-Successive Read note in extended description. Successive flow routing with Multiple Flow Direction (MFD) method Pelletier, Jon Green1.png IRF bw.png
MFDrouting-Successive , Red1.png
MFDrouting-Successive , Red1.png
MFDrouting-Successive , Red1.png
MICOM Miami Isopycnic Coordinate Ocean Model Bleck, Rainer Green1.png* IRF bw.png
MICOM , Red1.png
MICOM , Red1.png
MICOM , Red1.png
MIDAS Coupled flow- heterogeneous sediment routing model Slingerland, Rudy Green1.png IRF bw.png
MIDAS , Red1.png
MIDAS , Red1.png
MIDAS , Red1.png
MITgcm The MITgcm (MIT General Circulation Model) is a numerical model designed for study of the atmosphere, ocean, and climate. Lovenduski, Nicole Green1.png* IRF bw.png
MITgcm , Red1.png
MITgcm , Red1.png
MITgcm , Red1.png
MODFLOW MODFLOW is a three-dimensional finite-difference ground-water model Barlow, Paul Green1.png* IRF bw.png
MODFLOW , Red1.png
MODFLOW , Red1.png
MODFLOW , Red1.png
MOM6 MOM6 is the latest generation of the Modular Ocean Model which is a numerical model code for simulating the ocean general circulation. User community, MOM6 Green1.png* IRF bw.png
MOM6 , Red1.png
MOM6 , Red1.png
MOM6 , Red1.png
MRSAA Macro-roughness model framework for treating erosion, bed cover, and sediment transport in bedrock river channels. Zhang, Li Green1.png IRF bw.png
MRSAA , Red1.png
MRSAA , Red1.png
MRSAA , Red1.png
Manningseq-bouldersforpaleohydrology Matlab® code for paleo-hydrological flood flow reconstruction in a fluvial channel Huber, Marius Green1.png Not IRF.png
Manningseq-bouldersforpaleohydrology , Red1.png
Manningseq-bouldersforpaleohydrology , Red1.png
Manningseq-bouldersforpaleohydrology , Red1.png
Marsh column model Simulates sediment, roots and carbon accumulating in a 1D marsh profile. Mudd, Simon Red1.png IRF bw.png
Marsh column model , Red1.png
Marsh column model , Red1.png
Marsh column model , Red1.png
Marsh column model , Red1.png
MarshMorpho2D 2D long-term marsh evolution model based on tidal dispersion Mariotti, Giulio Green1.png IRF bw.png
MarshMorpho2D , Red1.png
MarshMorpho2D , Red1.png
MarshMorpho2D , Red1.png
MarshMorpho2D , Red1.png
MarshPondModel 2D marsh evolution model focused on pond dynamics Mariotti, Giulio Green1.png
MarshPondModel , Red1.png
MarshPondModel , Red1.png
MarshPondModel , Red1.png
MarshPondModel , Red1.png
Meander Centerline Migration Model Simulation of the long-term migration of meandering rivers flowing above heterogeneous floodplains Bogoni, Manuel Green1.png* IRF bw.png
Meander Centerline Migration Model , Red1.png
Meander Centerline Migration Model , Red1.png
Meander Centerline Migration Model , Red1.png
Meanderpy A simple kinematic model of meandering Sylvester, Zoltan Green1.png* IRF bw.png
Meanderpy , Red1.png
Meanderpy , Red1.png
Meanderpy , Red1.png
Mixed bedrock-alluvial morphodynamic Alluvial morphodynamics of bedrock reaches Jafarinik, Sadegh Green1.png
Mixed bedrock-alluvial morphodynamic , Red1.png
Mixed bedrock-alluvial morphodynamic , Red1.png
Mixed bedrock-alluvial morphodynamic , Red1.png
Mixed bedrock-alluvial morphodynamic , Red1.png
Mocsy Routines to model the ocean carbonate system Orr, James Green1.png* IRF bw.png
Mocsy , Red1.png
Mocsy , Red1.png
Mocsy , Red1.png
ModelParameterDictionary Tool written in Python for reading model input parameters from a simple formatted text file. Tucker, Greg Green1.png IRF bw.png
ModelParameterDictionary , Red1.png
ModelParameterDictionary , Red1.png
ModelParameterDictionary , Red1.png
ModelParameterDictionary , Red1.png
Mrip Mrip is a self-organization type model for the formation and dynamics of megaripples in the nearshore. Gallagher, Edith Green1.png IRF bw.png
Mrip , Red1.png
Mrip , Red1.png
Mrip , Red1.png
Mrip , Red1.png
NEXRAD-extract Extract data from NEXRAD Doppler Radar NetCDFs Wickert, Andy Red1.png IRF bw.png
NEXRAD-extract , Red1.png
NEXRAD-extract , Red1.png
NEXRAD-extract , Red1.png
NEXRAD-extract , Red1.png
NUBBLE A turbulent boundary layer model for the linearized shallow water equations Naimie, Christopher Green1.png* IRF bw.png
NUBBLE , Red1.png
NUBBLE , Red1.png
NUBBLE , Red1.png
NUBBLE , Red1.png
NWIS Data Component A CSDMS data component used to download the National Water Information System (Nwis) time series datasets. Gan, Tian Green1.png* IRF bw.png
NWIS Data Component , Red1.png
NWIS Data Component , Red1.png
NWIS Data Component , Red1.png
NWIS Data Component , Red1.png
NWM Data Component A CSDMS data component used to download the National Water Model datasets. Gan, Tian Green1.png* IRF compatible.png
NWM Data Component , Red1.png
NWM Data Component , Red1.png
NWM Data Component , Red1.png
NWM Data Component , Red1.png
NearCoM Nearshore Community Model Kirby, James Green1.png* IRF bw.png
NearCoM , Red1.png
NearCoM , Red1.png
NearCoM , Red1.png
Nitrate Network Model Nitrate and organic carbon dynamics on a wetland-river network Czuba, Jonathan Green1.png IRF compatible.png
Nitrate Network Model , Red1.png
Nitrate Network Model , Red1.png
Nitrate Network Model , Red1.png
Non Local Means Filtering Performs non-local means filtering of a DEM following Buades et al. (2005) Hurst, Martin Green1.png IRF bw.png
Non Local Means Filtering , Red1.png
Non Local Means Filtering , Red1.png
Non Local Means Filtering , Red1.png
Non Local Means Filtering , Red1.png
NormalFault NormalFault implements relative rock motion due to a normal fault. Barnhart, Katy Green1.png*
NormalFault , Red1.png
NormalFault , Red1.png
NormalFault , Red1.png
NormalFault , Red1.png
NormalFault , Red1.png
NormalFault , Red1.png
NormalFault , Red1.png
NormalFault , Red1.png
OGGM OGGM is a modular open source model for glacier dynamics Maussion, Fabien Green1.png* IRF bw.png
OGGM , Red1.png
OGGM , Red1.png
OGGM , Red1.png
OTEQ One-Dimensional Transport with Equilibrium Chemistry (OTEQ): A Reactive Transport Model for Streams and Rivers Runkel, Rob Green1.png* IRF bw.png
OTEQ , Red1.png
OTEQ , Red1.png
OTEQ , Red1.png
OTIS One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers Runkel, Rob Green1.png* IRF bw.png
OTIS , Red1.png
OTIS , Red1.png
OTIS , Red1.png
OTTER Evolution of a river profile with dynamic width Yanites, Brian Green1.png Not IRF.png
OTTER , Red1.png
OTTER , Red1.png
OTTER , Red1.png
OceanWaves Calculate wave-generated bottom orbital velocities from surface wave parameters Wiberg, Patricia Green1.png IRF bw.png
OceanWaves , Red1.png
OceanWaves , Red1.png
OceanWaves , Red1.png
OceanWaves , Red1.png
OlaFlow Wave generation and active absorption interaction with porous structures framework Higuera, Pablo Green1.png* Not IRF.png
OlaFlow , Red1.png
OlaFlow , Red1.png
OlaFlow , Red1.png
OpenFOAM Open Field Operation and Manipulation is a toolbox for the development of customized numerical solvers. Weller, Henry Green1.png* IRF bw.png
OpenFOAM , Red1.png
OpenFOAM , Red1.png
OpenFOAM , Red1.png
OptimalCycleID A numerical method to analyse a vertical succession of strata and identify the most cyclical arrangement of constituent facies Burgess, Peter Green1.png IRF bw.png
OptimalCycleID , Red1.png
OptimalCycleID , Red1.png
OptimalCycleID , Red1.png
OrderID A method to test for order in a vertical succession of strata Burgess, Peter Green1.png IRF bw.png
OrderID , Red1.png
OrderID , Red1.png
OrderID , Red1.png
OverlandFlow Component simulating overland flow using a 2-D numerical approximation of the shallow-water equations following the de Almeida et al., 2012 algorithm for storage-cell inundation modeling. Adams, Jordan Green1.png* IRF compatible.png
OverlandFlow , Red1.png
OverlandFlow , Red1.png
OverlandFlow , Red1.png
OverlandFlowBates This component simulates overland flow using the 2-D numerical model of shallow-water flow over topography using the Bates et al. (2010) algorithm for storage-cell inundation modeling. Adams, Jordan Green1.png*
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
OverlandFlowBates , Red1.png
PHREEQC PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations Parkhurst, David Green1.png* IRF bw.png
PHREEQC , Red1.png
PHREEQC , Red1.png
PHREEQC , Red1.png
PIHM PIHM is a multiprocess, multi-scale hydrologic model. Duffy, Christopher Green1.png* IRF bw.png
PIHM , Red1.png
PIHM , Red1.png
PIHM , Red1.png
PIHMgis Tightly coupled GIS interface for the Penn State Integrated Hydrologic Model Duffy, Christopher Green1.png* IRF compatible.png
PIHMgis , Red1.png
PIHMgis , Red1.png
PIHMgis , Red1.png
PISM Parallel Ice Sheet Model, PISM Group, Glacier Green1.png* IRF bw.png
PISM , Red1.png
PISM , Red1.png
PISM , Red1.png
PRMS Precipitation-Runoff Modeling System Leavesley, George Green1.png* IRF bw.png
PRMS , Red1.png
PRMS , Red1.png
PRMS , Red1.png
PSTSWM Parallel Spectral Transform Shallow Water Model Worley, Patrick Green1.png* IRF bw.png
PSTSWM , Red1.png
PSTSWM , Red1.png
PSTSWM , Red1.png
ParFlow Parallel, high-performance, integrated watershed model Maxwell, Reed Green1.png* IRF bw.png
ParFlow , Red1.png
ParFlow , Red1.png
ParFlow , Red1.png
Permafrost Benchmark System The PBS is a web-based tool for conducting benchmarking studies of permafrost models. Piper, Mark Green1.png* IRF compatible.png
Permafrost Benchmark System , Red1.png
Permafrost Benchmark System , Red1.png
Permafrost Benchmark System , Red1.png
Permafrost Benchmark System , Red1.png
PerronNLDiffuse Nonlinear diffusion, following Perron (2011). Hobley, Daniel Green1.png*
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
PerronNLDiffuse , Red1.png
Physprop Calculates the acoustic values based on physical properties Pratson, Lincoln Red1.png IRF bw.png
Physprop , Red1.png
Physprop , Red1.png
Physprop , Red1.png
Physprop , Red1.png
Pllcart3d 3D numerical simulation of confined miscible flows Oliveira, Rafael Green1.png IRF bw.png
Pllcart3d , Red1.png
Pllcart3d , Red1.png
Pllcart3d , Red1.png
Plume Hypopycnal sediment plume Hutton, Eric Green1.png* IRF compatible.png
Plume , Red1.png
Plume , Red1.png
Plume , Red1.png
Point-Tidal-flat Point Model for Tidal Flat Evolution model Fagherazzi, Sergio Green1.png IRF bw.png
Point-Tidal-flat , Red1.png
Point-Tidal-flat , Red1.png
Point-Tidal-flat , Red1.png
PotentialEvapotranspiration Calculates potential evapotranspiration Nudurupati, Sai Green1.png*
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialEvapotranspiration , Red1.png
PotentialityFlowRouter Multidirectional flow routing using a novel method. Hobley, Daniel Green1.png*
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PotentialityFlowRouter , Red1.png
PrecipitationDistribution Generate random sequence of precipitation events Adams, Jordan Green1.png*
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
PrecipitationDistribution , Red1.png
Princeton Ocean Model (POM) POM: Sigma coordinate coastal & basin circulation model Ezer, Tal Green1.png* IRF bw.png
Princeton Ocean Model (POM) , Red1.png
Princeton Ocean Model (POM) , Red1.png
Princeton Ocean Model (POM) , Red1.png
PsHIC Pixel-scale Hypsometric Integral Calculator Cohen, Sagy Green1.png IRF bw.png
PsHIC , Red1.png
PsHIC , Red1.png
PsHIC , Red1.png
PyDeltaRCM Reduced complexity river delta formation and evolution model with channel dynamics Perignon, Mariela Green1.png* IRF bw.png
PyDeltaRCM , Red1.png
PyDeltaRCM , Red1.png
PyDeltaRCM , Red1.png
PyDeltaRCM , Red1.png
PyRiverBed A Python framework to generate synthetic riverbed topography of constant-width meandering rivers Li, Zhi Green1.png*
PyRiverBed , Red1.png
PyRiverBed , Red1.png
PyRiverBed , Red1.png
PyRiverBed , Red1.png
PyRiverBed , Red1.png
PyRiverBed , Red1.png
PyRiverBed , Red1.png
PyRiverBed , Red1.png
QDSSM Quantitative Dynamic Sequence Stratigraphic Model Postma, George Red1.png IRF bw.png
QDSSM , Red1.png
QDSSM , Red1.png
QDSSM , Red1.png
QDSSM , Red1.png
QTCM Quasi-equilibrium Tropical Circulation Model Neelin, David Green1.png* IRF bw.png
QTCM , Red1.png
QTCM , Red1.png
QTCM , Red1.png
QUAL2K A Modeling Framework for Simulating River and Stream Water Quality Chapra, Steve Green1.png* IRF bw.png
QUAL2K , Red1.png
QUAL2K , Red1.png
QUAL2K , Red1.png
QUODDY A state-of-the-art finite-element computer simulation program for coastal ocean circulation modeling Lynch, Kristina Green1.png* IRF bw.png
QUODDY , Red1.png
QUODDY , Red1.png
QUODDY , Red1.png
Quad Geometric model to study the response of fluvial-deltas to base-level changes. Lorenzo Trueba, Jorge Red1.png IRF bw.png
Quad , Red1.png
Quad , Red1.png
Quad , Red1.png
Quad , Red1.png
RAFEM River Avulsion and Floodplain Evolution Module Ratliff, Katherine Green1.png* IRF compatible.png
RAFEM , Red1.png
RAFEM , Red1.png
RAFEM , Red1.png
RASCAL Landscape evolution resulting from feedback between flow, vegetation, and sediment Larsen, Laurel Red1.png IRF bw.png
RASCAL , Red1.png
RASCAL , Red1.png
RASCAL , Red1.png
RASCAL , Red1.png
RCPWAVE Regional Coastal Processes Wave Model Gravens, Mark Red1.png IRF bw.png
RCPWAVE , Red1.png
RCPWAVE , Red1.png
RCPWAVE , Red1.png
RCPWAVE , Red1.png
REF-DIF Phase-resolving parabolic refraction-diffraction model for ocean surface wave propagation. Kirby, James Green1.png* IRF bw.png
REF-DIF , Red1.png
REF-DIF , Red1.png
REF-DIF , Red1.png
RHESSys Regional Hydro-Ecologic Simulation System Tague, christina Green1.png* IRF bw.png
RHESSys , Red1.png
RHESSys , Red1.png
RHESSys , Red1.png
ROMS Regional Ocean Modeling System Arango, Hernan G. Green1.png* IRF compatible.png
ROMS , Red1.png
ROMS , Red1.png
ROMS , Red1.png
ROMSBuilder ROMSBuilder is a CCA-CSDMS Modeling Tool (CMT) compliant component that creates another CMT compliant ROMS component. The new ROMS component is build as per the C-preprocessing options that defines a particular ROMS application. Kallumadikal, Jisamma Red1.png IRF bw.png
ROMSBuilder , Red1.png
ROMSBuilder , Red1.png
ROMSBuilder , Red1.png
ROMSBuilder , Red1.png
Radiation Compute 1D and 2D total incident shortwave radiation. Nudurupati, Sai Green1.png*
Radiation , Red1.png
Radiation , Red1.png
Radiation , Red1.png
Radiation , Red1.png
Radiation , Red1.png
Radiation , Red1.png
Radiation , Red1.png
Radiation , Red1.png
RecircFeed E-book: calculator for approach to equilibrium in recirculating and feed flumes Parker, Gary Green1.png IRF compatible.png
RecircFeed , Red1.png
RecircFeed , Red1.png
RecircFeed , Red1.png
RecircFeed , Red1.png
Rescal-snow A model of dunes and snow-waves Kochanski, Kelly Green1.png* IRF bw.png
Rescal-snow , Red1.png
Rescal-snow , Red1.png
Rescal-snow , Red1.png
Rescal-snow , Red1.png
Reservoir Reservoir: Tools for Analysis, Design, and Operation of Water Supply Storages Turner, Sean Green1.png* IRF bw.png
Reservoir , Red1.png
Reservoir , Red1.png
Reservoir , Red1.png
Reservoir , Red1.png
RivMAP Matlab toolbox for mapping and measuring river planform changes Schwenk, Jon Green1.png* IRF bw.png
RivMAP , Red1.png
RivMAP , Red1.png
RivMAP , Red1.png
River Erosion Model An intermediate complexity model for simulating stream channel evolution (years to decades) at the watershed scale. Lammers, Roderick Green1.png*
River Erosion Model , Red1.png
River Erosion Model , Red1.png
River Erosion Model , Red1.png
River Network Bed-Material Sediment Bed-material sediment transport and storage dynamics on river networks. Czuba, Jonathan Green1.png IRF bw.png
River Network Bed-Material Sediment , Red1.png
River Network Bed-Material Sediment , Red1.png
River Network Bed-Material Sediment , Red1.png
River Temperature Model River Temperature Model based on heat balance approach Overeem, Irina Green1.png* IRF bw.png
River Temperature Model , Red1.png
River Temperature Model , Red1.png
River Temperature Model , Red1.png
River Temperature Model , Red1.png
RiverMUSE Simulates freshwater mussel populations' response to changes in suspended sediment Schwenk, Jon Green1.png IRF bw.png
RiverMUSE , Red1.png
RiverMUSE , Red1.png
RiverMUSE , Red1.png
RiverSynth Excel file for creating XYZ coordinates of artificial river valley topography Brown, Rocko Red1.png IRF bw.png
RiverSynth , Red1.png
RiverSynth , Red1.png
RiverSynth , Red1.png
RiverWFRisingBaseLevelNormal E-book: Calculator for disequilibrium aggradation of a sand-bed river in response to rising base level. Parker, Gary Green1.png IRF compatible.png
RiverWFRisingBaseLevelNormal , Red1.png
RiverWFRisingBaseLevelNormal , Red1.png
RiverWFRisingBaseLevelNormal , Red1.png
RiverWFRisingBaseLevelNormal , Red1.png
RouseVanoniEquilibrium E-book: Program for calculating the Rouse-Vanoni profile of suspended sediment. Parker, Gary Green1.png IRF compatible.png
RouseVanoniEquilibrium , Red1.png
RouseVanoniEquilibrium , Red1.png
RouseVanoniEquilibrium , Red1.png
RouseVanoniEquilibrium , Red1.png
SBEACH Numerical Model for Simulating Storm-Induce Beach Change Gravens, Mark Red1.png IRF bw.png
SBEACH , Red1.png
SBEACH , Red1.png
SBEACH , Red1.png
SBEACH , Red1.png
SBM Sorted Bedform Model Murray, A. Brad Green1.png IRF bw.png
SBM , Red1.png
SBM , Red1.png
SBM , Red1.png
SEA Southamption--East Anglia Stevens, David Green1.png* IRF bw.png
SEA , Red1.png
SEA , Red1.png
SEA , Red1.png
SEDPAK Models the sedimentary fill of basins Kendall, Christopher Red1.png IRF bw.png
SEDPAK , Red1.png
SEDPAK , Red1.png
SEDPAK , Red1.png
SEDPAK , Red1.png
SELFE Semi-implicit Eulerian–Lagrangian Finite Element Zhang, Yinglong Green1.png* IRF bw.png
SELFE , Red1.png
SELFE , Red1.png
SELFE , Red1.png
SEOM Spectral Element Ocean Model Haidvogel, Dale Red1.png IRF bw.png
SEOM , Red1.png
SEOM , Red1.png
SEOM , Red1.png
SEOM , Red1.png
SETTLE Partical settling velocity solution Slingerland, Rudy Green1.png IRF bw.png
SETTLE , Red1.png
SETTLE , Red1.png
SETTLE , Red1.png
SIBERIA SIBERIA simulates the evolution of landscapes under the action of runoff and erosion over long times scales. Willgoose, Garry Green1.png IRF bw.png
SIBERIA , Red1.png
SIBERIA , Red1.png
SIBERIA , Red1.png
SICOPOLIS Ice sheet model Greve, Ralf Green1.png* IRF bw.png
SICOPOLIS , Red1.png
SICOPOLIS , Red1.png
SICOPOLIS , Red1.png
SIGNUM SIGNUM (Simple Integrated Geomorphological Numerical Model) is a MAtlab TIN-based landscape evolution model Capolongo, Domenico Green1.png* IRF bw.png
SIGNUM , Red1.png
SIGNUM , Red1.png
SIGNUM , Red1.png
SIMSAFADIM Finite element model for fluid flow, clastic, carbonate and evaporate sedimentation Bitzer, Klaus Red1.png IRF bw.png
SIMSAFADIM , Red1.png
SIMSAFADIM , Red1.png
SIMSAFADIM , Red1.png
SIMSAFADIM , Red1.png
SISV Spectral, Implicit, Streamfunction-Vorticity solver Burns, Peter Red1.png IRF bw.png
SISV , Red1.png
SISV , Red1.png
SISV , Red1.png
SISV , Red1.png
SLAMM 6.7 The Sea Level Affecting Marshes Model (SLAMM) Clough, Jonathan Green1.png* IRF bw.png
SLAMM 6.7 , Red1.png
SLAMM 6.7 , Red1.png
SLAMM 6.7 , Red1.png
SLEPIAN Alpha Computation of spherical harmonics, Slepian functions, and transforms Simons, Frederik Green1.png IRF bw.png
SLEPIAN Alpha , Red1.png
SLEPIAN Alpha , Red1.png
SLEPIAN Alpha , Red1.png
SLEPIAN Alpha , Red1.png
SLEPIAN Bravo Linear inverse problems using spherical harmonics and spherical Slepian functions Simons, Frederik Green1.png IRF bw.png
SLEPIAN Bravo , Red1.png
SLEPIAN Bravo , Red1.png
SLEPIAN Bravo , Red1.png
SLEPIAN Bravo , Red1.png
SLEPIAN Charlie Spectral estimation problems using spherical harmonics and spherical Slepian functions Simons, Frederik Green1.png IRF bw.png
SLEPIAN Charlie , Red1.png
SLEPIAN Charlie , Red1.png
SLEPIAN Charlie , Red1.png
SLEPIAN Charlie , Red1.png
SLEPIAN Delta Analysis of time-variable gravity from the GRACE satellite mission using spherical harmonics and spherical Slepian functions Harig, Christopher Green1.png IRF bw.png
SLEPIAN Delta , Red1.png
SLEPIAN Delta , Red1.png
SLEPIAN Delta , Red1.png
SLEPIAN Delta , Red1.png
SLEPIAN Echo Computation of vectorial spherical harmonics, vectorial Slepian functions, and transforms Plattner, Alain Green1.png IRF bw.png
SLEPIAN Echo , Red1.png
SLEPIAN Echo , Red1.png
SLEPIAN Echo , Red1.png
SLEPIAN Echo , Red1.png
SNAC An updated Lagrangian explicit finite difference code for modeling a finitely deforming elasto-visco-plastic solid in 3D. Choi, Eunseo Green1.png* IRF bw.png
SNAC , Red1.png
SNAC , Red1.png
SNAC , Red1.png
SNOWPACK SNOWPACK is a multi-purpose snow and land-surface model, which focuses on a detailed description of the mass and energy exchange between the snow, the atmosphere and optionally with the vegetation cover and the soil. It also includes a detailed treatment of mass and energy fluxes within these media. Bavay, Mathias Green1.png* IRF bw.png
SNOWPACK , Red1.png
SNOWPACK , Red1.png
SNOWPACK , Red1.png
SPACE Landlab component for 2-D calculation of fluvial sediment transport and bedrock erosion Shobe, Charles Green1.png* IRF compatible.png
SPACE , Red1.png
SPACE , Red1.png
SPACE , Red1.png
SPARROW The SPARROW Surface Water-Quality Model Alexander, Richard Green1.png* IRF bw.png
SPARROW , Red1.png
SPARROW , Red1.png
SPARROW , Red1.png
SPHYSICS Smoothed Particle Hydrodynamics code Dalrymple, Robert Green1.png* IRF bw.png
SPHYSICS , Red1.png
SPHYSICS , Red1.png
SPHYSICS , Red1.png
SRH-1D One-dimensional cross section based hydraulic and mobile-bed sediment transport model Greimann, Blair Red1.png IRF bw.png
SRH-1D , Red1.png
SRH-1D , Red1.png
SRH-1D , Red1.png
SRH-1D , Red1.png
STORM Windfield simulator for a cyclone Slingerland, Rudy Green1.png IRF bw.png
STORM , Red1.png
STORM , Red1.png
STORM , Red1.png
STSWM NCAR Spectral Transform Shallow Water Model Hack, James Green1.png* IRF bw.png
STSWM , Red1.png
STSWM , Red1.png
STSWM , Red1.png
STVENANT 1D gradually varied flow routine Slingerland, Rudy Green1.png IRF bw.png
STVENANT , Red1.png
STVENANT , Red1.png
STVENANT , Red1.png
STWAVE Steady-State Spectral Wave Model Smith, Jane Green1.png* IRF compatible.png
STWAVE , Red1.png
STWAVE , Red1.png
STWAVE , Red1.png
SUSP Suspended load transport subroutine Slingerland, Rudy Green1.png IRF bw.png
SUSP , Red1.png
SUSP , Red1.png
SUSP , Red1.png
SVELA Shear velocity solution associated with grain roughness Slingerland, Rudy Green1.png IRF bw.png
SVELA , Red1.png
SVELA , Red1.png
SVELA , Red1.png
SWAN SWAN is a third-generation wave model SWAN, Team Green1.png* IRF bw.png
SWAN , Red1.png
SWAN , Red1.png
SWAN , Red1.png
SWAT SWAT is a river basin scale model developed to quantify the impact of land management practices in large, complex watersheds. Arnold, Jeff Green1.png* IRF bw.png
SWAT , Red1.png
SWAT , Red1.png
SWAT , Red1.png
SWEHR A coupled model for infiltration, fluid flow, and sediment transport. McGuire, Luke Green1.png IRF bw.png
SWEHR , Red1.png
SWEHR , Red1.png
SWEHR , Red1.png
SWMM Storm Water Management Model Rossman, Lewis Green1.png* IRF bw.png
SWMM , Red1.png
SWMM , Red1.png
SWMM , Red1.png
Sakura 3 Equation hyperpycnal flow model Kubo, Yusuke Green1.png* IRF bw.png
Sakura , Red1.png
Sakura , Red1.png
Sakura , Red1.png
SedBerg An iceberg drift and melt model, developed to simulate sedimentation in high-latitude glaciated fjords. Mugford, Ruth Green1.png IRF bw.png
SedBerg , Red1.png
SedBerg , Red1.png
SedBerg , Red1.png
SedDepEroder Compute fluvial erosion using using “tools and cover” theory Hobley, Daniel Green1.png*
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedDepEroder , Red1.png
SedFoam-2.0 A multi-dimensional Eulerian two-phase model for sediment transport (version 2.0) Chauchat, Julien Green1.png IRF compatible.png
SedFoam-2.0 , Red1.png
SedFoam-2.0 , Red1.png
SedFoam-2.0 , Red1.png
SedPlume SedPlume simulates glacial meltwater plume dynamics and sedimentation. Mugford, Ruth Red1.png IRF bw.png
SedPlume , Red1.png
SedPlume , Red1.png
SedPlume , Red1.png
SedPlume , Red1.png
Sedflux Basin filling stratigraphic model Hutton, Eric Green1.png* IRF compatible.png
Sedflux , Red1.png
Sedflux , Red1.png
Sedflux , Red1.png
Sedtrans05 Sediment transport model for continental shelf and estuaries Neumeier, Urs Green1.png* IRF bw.png
Sedtrans05 , Red1.png
Sedtrans05 , Red1.png
Sedtrans05 , Red1.png
Shoreline Coastal evolution model Peckham, Scott Red1.png IRF bw.png
Shoreline , Red1.png
Shoreline , Red1.png
Shoreline , Red1.png
Shoreline , Red1.png
SiStER An easy-to-use MATLAB code to simulate long-term lithosphere and mantle deformation. Olive, Jean-Arthur Green1.png* IRF bw.png
SiStER , Red1.png
SiStER , Red1.png
SiStER , Red1.png
SimClast basin-scale 3D stratigraphic model Dalman, Rory Red1.png IRF bw.png
SimClast , Red1.png
SimClast , Red1.png
SimClast , Red1.png
SimClast , Red1.png
SinkFiller Fill sinks in a landscape to the brim, following the Barnes et al. (2014) algorithms. Hobley, Daniel Green1.png*
SinkFiller , Red1.png
SinkFiller , Red1.png
SinkFiller , Red1.png
SinkFiller , Red1.png
SinkFiller , Red1.png
SinkFiller , Red1.png
SinkFiller , Red1.png
SinkFiller , Red1.png
SoilGrids Data Component A CSDMS data component used to download the soil property datasets from the SoilGrids system. Gan, Tian Green1.png* IRF bw.png
SoilGrids Data Component , Red1.png
SoilGrids Data Component , Red1.png
SoilGrids Data Component , Red1.png
SoilGrids Data Component , Red1.png
SoilInfiltrationGreenAmpt Landlab component that calculates soil infiltration based on the Green-Ampt solution. Rengers, Francis Green1.png*
SoilInfiltrationGreenAmpt , Red1.png
SoilInfiltrationGreenAmpt , Red1.png
SoilInfiltrationGreenAmpt , Red1.png
SoilMoisture Compute the decay of soil moisture saturation at storm-interstorm time period Nudurupati, Sai Green1.png*
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SoilMoisture , Red1.png
SpatialPrecipitationDistribution Generate random sequence of spatially-resolved precipitation events Hobley, Daniel Green1.png*
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
SpatialPrecipitationDistribution , Red1.png
Spbgc 2D Numerical Simulation of Turbidity Currents Borden, Zachary Red1.png IRF bw.png
Spbgc , Red1.png
Spbgc , Red1.png
Spbgc , Red1.png
Spbgc , Red1.png
SpeciesEvolver Evolve life in a landscape. Lyons, Nathan Green1.png*
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
SpeciesEvolver , Red1.png
Spirals1D Read note in extended description. 1D model of spiral troughs on Mars Pelletier, Jon Green1.png IRF bw.png
Spirals1D , Red1.png
Spirals1D , Red1.png
Spirals1D , Red1.png
SteadyStateAg E-book: calculator for approach to equilibrium in recirculating and feed flumes Parker, Gary Green1.png IRF compatible.png
SteadyStateAg , Red1.png
SteadyStateAg , Red1.png
SteadyStateAg , Red1.png
SteadyStateAg , Red1.png
SteepnessFinder Calculate steepness and concavity indices from gridded topography Hobley, Daniel Green1.png*
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
SteepnessFinder , Red1.png
StreamPower Read note in extended description. Modeling the development of topographic steady state in the stream-power model Pelletier, Jon Green1.png IRF bw.png
StreamPower , Red1.png
StreamPower , Red1.png
StreamPower , Red1.png
StreamPowerSmoothThresholdEroder Compute fluvial erosion using stream power theory with a numerically smoothed threshold Tucker, Greg Green1.png*
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
StreamPowerSmoothThresholdEroder , Red1.png
Subside Flexure model Hutton, Eric Green1.png* IRF compatible.png
Subside , Red1.png
Subside , Red1.png
Subside , Red1.png
SubsidingFan E-book: calculator for evolution of profiles of fans in subsiding basins Parker, Gary Green1.png IRF compatible.png
SubsidingFan , Red1.png
SubsidingFan , Red1.png
SubsidingFan , Red1.png
SubsidingFan , Red1.png
SurfaceRoughness Quantifies surface roughness with high-resolution topographic data by analyzing the local variability of surface normal vectors. Milodowski, David Green1.png IRF bw.png
SurfaceRoughness , Red1.png
SurfaceRoughness , Red1.png
SurfaceRoughness , Red1.png
SuspSedDensityStrat E-book: Module for calculating the effect of density stratification on the vertical profiles of velocity and suspended sediment. Parker, Gary Green1.png IRF compatible.png
SuspSedDensityStrat , Red1.png
SuspSedDensityStrat , Red1.png
SuspSedDensityStrat , Red1.png
SuspSedDensityStrat , Red1.png
Symphonie 3D primitive equation ocean model Marsaleix, Patrick Green1.png* IRF bw.png
Symphonie , Red1.png
Symphonie , Red1.png
Symphonie , Red1.png
TAo tAo is a software designed to model the interplay between lithosphere flexure and surface transport (erosion/sedimentation), particularly during the formation of orogens and foreland sedimentary basins (see details). Garcia Castellanos, Daniel Green1.png* IRF bw.png
TAo , Red1.png
TAo , Red1.png
TAo , Red1.png
TISC TISC integrates quantitative models of lithospheric flexure, fault deformation, and surface mass transport (erosion/transport/sedimentation) along drainage networks. Garcia Castellanos, Daniel Green1.png* IRF bw.png
TISC , Red1.png
TISC , Red1.png
TISC , Red1.png
TOPMODEL Physically based, distributed watershed model that simulates hydrologic fluxes of water through a watershed Beven, Keith Green1.png* IRF bw.png
TOPMODEL , Red1.png
TOPMODEL , Red1.png
TOPMODEL , Red1.png
TOPOG TOPOG is a terrain analysis-based hydrologic modelling package Silberstein, Richard Green1.png* IRF bw.png
TOPOG , Red1.png
TOPOG , Red1.png
TOPOG , Red1.png
TUGS Fluvial gravel and sand transport model Cui, Yantao Red1.png IRF bw.png
TUGS , Red1.png
TUGS , Red1.png
TUGS , Red1.png
TUGS , Red1.png
TURB Gausian distribution calculator of instantaneous shear stresses on the fluvial bed Slingerland, Rudy Green1.png IRF bw.png
TURB , Red1.png
TURB , Red1.png
TURB , Red1.png
TURBINS An immersed boundary, Navier–Stokes code for the simulation of gravity and turbidity currents interacting with complex topographies. Nasr-Azadani, Mohamad Green1.png IRF bw.png
TURBINS , Red1.png
TURBINS , Red1.png
TURBINS , Red1.png
TauDEM A suite of Digital Elevation Model (DEM) tools for the extraction and analysis of hydrologic information from topography as represented by a DEM. TauDEM 5 is a new version implemented to take advantage of parallel processing Tarboton, David Green1.png* IRF bw.png
TauDEM , Red1.png
TauDEM , Red1.png
TauDEM , Red1.png
TaylorNonLinearDiffuser Model non-linear soil creep after Ganti et al. (2012) Glade, Rachel Green1.png*
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
TaylorNonLinearDiffuser , Red1.png
Terrainbento A Python package for multi-model analysis in long-term drainage basin evolution Barnhart, Katy Green1.png*
Terrainbento , Red1.png
Terrainbento , Red1.png
Terrainbento , Red1.png
Terrapin Build and destroy strath and fill terraces Wickert, Andy Red1.png IRF bw.png
Terrapin , Red1.png
Terrapin , Red1.png
Terrapin , Red1.png
Terrapin , Red1.png
ThawLake1D 1-D numerical model of permafrost and subsidence processes. Matell, Nora Green1.png IRF bw.png
ThawLake1D , Red1.png
ThawLake1D , Red1.png
ThawLake1D , Red1.png
The TELEMAC system a powerful integrated modeling tool for use in the field of free-surface flows. TELEMAC support team, - Green1.png* IRF bw.png
The TELEMAC system , Red1.png
The TELEMAC system , Red1.png
The TELEMAC system , Red1.png
TopoFlow Spatially-distributed, D8-based hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow , Red1.png
TopoFlow , Red1.png
TopoFlow , Red1.png
TopoFlow-Channels-Diffusive Wave Diffusive Wave process component for flow routing in a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Channels-Diffusive Wave , Red1.png
TopoFlow-Channels-Diffusive Wave , Red1.png
TopoFlow-Channels-Diffusive Wave , Red1.png
TopoFlow-Channels-Dynamic Wave Dynamic Wave process component for flow routing in a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Channels-Dynamic Wave , Red1.png
TopoFlow-Channels-Dynamic Wave , Red1.png
TopoFlow-Channels-Dynamic Wave , Red1.png
TopoFlow-Channels-Kinematic Wave Kinematic Wave process component for flow routing in a D8-based, spatial hydrologic model. Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Channels-Kinematic Wave , Red1.png
TopoFlow-Channels-Kinematic Wave , Red1.png
TopoFlow-Channels-Kinematic Wave , Red1.png
TopoFlow-DEM Smoother TopoFlow-DEM Smoother Peckham, Scott Red1.png IRF bw.png
TopoFlow-DEM Smoother , Red1.png
TopoFlow-DEM Smoother , Red1.png
TopoFlow-DEM Smoother , Red1.png
TopoFlow-DEM Smoother , Red1.png
TopoFlow-Data-HIS The CUAHSI Hydrologic Information System Peckham, Scott Green1.png* IRF bw.png
TopoFlow-Data-HIS , Red1.png
TopoFlow-Data-HIS , Red1.png
TopoFlow-Data-HIS , Red1.png
TopoFlow-Diversions Diversions component for a D8-based, spatial hydrologic model. Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Diversions , Red1.png
TopoFlow-Diversions , Red1.png
TopoFlow-Diversions , Red1.png
TopoFlow-Evaporation-Energy Balance Evaporation process component (Energy Balance method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Evaporation-Energy Balance , Red1.png
TopoFlow-Evaporation-Energy Balance , Red1.png
TopoFlow-Evaporation-Energy Balance , Red1.png
TopoFlow-Evaporation-Priestley Taylor Evaporation process component (Priestley-Taylor method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Evaporation-Priestley Taylor , Red1.png
TopoFlow-Evaporation-Priestley Taylor , Red1.png
TopoFlow-Evaporation-Priestley Taylor , Red1.png
TopoFlow-Evaporation-Read File Evaporation process component (read from file method) for a spatially-distributed hydrologic model. Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Evaporation-Read File , Red1.png
TopoFlow-Evaporation-Read File , Red1.png
TopoFlow-Evaporation-Read File , Red1.png
TopoFlow-Infiltration-Green-Ampt Infiltration process component (Green-Ampt method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Infiltration-Green-Ampt , Red1.png
TopoFlow-Infiltration-Green-Ampt , Red1.png
TopoFlow-Infiltration-Green-Ampt , Red1.png
TopoFlow-Infiltration-Richards 1D Infiltration process component (Richards 1D method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Infiltration-Richards 1D , Red1.png
TopoFlow-Infiltration-Richards 1D , Red1.png
TopoFlow-Infiltration-Richards 1D , Red1.png
TopoFlow-Infiltration-Smith-Parlange Infiltration process component (Smith-Parlange method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Infiltration-Smith-Parlange , Red1.png
TopoFlow-Infiltration-Smith-Parlange , Red1.png
TopoFlow-Infiltration-Smith-Parlange , Red1.png
TopoFlow-Meteorology Meteorology process component for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Meteorology , Red1.png
TopoFlow-Meteorology , Red1.png
TopoFlow-Meteorology , Red1.png
TopoFlow-Saturated Zone-Darcy Layers Saturated Zone process component (Darcy's law, multiple soil layers) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Saturated Zone-Darcy Layers , Red1.png
TopoFlow-Saturated Zone-Darcy Layers , Red1.png
TopoFlow-Saturated Zone-Darcy Layers , Red1.png
TopoFlow-Snowmelt-Degree-Day Snowmelt process component (Degree-Day method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Snowmelt-Degree-Day , Red1.png
TopoFlow-Snowmelt-Degree-Day , Red1.png
TopoFlow-Snowmelt-Degree-Day , Red1.png
TopoFlow-Snowmelt-Energy Balance Snowmelt process component (Energy Balance method) for a D8-based, spatial hydrologic model Peckham, Scott Green1.png* IRF compatible.png
TopoFlow-Snowmelt-Energy Balance , Red1.png
TopoFlow-Snowmelt-Energy Balance , Red1.png
TopoFlow-Snowmelt-Energy Balance , Red1.png
TopoToolbox A set of Matlab functions for topographic analysis Schwanghart, Wolfgang Green1.png IRF bw.png
TopoToolbox , Red1.png
TopoToolbox , Red1.png
TopoToolbox , Red1.png
Topography Data Component A CSDMS data component used to fetch and cache NASA Shuttle Radar Topography Mission (SRTM) land elevation data using the OpenTopography REST API. Piper, Mark Green1.png* IRF compatible.png
Topography Data Component , Red1.png
Topography Data Component , Red1.png
Topography Data Component , Red1.png
TransportLengthHillslopeDiffuser Transport length hillslope diffusion. Mouchene, Margaux Green1.png*
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TransportLengthHillslopeDiffuser , Red1.png
TreeThrow Sediment transport by tree throw on hillslopes Kirwan, Matthew Red1.png IRF bw.png
TreeThrow , Red1.png
TreeThrow , Red1.png
TreeThrow , Red1.png
TreeThrow , Red1.png
TwoPhaseEulerSedFoam A four-way coupled two-phase Eulerian model for sediment transport Cheng, Zhen Green1.png IRF bw.png
TwoPhaseEulerSedFoam , Red1.png
TwoPhaseEulerSedFoam , Red1.png
TwoPhaseEulerSedFoam , Red1.png
TwoPhaseEulerSedFoam , Red1.png
UEB The Utah Energy Balance (UEB) Grid snowmelt model Tarboton, David Green1.png* IRF bw.png
UEB , Red1.png
UEB , Red1.png
UEB , Red1.png
UMCESroms Chesapeake Bay Application, special case of Regional Ocean Modeling System (ROMS) Li, Yun Green1.png* IRF compatible.png
UMCESroms , Red1.png
UMCESroms , Red1.png
UMCESroms , Red1.png
Underworld2 Underworld2 is an open-source, particle-in-cell finite element code tuned for large-scale geodynamics simulations. Moresi, Louis Green1.png* IRF bw.png
Underworld2 , Red1.png
Underworld2 , Red1.png
Underworld2 , Red1.png
VIC VIC (Variable Infiltration Capacity) is a macroscale hydrologic model that solves full water and energy balances, originally developed by Xu Liang at the University of Washington. Lettenmaier, Dennis Green1.png* IRF bw.png
VIC , Red1.png
VIC , Red1.png
VIC , Red1.png
VegCA Landlab component that simulates inter-species plant competition using a 2D cellular automata model. Nudurupati, Sai Green1.png*
VegCA , Red1.png
VegCA , Red1.png
VegCA , Red1.png
VegCA , Red1.png
VegCA , Red1.png
VegCA , Red1.png
VegCA , Red1.png
VegCA , Red1.png
Vegetation Model plant dynamics using multiple representative plant species Nudurupati, Sai Green1.png*
Vegetation , Red1.png
Vegetation , Red1.png
Vegetation , Red1.png
Vegetation , Red1.png
Vegetation , Red1.png
Vegetation , Red1.png
Vegetation , Red1.png
Vegetation , Red1.png
WACCM Dust-Sulfur Whole atmosphere module of sulfate aerosols. Neely, Ryan Green1.png* IRF bw.png
WACCM Dust-Sulfur , Red1.png
WACCM Dust-Sulfur , Red1.png
WACCM Dust-Sulfur , Red1.png
WACCM Dust-Sulfur , Red1.png
WACCM-CARMA atmospheric/aerosol microphysical model English, Jason Green1.png* IRF bw.png
WACCM-CARMA , Red1.png
WACCM-CARMA , Red1.png
WACCM-CARMA , Red1.png
WACCM-CARMA , Red1.png
WACCM-EE GCM for deep paleoclimate studies Wolf, Eric Green1.png* IRF bw.png
WACCM-EE , Red1.png
WACCM-EE , Red1.png
WACCM-EE , Red1.png
WASH123D Watershed Model, River Hydraulics, Overland Flow, Subsurface Flow, Sediment Transport, Water Quality Transport Yeh, Gour-Tsyh (George) Red1.png IRF bw.png
WASH123D , Red1.png
WASH123D , Red1.png
WASH123D , Red1.png
WASH123D , Red1.png
WAVEREF Wave refraction routine Slingerland, Rudy Green1.png IRF bw.png
WAVEREF , Red1.png
WAVEREF , Red1.png
WAVEREF , Red1.png
WAVEWATCH III ^TM Spectral wind wave model Tolman, Hendrik Green1.png* IRF bw.png
WAVEWATCH III ^TM , Red1.png
WAVEWATCH III ^TM , Red1.png
WAVEWATCH III ^TM , Red1.png
WBM-WTM Water Balance/Transport Model Fekete, Balazs Green1.png* IRF bw.png
WBM-WTM , Red1.png
WBM-WTM , Red1.png
WBM-WTM , Red1.png
WBMsed Global sediment flux and water discharge model. Cohen, Sagy Green1.png IRF bw.png
WBMsed , Red1.png
WBMsed , Red1.png
WBMsed , Red1.png
WDUNE GUI implementation of the Werner (1995) cellular automata aeolian dune model Barchyn, Tom Green1.png* IRF compatible.png
WDUNE , Red1.png
WDUNE , Red1.png
WDUNE , Red1.png
WEPP Process-based soil erosion by water at field/farm scale Flanagan, Dennis Red1.png IRF bw.png
WEPP , Red1.png
WEPP , Red1.png
WEPP , Red1.png
WEPP , Red1.png
WILSIM Landscape evolution model Luo, Wei Green1.png IRF bw.png
WILSIM , Red1.png
WILSIM , Red1.png
WILSIM , Red1.png
WINDSEA Deep water significant wave height and period simulator during a hurricane routine Slingerland, Rudy Green1.png IRF bw.png
WINDSEA , Red1.png
WINDSEA , Red1.png
WINDSEA , Red1.png
WOFOST WOFOST (WOrld FOod STudies) is a simulation model for the quantitative analysis of the growth and production of annual field crops. Boogaard, Hendrik Green1.png* IRF bw.png
WOFOST , Red1.png
WOFOST , Red1.png
WOFOST , Red1.png
WPHydResAMBL E-book: Implementation of the Wright-Parker (2004) formulation for hydraulic resistance combined with the Ashida-Michiue (1972) bedload formulation. Parker, Gary Green1.png IRF compatible.png
WPHydResAMBL , Red1.png
WPHydResAMBL , Red1.png
WPHydResAMBL , Red1.png
WPHydResAMBL , Red1.png
WRF Weather Research and Forecasting Model Skamarock, Bill Green1.png* IRF bw.png
WRF , Red1.png
WRF , Red1.png
WRF , Red1.png
WRF-Hydro The WRF-Hydro® Modeling System, an open-source community model, is used for a range of projects, including flash flood prediction, regional hydroclimate impacts assessment, seasonal forecasting of water resources, and land-atmosphere coupling studies. It produces forecasts and analyses for all major terrestrial water-cycle components: Precipitation, Streamflow, Soil moisture, Snowpack, Flooding, Groundwater. McAllister, Molly Green1.png*
WRF-Hydro , Red1.png
WRF-Hydro , Red1.png
WRF-Hydro , Red1.png
WRF-Hydro , Red1.png
WRF-Hydro , Red1.png
WRF-Hydro , Red1.png
WRF-Hydro , Red1.png
WSGFAM Wave and current supported sediment gravity flow model Friedrichs, Carl Green1.png IRF bw.png
WSGFAM , Red1.png
WSGFAM , Red1.png
WSGFAM , Red1.png
WWTM The WWTM (Wind Wave Tidal Model) has been developed to describe hydrodynamic and wind-wave generation and propagation within shallow tidal environments Carniello, Luca Red1.png IRF bw.png
WWTM , Red1.png
WWTM , Red1.png
WWTM , Red1.png
WWTM , Red1.png
Wetland3P A 3-point dynamic model for the morphological evolution of a backbarrier basin composed by marshes and mudflats mariotti, giulio Green1.png IRF bw.png
Wetland3P , Red1.png
Wetland3P , Red1.png
Wetland3P , Red1.png
XBeach Morphological changes, nearshore currents, wave propagation and sediment transport model Roelvink, Dano Green1.png* IRF bw.png
XBeach , Red1.png
XBeach , Red1.png
XBeach , Red1.png
YANGs Fluvial sediment transport model Slingerland, Rudy Green1.png IRF bw.png
YANGs , Red1.png
YANGs , Red1.png
YANGs , Red1.png
ZoneController Controls zones and populates them with taxa. Lyons, Nathan Green1.png*
ZoneController , Red1.png
ZoneController , Red1.png
ZoneController , Red1.png
ZoneController , Red1.png
ZoneController , Red1.png
ZoneController , Red1.png
ZoneController , Red1.png
ZoneController , Red1.png
ZoneTaxon A zone-based taxon Lyons, Nathan Green1.png*
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
ZoneTaxon , Red1.png
Zscape A simple parallel code to demonstrate diffusion Connor, Chuck Green1.png* IRF bw.png
Zscape , Red1.png
Zscape , Red1.png
Zscape , Red1.png


Questionnaires still need to be filled out for the following models:

Program Description Developer Source code
Geombest Model: A model that simulates the evolution of coastal morphology and stratigraphy resulting from changes in sea level and sediment supply. Moore, Laura Red1.png
SDM Model: Shelf Deposition Model Wolinsky, Matt Red1.png
Sequence4 Model: Stratigraphic model, focused on the long-term development of stratigraphic sequences Steckler, Michael Red1.png
SiAM3D Model: 3D hydrodynamic model based on the hydrostatic and Boussinesq approximations Cayocca, Florence Red1.png
SLAMM model Model: Sea Level Affecting Marshes model Park, Richard & Clough, Jonathan Red1.png
SLOSH Model: Sea, Lake and Overland Surges from Hurricanes National Hurricane Center Red1.png
SPEM Model: Shoreface profile evolution model Stive, Marcel Red1.png
SRSM Model: Soft-Rock Shoreline Model Walkden, Mike Red1.png
STM Model: Shoreline Translation Model Cowell, Peter Red1.png
WAM Model: Global ocean WAve prediction Model Jensen, Robert Red1.png

Questionnaires still need to be filled out for the following models:

Program Description Developer Source code
NearshorePOM Model: Nearshore version of POM (Princeton Ocean Model) Kirby, Jim Red1.png


Questionnaires still need to be filled out for the next models:

Program Description Developer Source code
Carb sedsim Model: ... Hill, John Red1.png
CARB3D Model: Forward Simulation Model for Sedimentary Architecture and Near-Surface Diagenesis in Isolated Carbonate Platforms Warrlich, Waltham Red1.png
CARB3D+ Model: Forward Simulation Model for Sedimentary Architecture and Near-Surface Diagenesis in Isolated Carbonate Platforms Smart, Peter Red1.png

How to Wiki tips

Modify "Log in / create account"

If you want to modify the upper right corner wiki message 'Log in / create account', modify the following file MediaWiki:Nav-login-createaccount. Be aware that for other languages than English this message is not modified.

Remove "discussion tab"

Notice: Discussion tab is made active again on this wiki!

This is a nasty way to remove the discussion tab:
Open \includes\SkinTemplate.php file and look for:

$content_actions[’talk’] = $this->tabAction(
$this->mTitle->getTalkPage(),
‘talk’,
$this->mTitle->isTalkPage(),
”,
true);

and change that to:

/*
$content_actions[’talk’] = $this->tabAction(
$this->mTitle->getTalkPage(),
‘talk’,
$this->mTitle->isTalkPage(),
”,
true);
*/

Hallo