Difference between revisions of "Model:RHESSys"

From CSDMS
m (Text replacement - "{{End headertab}}" to "{{End headertab}} {{{{PAGENAME}}_autokeywords}}")
 
(19 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
|Model type=Modular
 
|Model type=Modular
 
}}
 
}}
 +
{{Start models incorporated}}
 +
{{End a table}}
 
{{Model identity2
 
{{Model identity2
|Categories=Hydrology, Terrestrial
+
|ModelDomain=Terrestrial, Hydrology
 
|Spatial dimensions=2D
 
|Spatial dimensions=2D
 
|Spatialscale=Watershed-Scale
 
|Spatialscale=Watershed-Scale
Line 15: Line 17:
 
{{Model keywords
 
{{Model keywords
 
|Model keywords=water quality
 
|Model keywords=water quality
 +
}}
 +
{{Model keywords
 +
|Model keywords=C-cycle
 +
}}
 +
{{Model keywords
 +
|Model keywords=Carbon
 +
}}
 +
{{Model keywords
 +
|Model keywords=Nutrient cycle
 
}}
 
}}
 
{{End a table}}
 
{{End a table}}
Line 25: Line 36:
 
|Town / City=Santa Barbara
 
|Town / City=Santa Barbara
 
|Postal code=93106
 
|Postal code=93106
 +
|Country=United States
 
|State=California
 
|State=California
|Country=USA
 
 
|Email address=ctague@bren.ucsb.edu
 
|Email address=ctague@bren.ucsb.edu
 
|Phone=805-893-8579
 
|Phone=805-893-8579
Line 39: Line 50:
 
|Additional town / City=Santa Barbara
 
|Additional town / City=Santa Barbara
 
|Additional postal code=93106
 
|Additional postal code=93106
 +
|Additional country=United States
 
|Additional state=California
 
|Additional state=California
|Additional country=USA
 
 
|Additional email address=jchoate@bren.ucsb.edu
 
|Additional email address=jchoate@bren.ucsb.edu
 
}}
 
}}
Line 49: Line 60:
 
|Start year development=1991
 
|Start year development=1991
 
|Does model development still take place?=Yes
 
|Does model development still take place?=Yes
 +
|DevelopmentCode=Active
 +
|DevelopmentCodeYearChecked=2020
 
|Model availability=As code
 
|Model availability=As code
 
|Source code availability=Through web repository
 
|Source code availability=Through web repository
Line 124: Line 137:
 
}}
 
}}
 
{{Model testing
 
{{Model testing
|Describe available calibration data sets=
 
 
|Describe available test data sets=See uploaded data file (Data.tar); or visit: http://fiesta.bren.ucsb.edu/~rhessys/setup/downloads/source.shtml
 
|Describe available test data sets=See uploaded data file (Data.tar); or visit: http://fiesta.bren.ucsb.edu/~rhessys/setup/downloads/source.shtml
 
|Model test data=Data.tar,
 
|Model test data=Data.tar,
Line 132: Line 144:
 
}}
 
}}
 
{{Documentation model
 
{{Documentation model
|Provide key papers on model if any=Key Papers:
 
*'''Band LE, Patterson P, Nemani R, Running SW. 1993. Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Journal of Hydrology, 63: 93–126.'''
 
 
*'''Band LE, Mackay DS, Creed IF, Semkin R, Jeffries D. 1996. Ecosystem processes at the watershed scale: sensitivity to potential climate change. Limnology and Oceanography, 41: 928–938.'''
 
 
*'''Tague CL, Band LE. 2001. Evaluating explicit and implicit routing for watershed hydro-ecological models of forest hydrology at the small catchment scale. Hydrological Processes 15: 1415–1439, Doi: ([http://dx.doi.org/10.1002/hyp.171 10.1002/hyp.171]).'''
 
 
*'''Tague C, Band LE (2004). RHESSys: Regional Hydro-Ecologic Simulation System—an object- oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 8(19): 1–42.'''
 
 
*'''Tague, C., McMichael, C., Hope, A., Choate, J., Clark, R., 2004. Application of the RHESSys Model to a California Semiarid Shrubland Watershed. Journal of the American Water Resources Association, 575~589, Doi: ([http://dx.doi.org/10.1111/j.1752-1688.2004.tb04444.x 10.1111/j.1752-1688.2004.tb04444.x]).'''
 
 
Other Papers:
 
* Band, L. E., Peterson, D. L., Running, S. W., Coughlan, J., Lammers, R., Dungan, J., Nemani, R., 1991. Forest ecosystem processes at the watershed scale: basis for distributed simulation. Ecological Modelling, 56, 171~196.
 
 
* Band, L. E., Patterson, P., Nemani, R., Running, S. W., 1992. Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agricultural Forest Meteorology, 63, 93~126.
 
 
* Band, L. E., 1993. Effect of land surface representation on forest water and carbon budgets. Journal of Hydrology, 150, 749~772.
 
 
* Christensen, L, Tague, C and Baron, J. 2008. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystems. Hydrological Processes, 9999:9999, Doi: ([http://dx.doi.org/10.1002/hyp.6961 10.1002/hyp.6961]).
 
 
* Comer, K., Tague, C.L.,Alberts, A. Franklin, J. 2006. Sea Turtle Nesting Habitat on the U.S. Naval Station, Guantanamo Bay, Cuba: A comparison of habitat suitability index models, Chelonian Conservation and Biology. 5:2, 175-187, Doi: ([http://dx.doi.org/10.2744/1071-8443(2006)5[175:STNHOT]2.0.CO;2 10.2744/1071-8443(2006)5[175:STNHOT]2.0.CO;2]).
 
 
* Groffman, P., Butterbach-Bahl, K., Fulweiler, RW., Gold, AJ., Morse, JL., Stander, EK., Tague, C., Tonitto, C., Vidon, P. 2008. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93: 49~77. Doi: ([http://dx.doi.org/10.1007/s10533-008-9277-5 10.1007/s10533-008-9277-5]).
 
 
* Hope, A.S., Tague, C., and Clark, R.E. 2007. Characterizing Post-Fire Vegetation Recovery of California Chaparral Using TM/ETM+ Time-Series Data. International Journal of Remote Sensing, 28(6):  1339~1354, Doi: ([http://dx.doi.org/ 10.1080/01431160600908924 10.1080/01431160600908924]).
 
 
* Jefferson, A., Nolin, A., Lewis, S., and Tague., C. 2008. Hydrogeologic controls on streamflow sensitivity to climate variation, Hydrological Processes, 22, 4347~4385, Doi: ([http://dx.doi.org/10.1002/hyp.7041 10.1002/hyp.7041]).
 
 
* Lookingbill, T.R., Gardner, R.H., Wainger, L.A., Tague, C.L. 2008. Ecological models:Landscape Modelling”, Encyclopedia of Ecology, S.E.Jorgensen (ed), Elsevier, Netherlands, ISBN: 0-444-52033-3
 
 
* Sanford SE, Creed IF, Tague CL, Beall FD, Buttle J.M. 2007. Scale-dependence of natural variability of flow regimes in a forested landscape. Water Resources Research. 43:8 W08414,  15pp, Doi: ([http://dx.doi.org/10.1029/2006WR005299 10.1029/2006WR005299]).
 
 
* Tague, C. 2006. Heterogeneity in hydrologic processes: A terrestrial hydrologic modeling perspective. Ecosystem Function in Heterogeneous Landscapes, Lovett, G. M., Jones, C. G , Turner, M. G. and Weathers, K. C. (eds), Springer-Verlag, NY
 
 
* Tague, C., Band, L. Franklin, J. 2006. Terrestrial Ecosystems. Encyclopedia of Hydrologic Science, Anderson, M. (eds), Wiley, Bristol, UK
 
 
* Tague, C., Farrell, M., Grant, G. 2007. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrological Processes, 21:24, 3288-3300, Doi: ([http://dx.doi.org/10.1002/hyp.6538 10.1002/hyp.6538]).
 
 
* Tague, C. 2008. Modeling hydrologic controls on denitrification: sensitivity to parameter uncertainty and landscape representation. Biogeochemistry, 93, 79~90, Doi: ([http://dx.doi.org/10.1007/s10533-008-9276-6 10.1007/s10533-008-9276-6]).
 
 
* Tague, C., Valentine, S., Kotchen, M. 2008. The effect of geomorphic channel restoration on streamflow and groundwater dynamics in a snowmelt dominated watershed. Water Resources Research 44, W10415, Doi: ([http://dx.doi.org/10.1029/2007WR006418 10.1029/2007WR006418]).
 
 
* Tague, C., and Pohl, M. 2008. The Potential Utility of Physically based Hydrologic Modeling in Ungaged Urban Streams. Annals of Association of American Geographers, 98(4): 818~833, Doi: ([http://dx.doi.org/10.1080/00045600802099055 10.1080/00045600802099055]).
 
 
|Manual model available=Yes
 
|Manual model available=Yes
 
|Model manual=Tutorials RHESSys.tar,
 
|Model manual=Tutorials RHESSys.tar,
Line 185: Line 154:
 
{{CSDMS staff part
 
{{CSDMS staff part
 
|OpenMI compliant=No but possible
 
|OpenMI compliant=No but possible
 +
|IRF interface=No but possible
 +
|CMT component=No but possible
 
|CCA component=No but possible
 
|CCA component=No but possible
|IRF interface=No but possible
 
|CMT component=Not yet
 
 
}}
 
}}
 
{{Start coupled table}}
 
{{Start coupled table}}
 
{{End a table}}
 
{{End a table}}
 
{{End headertab}}
 
{{End headertab}}
 +
{{{{PAGENAME}}_autokeywords}}
 
<!-- PLEASE USE THE "EDIT WITH FORM" BUTTON TO EDIT ABOVE CONTENTS; CONTINUE TO EDIT BELOW THIS LINE -->
 
<!-- PLEASE USE THE "EDIT WITH FORM" BUTTON TO EDIT ABOVE CONTENTS; CONTINUE TO EDIT BELOW THIS LINE -->
  
{{#ifexist:Template:{{#sub:{{PAGENAME}}|0|1}}{{#sub:{{lc:{{PAGENAME}}}}|1}} download stats | ==Download statistics==
+
 
{{{{#sub:{{PAGENAME}}|0|1}}{{#sub:{{lc:{{PAGENAME}}}}|1}} download stats}} | }}
 
  
 
==Introduction==
 
==Introduction==
Line 202: Line 171:
  
 
== References  ==
 
== References  ==
{{Add_reference_upload_button}}
+
<br>{{AddReferenceUploadButtons}}<br><br>
{{Add_model_references}}
+
{{#ifexist:Template:{{PAGENAME}}-citation-indices|{{{{PAGENAME}}-citation-indices}}|}}<br>
 +
{{Include_featured_references_models_cargo}}<br>
  
 
== Issues ==
 
== Issues ==

Latest revision as of 19:18, 16 September 2020



RHESSys


Metadata

Also known as
Model type Modular
Model part of larger framework
Incorporated models or components:
Spatial dimensions 2D
Spatial extent Watershed-Scale
Model domain Terrestrial, Hydrology
One-line model description Regional Hydro-Ecologic Simulation System
Extended model description RHESSys is a GIS-based, hydro-ecological modelling framework designed to simulate carbon, water, and nutrient fluxes. By combining a set of physically-based process models and a methodology for partitioning and parameterizing the landscape, RHESSys is capable of modelling the spatial distribution and spatio-temporal interactions between different processes at the watershed scale.
Keywords:

biogeochemistry, water quality, C-cycle, Carbon, Nutrient cycle,


First name christina
Last name Tague
Type of contact Model developer
Institute / Organization University of California, Santa Barbara
Postal address 1 Bren Hall 4516
Postal address 2
Town / City Santa Barbara
Postal code 93106
State California
Country United States
Email address ctague@bren.ucsb.edu
Phone 805-893-8579
Fax 805-893-7612


First name Janet
Last name Choate
Type of contact Model developer
Institute / Organization University of California, Santa Barbara
Postal address 1 Bren Hall 4516
Postal address 2
Town / City Santa Barbara
Postal code 93106
State California
Country United States
Email address jchoate@bren.ucsb.edu
Phone
Fax


Supported platforms Unix, Linux, Mac OS
Other platform
Programming language C
Other program language
Code optimized Single Processor
Multiple processors implemented
Nr of distributed processors
Nr of shared processors
Start year development 1991
Does model development still take place? Yes
If above answer is no, provide end year model development
Code development status Active
When did you indicate the 'code development status'? 2020
Model availability As code
Source code availability
(Or provide future intension)
Through web repository
Source web address http://fiesta.bren.ucsb.edu/~rhessys/setup/downloads/downloads.html
Source csdms web address
Program license type Other
Program license type other NOT SURE
Memory requirements --
Typical run time --


Describe input parameters Input Data needed: required and optional (based on project needs and data availability):

Spatial data (GIS maps) - to be brought into GRASS GIS Basic requirements:

  • DEM (Digital Elevation Model)

Optional:

  • Stream network, stream gage locations
  • Meteorological station locations
  • Vegetation and soil type, LAI
  • Road network, landcover/landuse (eg. residential, agricultural, open space, etc...)
  • Snow redistribution

Timeseries data - natural and human induced inputs as text files: Basic requirements:

  • Daily Precipitation (Meters)
  • Daily Maximum Temperature (°C)
  • Daily Minimum Temperature (°C)

Optional:

  • Day length (seconds)
  • Duration of rainfall (hours)
  • Zone and seasonal scaling of LAI (unitless)
  • Incoming longwave radiation (KJ/(meters2)/day)
  • Incoming direct shortwave radiation (KJ/(meters2)/day)
  • Incoming diffuse shortwave radiation (KJ/(meters2)/day)
  • Nitrogen deposition as NO3 (kg/(meters2)/day)
  • Nitrogen deposition as NH4 (kg/(meters2)/day)
  • Incoming direct PAR radiation (KJ/(meters2)/day)
  • Incoming diffuse PAR radiation (KJ/(meters2)/day)
  • Relative humidity (Range (0-1))
  • Mean daytime temperature (°C)
  • Night time temperature at sundown (°C)
  • Soil temperature (°C)
  • Vapour pressure deficit (Pa)
  • Wind speed (meters/sec)
  • Carbon dioxide (CO2) (parts per million/year)
Input format ASCII, Binary
Other input format
Describe output parameters --
Output format ASCII, Binary
Other output format
Pre-processing software needed? Yes
Describe pre-processing software Associated with the RHESSys simulation are a number of interface programs which organize input data into the format required by the RHESSys simulation model. These include a standard GIS-based terrain partitioning program, r.watershed, and other basic GIS routines as part of the GRASS GIS system and two RHESSys specific programs:
  1. GRASS2WORLD (derives landscape representation from GIS images)
  2. CREATE_FLOWPATHS (establishes connectivity between spatial units)
Post-processing software needed? Yes
Describe post-processing software Converting RHESSys Output to Spatial Output Using rh

rh is a command line program developed to convert RHESSys model output to spatial output. The spatial output can be formatted for viewing in either GRASS or ArcView.

Requirements rh must be run from inside the GRASS GIS system. To run rh the user must first output the patch map layer into either an ascii text file for GRASS or an ascii text file for Arc/INFO or ArcView.

Visualization software needed? Yes
If above answer is yes ESRI
Other visualization software GRASS


Describe processes represented by the model The original process models include the following:
  • The MTN-Clim model (Running et al, 1987) uses topography and user supplied base station information to derive spatially variable climate variables such as radiation and to extrapolate input climate variables over topographically varying terrain.
  • An ecophysiological model is adapted from BIOME-BGC (Running and Coughlan, 1988; Running and Hunt, 1993) to estimate carbon, water and potentially nitrogen fluxes from different canopy cover types.
  • Distributed hydrologic models – The original RHESSys utilized a single approach, TOPMODEL, to model soil moisture redistribution and runoff production. We now include two approaches:
    • TOPMODEL (Beven and Kirkby, 1979) is a quasi distributed model. TOPMODEL distributes hillslope soil moisture based on a distribution of a topograhically defined wetness index.
    • An explicit routing model is adapted from DHSVM (Wigmosta et al., 1994) which models saturated subsurface throughflow and overland flow via explicit connectivity. An important modification from the grid-based routing in DHSVM is the ability to route w ater between arbitrarily shaped surface elements. This allows greater flexibility in defining surface patches and varying shape and density of surface tesselation.
Describe key physical parameters and equations ---
Describe length scale and resolution constraints --
Describe time scale and resolution constraints --
Describe any numerical limitations and issues --


Describe available calibration data sets
Upload calibration data sets if available:
Describe available test data sets See uploaded data file (Data.tar); or visit: http://fiesta.bren.ucsb.edu/~rhessys/setup/downloads/source.shtml
Upload test data sets if available: Media:Data.tar
Describe ideal data for testing


Do you have current or future plans for collaborating with other researchers? --
Is there a manual available? Yes
Upload manual if available: Media:Tutorials RHESSys.tar
Model website if any http://fiesta.bren.ucsb.edu/~rhessys/index.html
Model forum / discussion board RHESSys source code and various user support programs are freely available for download. Limited documentation is also available on the website. We do not have the resources, however, to freely provide technical support for new users. Workshops are periodically available. If you would like additional training, technical support or information on hosting a RHESSys workshop, etc., we may be able to provide this on a contractual basis - Please contact Christina Tague (ctague@bren.ucsb.edu) or Janet Choate (jchoate@bren.ucsb.edu) for more information.
Comments To run RHESSys successfully, the user will need to invest quite a bit of time gathering both spatial and observed data, which may require additional work to format the data correctly. A sample dataset can be downloaded with tutorials to familiarize users with the data and formats required in order to run RHESSys.


This part will be filled out by CSDMS staff

OpenMI compliant No but possible
BMI compliant No but possible
WMT component No but possible
PyMT component
Can be coupled with:
Model info
christina Tague
Choate
Citation indices RHESSys
Nr. of pubs: 121
Citations: 4454
h-index: 35
Qrcode RHESSys.png
Link to this page



Introduction

History

References




Citation indices RHESSys
Nr. of pubs: 121
Citations: 4454
h-index: 35



Featured publication(s)YearModel describedType of ReferenceCitations
Tague, C. L.; Band, L. E.; 2004. RHESSys: Regional Hydro-Ecologic Simulation System—An Object-Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and Nutrient Cycling. Earth Interactions, 8, 1–42. 10.1175/1087-3562(2004)82.0.CO;2
(View/edit entry)
2004RHESSys
Model overview 290
See more publications of RHESSys


Issues

Help

Input Files

Output Files