Property:Additional comments model

From CSDMS

This is a property of type Text.

Showing 20 pages using this property.
T
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
About this component: *This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow. *When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window. *This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor. *The Numerical Python module (numpy) is used for fast, array-based processing. *This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".  +
D
Active development and maintenance of the code has moved to GitHub and been incorporated within broader LSDTopoTools software package: https://github.com/LSDtopotools/LSDTopoTools2  +
W
All links to documentation of WOFOST are available on the WOFOST page on the WageningenUR web site given above.  +
O
All the model information can be found in: https://sites.google.com/view/olaflowcfd/home  +
G
Associated paper: Salles et al., (2020). gospl: Global Scalable Paleo Landscape Evolution. Journal of Open Source Software, 5(56), 2804, https://doi.org/10.21105/joss.02804  +
A
Barely started; using this as a testbed for the new CSDMS BMI interface.  +
T
Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution, Geosci. Model Dev., 12, 1267-1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019.  +
R
Both codes are undergoing extensive revisions needed to incorporate them into the framework of the NearCoM Nearshore Community Model.  +
A
Code is research grade.  +
G
Current version is 5.0  +
M
Disclaimer Although every effort is made to provide timely and accurate information, the authors, the U.S. Geological Survey (USGS), and the U.S. Government make no warranty, expressed or implied, as to the timeliness or accuracy of the contents of this web site, which may be updated and revised at any time. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Any links to non-Government web sites are provided for convenience only and do not imply endorsement by the U.S. Government.  +
C
Email to Chris.jenkins@colorado.edu for further details, manual, code, collaboration  +
F
FVCOM is an open source code ocean community model that always welcomes new users. This program is only permitted for use in non-commercial academic research and education. Users are required to register in orde to receive the source codes, demo examples, and user manuals as well as some recommended postprocessing tools.  +
I
For details on the methodology and underlying benchmarking philosophy, see the following paper: Nathan Collier, Forrest M. Hoffman, David M. Lawrence, Gretchen Keppel‐Aleks, Charles D. Koven, William J. Riley, Mingquan Mu, and James T. Randerson, "The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation", JAMES, 10 (11), 2018, https://doi.org/10.1029/2018MS001354  +