Model help:Sedflux: Difference between revisions

From CSDMS
(Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:...")
 
No edit summary
Line 14: Line 14:
__NOTOC__
__NOTOC__
==<big><big>{{PAGENAME}}</big></big>==
==<big><big>{{PAGENAME}}</big></big>==
<span class="remove_this_tag">~3lines that describe the module</span>
SEDFLUX is a basin-fill model, written in ANSI-standard C, able to simulate the delivery of sediment and their accumulation over time scales of tens of thousands of years. It simulates the dynamics of strata formation of continental margins fuse information from the atmosphere, ocean and regional geology, and it can provide information for areas and times for which actual measurements are not available, or for when purely statistical estimates are not adequate by themselves.


==Model introduction==
==Model introduction==
<span class="remove_this_tag">Introduction to the module</span>
Sedflux combines individual process-response models into one fully interactive model, delivering a multi-sized sediment load onto and across a continental margin. The model allows for the deposit to compact, to undergo tectonic processes and isostatic subsidence from the sediment load. The new version, Sedflux 2.0 introduces a series of new process models, and is able to operate in one of two models to track the evolution of stratigraphy in either 2D or 3D. Additions to the 2D mode include the addition of models that simulate (1) erosion and deposition of sediment along a riverbed, (2) cross-shore transport due to ocean waves, and (3) turbidity currents and hyperpycnal flows. New processes in the 3D mode include (1) river channel avulsion, (2) two-dimensional diffusion due to ocean storms, and (3) two-dimensional flexure due to sediment loading. The spatial resolution of the architecture is typically 1–25 cm in the vertical and 10–100 m in the horizontal when operating in 2D mode. In 3D mode, the horizontal resolution usually extends to kilometers. In addition to fixed time steps (from days to hundreds of years), Sedflux 2.0 offers event-based time stepping as a way to conduct long-term simulations while still modeling low-frequency but high-energy events.


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>

Revision as of 17:50, 17 May 2011

The CSDMS Help System

Sedflux

SEDFLUX is a basin-fill model, written in ANSI-standard C, able to simulate the delivery of sediment and their accumulation over time scales of tens of thousands of years. It simulates the dynamics of strata formation of continental margins fuse information from the atmosphere, ocean and regional geology, and it can provide information for areas and times for which actual measurements are not available, or for when purely statistical estimates are not adequate by themselves.

Model introduction

Sedflux combines individual process-response models into one fully interactive model, delivering a multi-sized sediment load onto and across a continental margin. The model allows for the deposit to compact, to undergo tectonic processes and isostatic subsidence from the sediment load. The new version, Sedflux 2.0 introduces a series of new process models, and is able to operate in one of two models to track the evolution of stratigraphy in either 2D or 3D. Additions to the 2D mode include the addition of models that simulate (1) erosion and deposition of sediment along a riverbed, (2) cross-shore transport due to ocean waves, and (3) turbidity currents and hyperpycnal flows. New processes in the 3D mode include (1) river channel avulsion, (2) two-dimensional diffusion due to ocean storms, and (3) two-dimensional flexure due to sediment loading. The spatial resolution of the architecture is typically 1–25 cm in the vertical and 10–100 m in the horizontal when operating in 2D mode. In 3D mode, the horizontal resolution usually extends to kilometers. In addition to fixed time steps (from days to hundreds of years), Sedflux 2.0 offers event-based time stepping as a way to conduct long-term simulations while still modeling low-frequency but high-energy events.

Model parameters

Parameter Description Unit
Input directory path to input files -
Site prefix site prefix for Input/Output files -
Case prefix case prefix for Input/Output files -
Parameter Description Unit
Water discharge port use the water discharge provides port -
Erosion port Use the erosion provides port -
Parameter Description Unit
Run duration simulation run time years
Grid resolution in x-direction m
Grid resolution in y-direction m
Grid resolution in z-direction m
Parameter Description Unit
Avulsion standard deviation degrees
Minimum river angle degrees
Maximum river angle degrees
Row position of river hinge point -
Column position of river hinge point -
Velocity of coastal current m / s
Suspended load concentration pre-grain suspended sediment concentration -
Distance to dump bedload -
Bed load flux bed load flux at river mouth kg / s
Parameter Description Unit
Output directory path to output grid files -
Interval between output files -
SeaFloorDepth file output file prefix for variable -
SeaFloorSlope file output file prefix for variable -
SeaFloorElevation file output file prefix for variable -
SeaFloor Thickness file output file prefix for variable -
SeaFloorGrain file output file prefix for variable -
SeaFloorAge file output file prefix for variable -
SeaFloorSand file output file prefix for variable -
SeaFloorSilt file output file prefix for variable -
SeaFloorClay file output file prefix for variable -
SeaFloorMud file output file prefix for variable -
SeaFloorFacies file output file prefix for variable -
SeaFloorDensity file output file prefix for variable -
SeaFloorPorosity file output file prefix for variable -
SeaFloorPermeability file output file prefix for variable -
SeaFloorBasement file output file prefix for variable -
SeaFloorRiver_mouth file output file prefix for variable -
Parameter Description Unit
Model name name of the model -
Author name name of the model author m

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

A list of the key equations. HTML format is supported; latex format will be supported in the future

Notes

Any notes, comments, you want to share with the user

Numerical scheme


Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Name of the module developer(s)

References

Key papers

Links

Any link, eg. to the model questionnaire, etc.