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Background: Wineblown snow selforganizes Analysis: Statistical classification of s@fganized snow surfaces
Wind-blown snow forms depositional (Fig.-tband erosional (Fig. jgbedforms The most We aimed to identify weather conditions that produce
widespreadbedform, sastrugi(Fig. 1h,q), textures much of Antarctica and Greenland. 1. Snowbedformsas opposed to flat surfaces, and

2. Sastrugithe largesbedforms as opposed to anything else
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(a) Flat snow (c) Barch;n

Input variables
First, we identified a set of weather variables likely to influence the growth of siealfiorms

station 200m downwind of the site.

Input data
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carlosimulation to represent the range of weather conditions which occurred during each
observation.

Building classifiers
Next, we build ~468oftmaxclassifiers which classified the snow surface as a function of
different sets of weather variables.

Classifier evaluation
We identified classifiers with the highest likelihoods (a metric of classifier goodfidiss

We validated the classifiers by bootstrapping.

Results: Best classifiers

The best classifier fdredform presence predicted that snow surfaces are only flat when the
Thesebedformshave welldocumented effects on the properties of snow surfaces. They increase snow is fresh and the wind is gentle. This classifier (Fig. 3) is a function of wincuspetd
the aerodynamic roughness of the snow [1], and lower its albedo [2] and thermal conductivity [3]. time since snowfali\:

Despite these effects, no model has previously predicted where and whenlsafarmsappear.

Fig 1

Data: Snowbedformsin the Colorado Front Range

Snowbedformscover alpine peaks and ridges throughout the Colorado Front Range. We
documentedbedformgrowth on Niwot Ridge, Colorado. Over two winter field seasons, we
collected over 800 hours of tiMapse footage showing their evolution.

Three representative evolution trajectories are shown below. » _ _ _ _ _ _
The best classifier famastrugipresence (Fig. 4) is a function of time since snowfald the

high, or 9@'-percentile, wind speed u90:

Both classifiers are shown graphically below.
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Snow falls flat (Figs 2a,b,c) during periods of low wind. Once the wind rises, it forms depositiorjal N\, * =mostly flat o f;,.
features such as ripples amérchandunes (Figs. 2b,c). These move until the snow begins to S —— 2 - 10 0 - : -
harden. Cohesive snow forms erosiohatiforms such as small snesteps (Figs. 2a,b) or larger Age of surface, A (days) Age of surface, A (days)
sastrugi(2a). Fig 3 Fig 4

using loglikelinood ratios to penalize classifiers which used larger numbers of input variables.

Results: Best predictive variables

Our results are intended to predict whebedformsare and are not likely to be found.
They also identify weather variables which have greater and lesser abilities to predict
bedformpresence, which will allow future researchers to do targeted data collection
and analysis.

The table below shows the results of all singdgiable, and selected mufariable,

These include wind processes likely to roughen a granular surface, and time and temperatures!assiiiers. Lessegative likelihood values (L) indicate better classifier performance
processes associated with snow hardening. The full list is in Table 1. All data is from a weathétverages and percentiles are calculated since snowrall. Excess wind speeds are

calculated as values above a 7.3m/s threshold from [4]. Full results and discussion will
be available in our upcoming paper [5].

dg \ggneral,

Bedformsevolve. Time (A) is an important predictor of their presence and form.

T Sastrugform over several days. They cannot be understood except in the context of
their history; instantaneous weather variables do not predict their presence well.

T Wind direction and temperature have little effect tmedforms

Weather variable(s) in classifier Flat/mot  Sastrugi/not
L Dir L Dir

Single-variable classifiers

B Constant value (ignores all weather) 22 - =33 -
A Age of snow grains —14 - =36 -
Al Square root of age —-19 - =37 -
! [nstantaneous wind speed —12 - =53] -
u Average wind speed —13 — =58 -
- Average of wind speed squared —11 — =58 -
' Average of wind speed cubed —12 — =58 -
Hy Average excess wind speed —13 - =59 -
ui. Average of excess wind speed squared —12 - =59 -
Hl- Average of excess wind speed cubed —13 — =58 -
Hop) O0th-percentile wind speed —13 - =37 -
T [nstantaneous temperature —32 + =36 -
T Highest temperature —54 + 47 +
M Has surtace warmed above -177 — 36 — =60 -
H [nstantaneous wind direction —04 W U3 SW
) Average wind direction -03 5W 03 E

Selected multi-variable classifiers

u, Bp. A Best classifier for flat surfaces 3.1 —32
u. o, A3 Runner-up for flat surfaces —3.0 —33
wog. Bo. A Best classifier for sastrugi —6 —28
won. Bo. e Runner-up for sastrugi ! —20
Table 1

Ask me about;

T Ongoing numerical modelingow do bedformsgrow?
T Using statistics to ask good guestions about geoscience data.
+ Snowbedforms
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