Geological Modeling: Climate-hydrological modeling of sediment supply

Dr. Irina Overeem
Community Surface Dynamics Modeling System
University of Colorado at Boulder

September 2008
Course outline 1

- Lectures by Irina Overeem:
 - Introduction and overview
 - Deterministic and geometric models
 - **Sedimentary process models I**
 - Sedimentary process models II
 - Uncertainty in modeling

- This Lecture
 - Predicting the *amount* of sediment supplied to a basin
 - Quantifying sediment supply processes
 - Quantifying input parameters
 - Predicting the *variability* of sediment supply

- Classroom discussion on paleo-basins
• Objective 1: Predicting the amount of water and sediment coming out of a certain river basin over time.

Baffin Island, Canada
Classroom Discussion: Constructing the web of sediment supply

- What are the controls on water supply?
- What are the controls on sediment supply?

- LIST>>>
The web of sediment supply controls

Basin Characteristics
- Basin Area
- Basin Slope
- Basin Relief
- Geology
- Lakes

Climate Characteristics
- Precipitation
- Temperature
- Ice Melt
- Vegetation
- Groundwater

- Runoff
- Bedload
- Suspended Load

Connections:
- Glacier Area
- Nutrients
Delineate drainage basin

DEM analysis yields: drainage area and relief.

Flow Path analysis yields: drainage network density
Area – Discharge power function

\[Q = cA^b \]

- \(Q \) = water discharge \([\text{L}^3/\text{T}]\)
- \(A \) = drainage basin area \([\text{L}^2]\)
- \(c, b \) = empirical coefficients

Numerical Model HydroTrend

\[Q = Q_{\text{runoff}} + Q_{\text{snow}} + Q_{\text{ice}} + Q_{\text{sew}} \]

- ELA (glacier equilibrium line altitude) combined with the hypsometric curve determines the total area of the basin covered with glaciers.

- Daily temperature combined with hypsometry and lapse-rate determine the FLA (freezing line altitude) and thus the parts of the basin that get snowed and rained on.
Two types of sediment load

- **Bedload** = Sediment or other material that slides, rolls, or bounces along a stream or channel bed of flowing water.

- **Suspended load** = the body of fine, solid particles, typically of sand, clay, and silt, that travels with stream water without coming in contact with the stream bed.

- WHICH is MOST IMPORTANT FOR RESERVOIR MODELING?
Bed load predictions

- The daily bedload Q_b (kg s$^{-1}$) is simulated using a modified Bagnold (1966) equation:

$$Q_b = \left(\frac{\rho_s}{\rho_s - \rho} \right) \frac{\rho_s Q^4 s e_b}{g \tan f}$$

ρ_s \hspace{1cm} sand density (kg m$^{-3}$)
ρ \hspace{1cm} water density (kg m$^{-3}$)
s \hspace{1cm} slope of the river bed
eb \hspace{1cm} dimensionless bedload efficiency
β \hspace{1cm} dimensionless bedload rating term
g \hspace{1cm} acceleration due to gravitation (m s$^{-2}$)
$tan f$ \hspace{1cm} angle of repose of sediment grains lying on the river bed
The regression for this QRT model is based on analysis of a global database of last century discharge and sediment load observed at river mouths of 100’s of rivers (Syvitski et al., 2003).
Finger lakes in the Fraser Drainage Basin, Canada
Trapping sediment in lakes in HydroTrend

The model simulates Trapping Efficiency, TE, based on the modified Brune equation (Vörösmarty et al., 1997), for reservoirs volumes, V, larger than 0.5 km3

$$TE = 1 - \frac{0.05}{\sqrt{\Delta \tau}}$$

Wherein $\Delta \tau$ is the approximated residence time and Q_j is the discharge at mouth of each subbasin j (m3 s$^{-1}$) draining to a specific lake:

$$\Delta \tau = \frac{\sum V_i}{Q_j}$$
• Objective 2: Predicting the **variability** in the amount of water and sediment coming out of a certain river basin over time.

Jan 2000, Lots of sediment in suspension
Brazos River mouth, Gulf of Mexico, TX

July 2000, Little of sediment in suspension
Brazos River flood

Flood layer of $>10\text{cm}$ – locally 50cm in prodelta

Flood layers of ‘red mud’ are preserved in grey muds in prodelta deposits.

Possible permeability baffles!

Rodriguez et al., 2000, JSR 70, 2.
Variability in sediment load

A stochastic model (Morehead et al., 2003) is used to calculate the daily suspended sediment load fluxes:

\[
\left(\frac{Q_{S_{[i]}}}{Q_{S}} \right) = \psi_{[i]} f \left(\frac{Q_{[i]}}{Q} \right)^{C_{[a]}}
\]

- \(C_{[a]}\) = annual sediment load rating exponent, normal variable
- \(Q_{[i]}\) = daily discharge
- \(f\) = constant of proportionality
- \(\phi_{[i]}\) = log-normal random variable
HydroTrend Model Example

- Po River, Northern Italy
- 100 years validation experiment
- 21,000 years simulation

- Intended as input to a number of stratigraphic models to predict the stratigraphy of the Adriatic basin.

The example of the Po River, Italy

- a) The Po watershed is covering $\frac{1}{4}$ of the total country (largest of Italy).
- b) The basin is filled with alternate layers of sand and clay.
- c) 30% of the total discharge comes from the 5 lakes.
- d) Has 141 contributory rivers

- 4477 (MatterH)
- 4810 (Mt. Blanc)
- 2163 (Mt. Cimone)

Lugano l. Como l.
Maggiore l.
Iseo l.
Garda l.
Po
20 Climate stations from Global Daily Summary (NOAA) with daily temp. + prec. located in the Po basin (*data from 1977 – 1991*)
<table>
<thead>
<tr>
<th></th>
<th>Temp (deg C.)</th>
<th>Stdev</th>
<th>Prec. (mm)</th>
<th>Stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>1.33</td>
<td>0.90</td>
<td>45.06</td>
<td>33.78</td>
</tr>
<tr>
<td>Feb</td>
<td>2.74</td>
<td>2.04</td>
<td>40.91</td>
<td>29.17</td>
</tr>
<tr>
<td>Mar</td>
<td>7.04</td>
<td>2.06</td>
<td>69.17</td>
<td>34.88</td>
</tr>
<tr>
<td>Apr</td>
<td>10.14</td>
<td>0.82</td>
<td>84.89</td>
<td>56.65</td>
</tr>
<tr>
<td>May</td>
<td>15.70</td>
<td>0.77</td>
<td>98.91</td>
<td>53.67</td>
</tr>
<tr>
<td>Jun</td>
<td>19.27</td>
<td>1.12</td>
<td>71.29</td>
<td>24.22</td>
</tr>
<tr>
<td>Jul</td>
<td>22.65</td>
<td>1.25</td>
<td>49.34</td>
<td>31.49</td>
</tr>
<tr>
<td>Aug</td>
<td>21.92</td>
<td>1.14</td>
<td>67.16</td>
<td>32.86</td>
</tr>
<tr>
<td>Sep</td>
<td>16.62</td>
<td>1.85</td>
<td>52.75</td>
<td>41.55</td>
</tr>
<tr>
<td>Oct</td>
<td>12.01</td>
<td>0.88</td>
<td>95.32</td>
<td>55.19</td>
</tr>
<tr>
<td>Nov</td>
<td>5.73</td>
<td>1.62</td>
<td>51.60</td>
<td>49.64</td>
</tr>
<tr>
<td>Dec</td>
<td>1.61</td>
<td>0.93</td>
<td>46.67</td>
<td>28.63</td>
</tr>
<tr>
<td>Annual</td>
<td>11.46</td>
<td></td>
<td>0.77 (m)</td>
<td></td>
</tr>
</tbody>
</table>
Observed versus predicted

Reservoir effect!

- Yellow line: Mean monthly discharge measured
- Red line: Mean monthly discharge (100 yr simulation)

62 years (1918-1979) of monthly measured vs modeled discharge
Daily Sediment vs Discharge at apex; 100 yr run
Some comparisons (100yrs modeled)

<table>
<thead>
<tr>
<th></th>
<th>Literature</th>
<th>HydroTrend</th>
</tr>
</thead>
<tbody>
<tr>
<td>River length (km)</td>
<td>673</td>
<td>670</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>74500 ¹)</td>
<td>77456 ²)</td>
</tr>
<tr>
<td>Mean discharge (m³/s)</td>
<td>1500</td>
<td>1541</td>
</tr>
<tr>
<td>Range Qs (t/y)</td>
<td>1.4E+07 – 3.5E+07</td>
<td>0.7E+07 – 3.9E+07</td>
</tr>
<tr>
<td>Mean Qs (t/y)</td>
<td>1.5E+07</td>
<td>1.61E+07</td>
</tr>
<tr>
<td>Mean Qs (kg/s)</td>
<td>476</td>
<td>510</td>
</tr>
<tr>
<td>Last century flood events:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) (all in m³/s)</td>
<td>10300</td>
<td>10281</td>
</tr>
<tr>
<td>2)</td>
<td>9600</td>
<td>10110</td>
</tr>
<tr>
<td>3)</td>
<td>8700</td>
<td>9779</td>
</tr>
<tr>
<td>No. of hyperpycnal plumes (Cs > 35 to 45 kg/m³)</td>
<td>--</td>
<td>Max: 10.7 (river treated as if it’s flowing through 1 outlet)</td>
</tr>
</tbody>
</table>

¹) Literature: value varies from 71000 to 75000 km²
²) Value based on DEM.
Sea level change over time
21,000 years of sediment supply

- Climate
- Sea Level
- Area
- Temperature
- Precipitation
- Glacier ELA
- Trapping
Discharge Components

Sediment load

Bed load

Time
References

Classroom discussion

- Shortcoming of DEM’s for paleo drainage basins?
- What is an alternative strategy?

- Sources of information for paleo temperature?
- Sources of information for paleo precipitation?

- How do you quantify variability in proxy data?

- How can we use ART-equation for paleo river?