A turbulence-resolving Eulerian two-phase model for coastal sediment transport applications

Zhen Cheng¹ (Charlie), Tian-Jian Hsu¹ (Tom), Julien Chauchat², Thibaud Revil-Baudard³

¹University of Delaware, Newark, DE, 19716, USA
²LEGI, Grenoble-INP, France
³LEGI, now at Karlsruher Institut für Technologie
Motivation

- The coastal zone is a very important **human habitat** of high ecological diversity and critical economic importance. Over 38% of the world’s population lives within 100 km of the coast or estuaries (1995, from *World Resource Institute*).

- **Accelerated sea-level-rise**, due to the global climate change during the past century, makes coastal zone more vulnerable to natural hazards such as storm surges.

- Studying Sediment transport is essential for **beach erosion and recovery**, however, field evidences suggest that the mechanisms critical in major storm condition were not parameterized properly by state-of-the-art sediment transport models (Foster et al., 2006; Cheng et al., 2016).
Eulerian Two-phase Model for Sediment Transport

Why two-phase model?

- Using two-phase flow equations with closures on interphase momentum transfer (e.g. drag), particle stresses and turbulence-sediment interaction, full profiles of transport can be obtained.
- Conventional bedload/suspended load assumptions are not necessary.
- SedFOAM (Cheng et al., 2016, Coastal Engineering, under revision), an Eulerian two-phase model based on a k-ε turbulence model, is publically available via Community Surface Dynamics and Modeling System (CSDMS) model repository maintained by GitHub.
- A CSDMS clinic was hosted on SedFOAM in 2015: https://csdms.colorado.edu/wiki/CSDMS_2015_annual_meeting_Tom_Hsu
SedFOAM (Cheng et al., *Coastal Eng.*, in revision)

- SedFOAM has been validated with oscillatory sheet flow experiment (O’Donoghue and Wright, 2004)
- It has been used by many researchers for different applications such as scour problems.

Figure. Modeled (solid curve) and measured (symbols) concentration profiles at four instants in M5010 experiment of O’Donoghue and Wright (2004)

Movie. Scour downstream an apron, $u_f=3.69$ cm/s, $d=0.25$ mm
Why turbulence-resolving:

- In turbulence-averaged models, closure of turbulence-sediment interactions is highly empirical.
- For oscillatory sheet flow:
 - Turbulence-averaged two-phase model works reasonably well for medium to coarse sand.
 - Most existing models including turbulence-averaged two-phase model fail to predict enhanced transport thickness for fine sand (i.e., sand with $d_{50} < 0.15$ mm)

How can we do a better job for fine sand?

Hypothesis:

1. Turbulence-sediment interactions are critical for fine sand.
2. Typical wave conditions in coastal environment are transitionally turbulent (especially during flow reversal).

A turbulence-resolving simulation approach is needed
Filtered Eulerian two-phase flow equations:

- **Mass Conservation Equations**
 \[
 \frac{\partial \rho^f (1 - \bar{\phi})}{\partial t} + \frac{\partial \rho^f (1 - \bar{\phi}) \bar{u}_i^f}{\partial x_i} = 0, \\
 \frac{\partial \rho^s \bar{\phi}}{\partial t} + \frac{\partial \rho^s \bar{\phi} \bar{u}_i^s}{\partial x_i} = 0,
 \]
 - ρ^f, ρ^s: fluid and sediment density
 - $\bar{\phi}$: filtered sediment concentration
 - \bar{u}_i^f, \bar{u}_i^s: filtered fluid and sediment velocities

- **Momentum Equations**
 \[
 \frac{\partial \rho^f (1 - \bar{\phi}) \bar{u}_i^f}{\partial t} + \frac{\partial \rho^f (1 - \bar{\phi}) \bar{u}_i^f \bar{u}_j^f}{\partial x_j} = -(1 - \bar{\phi}) \frac{\partial \bar{p}^f}{\partial x_i} + \frac{\partial \bar{\tau}_{ij}^f}{\partial x_j} + \rho^f (1 - \bar{\phi}) g \delta_{ij} + \bar{M}_{ij}^{fs}, \\
 \frac{\partial \rho^s \bar{\phi} \bar{u}_i^s}{\partial t} + \frac{\partial \rho^s \bar{\phi} \bar{u}_i^s \bar{u}_j^s}{\partial x_j} = -\bar{\phi} \frac{\partial \bar{p}^s}{\partial x_i} - \frac{\partial \bar{p}^s}{\partial x_i} + \frac{\partial \bar{\tau}_{ij}^s}{\partial x_j} + \rho^s \bar{\phi} g \delta_{ij} + \bar{M}_{ij}^{sf}.
 \]
 - Fluid and sediment momentum coupling are dominated by **drag force**: M_{ij}^{fs}, M_{ij}^{sf}.
 - Fluid stresses are modeled with sub-grid turbulence model (Germano, 1991).
 - Particle stresses due to collisions and frictions are modeled with kinetic theory for granular flow and frictional stress models (Ding and Gidaspow, 1990; Srivastava and Sundaresan, 2003).
Sub-grid model:

Turbulence-resolving: Eulerian two-phase equations are solved in 3D with a domain size sufficiently larger than the largest eddies and high numerical resolution (on the order of grain size).

Large eddies/structures are directly **resolved**, and effect of small eddies/structures on large scale motions are **modeled** with sub-grid closures:

For fluid and particle sub-grid stress:

\[
\frac{u_i' u_j'}{\Delta} - \frac{\bar{u}_i' \bar{u}_j'}{\Delta} = -2s_{sgs}^{ij} S_{ij}'
\]

\[
\nu_s' = C_s (\Delta)^3 |S'|
\]

where, \(|S'| = \sqrt{2S_{ij}' S_{ij}'} \)

\(\Delta = (\Delta_x \Delta_y \Delta_z)^{1/3} \)

The coefficient \(C_s \) is determined using a dynamic procedure (Germano, 1991), and similar closures are used for sediment sub-grid stress.

For sub-grid contribution of drag:

Ozel et al. (2013): mesoscale structures of sediment particles such as **streamer** and **clusters**, may not be resolved by the mesh size, and they can have a dramatic effect on the overall sediment dynamics.

The effect of unresolved mesoscale structure can be accounted by a sub-grid drag correction:

\[
\phi(u_i' - u_i^*) = (1 + K) \phi(\bar{u}_i' - \bar{u}_i^*)
\]

The coefficient \(K \) depends on grid size and sediment concentration, and it’s determined by using a dynamic procedure (Ozel et al., 2013).
Model Validation - Sheet flow in steady channel flow

LEGI experiment (Revil-Baudard et al., 2015, *JFM*):

Colocated two-component velocities \((u, w)\) and sediment concentration \((\phi)\) are measured.

Flow condition: \(u_*=5 \text{ cm/s}, \ h=0.13 \text{ m}\)

Sediment properties: \(s=1.192, \ d=3 \text{ mm}, \ W_s=5.59 \text{ cm/s}\)

Shields parameter: \(\theta = \frac{u_*^2}{(s-1)gd} \approx 0.5\)

Numerical simulation:

\[
L_x = 0.844 \text{ m} \quad L_y = 0.422 \text{ m} \quad L_z = 0.175 \text{ m} \quad (z_b = 0.045m)
\]

\[
\Delta x = \Delta y = 6.6 \text{ mm} \quad \Delta z = 0.4 \sim 2.2 \text{ mm}
\]

Domain size and grid resolution are verified by velocity fluctuation correlation and energy spectrum.
3D view - Sheet flow in steady channel flow

$\phi \geq 0.08$
Ensemble-averaged flow statistics

Symbols: measure data (Revil-Baudard et al., 2015, *JFM*)
Curves: simulation results
Ensemble-averaged flow statistics

Symbols: measure data (Revil-Baudard et al., 2015, JFM)
Curves: simulation results
Ensemble-averaged flow statistics

Symbols: measure data (Revil-Baudard et al., 2015, JFM)
Curves: simulation results
Evidence of attenuated fluid turbulence by sediments

Rough-wall log law velocity profile:

\[\langle \bar{u}' \rangle(z) = \frac{u_s}{\kappa} \ln \left(\frac{z - z_{lb}}{z_0} \right) \]

Reduction of von Karman constant:

Measured: \(\kappa = 0.23 \) < Clear fluid: \(\kappa = 0.41 \)

Modeled: \(\kappa = 0.2 \)

Sediment-induced density stratification can damp fluid turbulence
Evidence of attenuated fluid turbulence by sediments

Rough-wall log law velocity profile:

$$\langle \bar{u}^f \rangle (z) = \frac{u_*}{K} \ln \left(\frac{z - z_b}{z_0} \right)$$

Reduction of von Karman constant:

Measured: ≈ 0.23 < Clear fluid: ≈ 0.41
Modeled: ≈ 0.2

Sediment-induced density stratification can damp fluid turbulence, however, it’s playing a minor role comparing to drag induced turbulence damping effect for this flow condition and sediment ($W_s/u_* = 1.1$).
Preferential concentration

Heavy particles are preferentially biased to regions of **high strain rate** and **low vorticity** (Wang and Maxey, 1993), and second invariant Q is used to identify these regions (Chakraborty et al., 2005):

$$Q = \frac{1}{2} (|\Omega|^2 - |S|^2)$$

Similar phenomenon are also reported by Cheng et al. (2015, *Computers & Geosciences*).

Plane-view of $Q = 250$ (gray color) and concentration fields.

Iso-surface of $Q = 250$ along with a plane cut of sediment concentration at $(z-z_d)/d=4$, $\langle \phi \rangle=0.2$

$Q>0$ \rightarrow low ϕ

Sediment clusters
Intermittency

Turbulent motions:

\[
\begin{array}{c|c|c}
& w' > 0 & w' > 0 \\
\hline
u' < 0, w > 0 & outward interact & u' > 0, w' > 0 \\
\hline
u' < 0, w' < 0 & inward interact & u' > 0, w' < 0 \\
\end{array}
\]

(Revil-Baudard et al., 2015, *JFM*)

- Red: Ejection
- Blue: Sweep
- Increase of bed level
- Drop of bed level
Intermittency

Turbulent motions:

- \(u' < 0, w' > 0 \) \rightarrow \text{ejection}
- \(u' > 0, w' < 0 \) \rightarrow \text{sweep}

- \text{Ejection}
- \(\text{Increase of bed level} \)
- \text{Sweep}
- \(\text{Drop of bed level} \)

![Diagram showing bed level fluctuations over time](image-url)
Concluding Remarks

Findings:
- Turbulence-resolving two-phase Eulerian model is developed and validated with LEGI steady sheet flow experiment.
- Drag-induced turbulence attenuation becomes more important than the density stratification in LEGI experiment.
- Model is able to capture sediment preferential concentration.

Further investigations:
- Streamwise velocities and sediment suspension is under-predicted in the dilute region.
- The inward/outward interaction events are under-predicted by our model (not reported).
- More quantitative analysis of bed intermittency are needed.
Thank you!

A turbulence-resolving Eulerian two-phase model for coastal sediment transport applications

Zhen Cheng¹ (Charlie), Tian-Jian Hsu¹ (Tom), Julien Chauchat², Thibaud Revil-Baudard³

¹University of Delaware, Newark, DE, 19716, USA
²LEGI, Grenoble-INP, France
³LEGI, now at Karlsruher Institut für Technologie