Property:Extended model description

From CSDMS

This is a property of type Text.

Showing 20 pages using this property.
A
ADCIRC is a system of computer programs for solving time dependent, free surface circulation and transport problems in two and three dimensions. These programs utilize the finite element method in space allowing the use of highly flexible, unstructured grids. Typical ADCIRC applications have included: # modeling tides and wind driven circulation, # analysis of hurricane storm surge and flooding, # dredging feasibility and material disposal studies, # larval transport studies, # near shore marine operations.  +
ALFRESCO was originally developed to simulate the response of subarctic vegetation to a changing climate and disturbance regime (Rupp et al. 2000a, 2000b). Previous research has highlighted both direct and indirect (through changes in fire regime) effects of climate on the expansion rate, species composition, and extent of treeline in Alaska (Rupp et al. 2000b, 2001, Lloyd et al. 2003). Additional research, focused on boreal forest vegetation dynamics, has emphasized that fire frequency changes – both direct (climate-driven or anthropogenic) and indirect (as a result of vegetation succession and species composition) – strongly influence landscape-level vegetation patterns and associated feedbacks to future fire regime (Rupp et al. 2002, Chapin et al. 2003, Turner et al. 2003). A detailed description of ALFRESCO can be obtained from the literature (Rupp et al. 2000a, 200b, 2001, 2002). The boreal forest version of ALFRESCO was developed to explore the interactions and feedbacks between fire, climate, and vegetation in interior Alaska (Rupp et al. 2002, 2007, Duffy et al. 2005, 2007) and associated impacts to natural resources (Rupp et al. 2006, Butler et al. 2007).  +
ANUGA is a hydrodynamic model for simulating depth-averaged flows over 2D surfaces. This package adds two new modules (operators) to ANUGA. These are appropriate for reach-scale simulations of flows on mobile-bed streams with spatially extensive floodplain vegetation. The mathematical framework for the sediment transport operator is described in Simpson and Castelltort (2006) and Davy and Lague (2009). This operator calculates an explicit sediment mass balance within the water column at every cell in order to handle the local disequilibria between entrainment and deposition that arise due to strong spatial variability in shear stress in complex flows. The vegetation drag operator uses the mathematical approach of Nepf (1999) and Kean and Smith (2006), treating vegetation as arrays of objects (cylinders) that the flow must go around. Compared to methods that simulate the increased roughness of vegetation with a modified Manning's n, this method better accounts for the effects of drag on the body of the flow and the quantifiable differences between vegetation types and densities (as stem diameter and stem spacing). This operator can simulate uniform vegetation as well as spatially-varied vegetation across the domain. The vegetation drag module also accounts for the effects of vegetation on turbulent and mechanical diffusivity, following the equations in Nepf (1997, 1999).  +
ANUGA is a hydrodynamic modelling tool that allows users to model realistic flow problems in complex 2D geometries. Examples include dam breaks or the effects of natural hazards such as riverine flooding, storm surges and tsunami. The user must specify a study area represented by a mesh of triangular cells, the topography and bathymetry, frictional resistance, initial values for water level (called stage within ANUGA), boundary conditions and forces such as rainfall, stream flows, windstress or pressure gradients if applicable. ANUGA tracks the evolution of water depth and horizontal momentum within each cell over time by solving the shallow water wave governing equation using a finite-volume method. ANUGA also incorporates a mesh generator that allows the user to set up the geometry of the problem interactively as well as tools for interpolation and surface fitting, and a number of auxiliary tools for visualising and interrogating the model output. Most ANUGA components are written in the object-oriented programming language Python and most users will interact with ANUGA by writing small Python scripts based on the ANUGA library functions. Computationally intensive components are written for efficiency in C routines working directly with Python numpy structures.  +
Acronym1D is an add on to Acronym1R in that it adds a flow duration curve to Acronym1R, which computes the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed).  +
Acronym1R computes the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed).  +
AeoLiS is a process-based model for simulating aeolian sediment transport in situations where supply-limiting factors are important, like in coastal environments. Supply-limitations currently supported are soil moisture contents, sediment sorting and armouring, bed slope effects, air humidity and roughness elements.  +
F
Allow for quick estimation of water depths within a flooded domain using only the flood extent layer (polygon) and a DEM of the area. Useful for near-real-time flood analysis, especially from remote sensing mapping. Version 2.0 offers improved capabilities in coastal areas.  +
A
Alpine3D is a model for high resolution simulation of alpine surface processes, in particular snow processes. The model can be forced by measurements from automatic weather stations or by meteorological model outputs (this is handled by the MeteoIO pre-processing library). The core three-dimensional Alpine3D modules consist of a radiation balance model (which uses a view factor approach and includes shortwave scattering and longwave emission from terrain and tall vegetation) and a drifting snow model solving a diffusion equation for suspended snow and a saltation transport equation. The processes in the atmosphere are thus treated in three dimensions and coupled to a distributed one dimensional model of vegetation, snow and soil model (Snowpack) using the assumption that lateral exchange is small in these media. The model can be used to force a distributed catchment hydrology model (AlpineFlow). The model modules can be run in a parallel mode, using either OpenMP and/or MPI. Finally, the Inishell tool provides a GUI for configuring and running Alpine3D. Alpine3D is a valuable tool to investigate surface dynamics in mountains and is currently used to investigate snow cover dynamics for avalanche warning and permafrost development and vegetation changes under climate change scenarios. It could also be used to create accurate soil moisture assessments for meteorological and flood forecasting.  +
W
An extension of the WBMplus (WBM/WTM) model. Introduce a riverine sediment flux component based on the BQART and Psi models.  +
G
Another derivative of the original SEDSIM, completely rewritten from scratch. It uses finite differences (in addition to the original particle-cell method) to speed up steady flow calculations. It also incorporates compaction algorithms. A general description has been published.  +
A
AquaTellUs models fluvial-dominated delta sedimentation. AquaTellUS uses a nested model approach; a 2D longitudinal profiles, embedded as a dynamical flowpath in a 3D grid-based space. A main channel belt is modeled as a 2D longitudinal profile that responds dynamically to changes in discharge, sediment load and sea level. Sediment flux is described by separate erosion and sedimentation components. Multiple grain-size classes are independently tracked. Erosion flux depends on discharge and slope, similar to process descriptions used in hill-slope models and is independent of grain-size. Offshore, where we assume unconfined flow, the erosion capacity decreases with increasing water depth. The erosion flux is a proxy for gravity flows in submarine channels close to the coast and for down-slope diffusion over the entire slope due to waves, tides and creep. Erosion is restricted to the main flowpath. This appears to be valid for the river-channel belt, but underestimates the spatial extent and variability of marine erosion processes. Deposition flux depends on the stream velocity and on a travel-distance factor, which depends on grain size (i.e. settling velocity). The travel-distance factor is different in the fluvial and marine domains, which results in a sharp increase of the settling rate at the river mouth, mimicking bedload dumping. Dynamic boundary conditions such as climatic changes over time are incorporated by increasing or decreasing discharge and sediment load for each time step.  +
B
BATTRI does the mesh editing, bathymetry incorporation and interpolation, provides the grid generation and refinement properties, prepares the input file to Triangle and visualizes and saves the created grid.  +
BIT Model aims to simulate the dynamics of the principal processes that govern the formation and evolution of a barrier island. The model includes sea-level oscillations and sediment distribution operated by waves and currents. Each process determines the deposition of a distinct sediment facies, separately schematized in the spatial domain. Therefore, at any temporal step, it is possible to recognize six different stratigraphic units: bedrock, transitional, overwash, shoreface aeolian and lagoonal.  +
BRaKE is a 1-D bedrock channel profile evolution model. It calculates bedrock erosion in addition to treating the delivery, transport, degradation, and erosion-inhibiting effects of large, hillslope-derived blocks of rock. It uses a shear-stress bedrock erosion formulation with additional complexity related to flow resistance, block transport and erosion, and delivery of blocks from the hillslopes.  +
Barrier3D is an exploratory model that resolves cross-shore and alongshore topographic variations to simulate the morphological evolution of a barrier segment over time scales of years to centuries. Barrier3D tackles the scale separation between event-based and long-term models by explicitly yet efficiently simulating dune evolution, storm overwash, and a dynamically evolving shoreface in response to individual storm events and sea-level rise. Ecological-geomorphological couplings of the barrier interior can be simulated with a shrub expansion and mortality module.  +
BarrierBMFT is a coupled model framework for exploring morphodynamic interactions across components of the entire coastal barrier system, from the ocean shoreface to the mainland forest. The model framework couples Barrier3D (Reeves et al., 2021), a spatially explicit model of barrier evolution, with the Python version of the Coastal Landscape Transect model (CoLT; Valentine et al., 2023), known as PyBMFT-C (Bay-Marsh-Forest Transect Model with Carbon). In the BarrierBMFT coupled model framework, two PyBMFT-C simulations drive evolution of back-barrier marsh, bay, mainland marsh, and forest ecosystems, and a Barrier3D simulation drives evolution of barrier and back-barrier marsh ecosystems. As these model components simultaneously advance, they dynamically evolve together by sharing information annually to capture the effects of key cross-landscape couplings. BarrierBMFT contains no new governing equations or parameterizations itself, but rather is a framework for trading information between Barrier3D and PyBMFT-C. The use of this coupled model framework requires Barrier3D v2.0 (https://doi.org/10.5281/zenodo.7604068) and PyBMFT-C v1.0 (https://doi.org/10.5281/zenodo.7853803).  +
R
Based on the publication: Brown, RA, Pasternack, GB, Wallender, WW. 2013. Synthetic River Valleys: Creating Prescribed Topography for Form-Process Inquiry and River Rehabilitation Design. Geomorphology 214: 40–55. http://dx.doi.org/10.1016/j.geomorph.2014.02.025  +
B
Basin and Landscape Dynamics (Badlands) is a parallel TIN-based landscape evolution model, built to simulate topography development at various space and time scales. The model is presently capable of simulating hillslope processes (linear diffusion), fluvial incision ('modified' SPL: erosion/transport/deposition), spatially and temporally varying geodynamic (horizontal + vertical displacements) and climatic forces which can be used to simulate changes in base level, as well as effects of climate changes or sea-level fluctuations.  +
Bifurcation is a morphodynamic model of a river delta bifurcation. Model outputs include flux partitioning and 1D bed elevation profiles, all of which can evolve through time. Interaction between the two branches occurs in the reach just upstream of the bifurcation, due to the development of a transverse bed slope. Aside from this interaction, the individual branches are modeled in 1D. The model generates ongoing avulsion dynamics automatically, arising from the interaction between an upstream positive feedback and the negative feedback from branch progradation and/or aggradation. Depending on the choice of parameters, the model generates symmetry, soft avulsion, or full avulsion. Additionally, the model can include differential subsidence. It can also be run under bypass conditions, simulating the effect of an offshore sink, in which case ongoing avulsion dynamics do not occur. Possible uses of the model include the study of avulsion, bifurcation stability, and the morphodynamic response of bifurcations to external changes.  +