Labs WMT ROMSLIte WaveForcing

From CSDMS
Revision as of 16:47, 16 May 2016 by Drtarpley (talk | contribs) (Author list)

Introduction to Regional Ocean Modeling - Wave Forcing


This lab has been designed and developed by Courtney Harris, Julia Moriarty, and Danielle Tarpley Virginia Institute of Marine Sciences, Gloucester Point, VA
with assistance of Irina Overeem, CSDMS, University of Colorado, CO

Classroom organization
This lab is the third in a series of introduction to the Regional Ocean Modeling System (ROMS) for inexperienced users. ROMS is a three-dimensional hydrodynamic ocean model. It solves the conservation of mass and 3D momentum equations and includes transport equations for temperature and salinity. Here we present a basic configuration of ROMS in the framework of the Web Modeling Tool (WMT), it is designed for inexperienced modelers to look at a river plume affecting the coastal ocean and sediment transport. Specifically in this lab we will investigate the effects of incoming waves on sediment erosion and transport.
This lab will likely take ~ 3hours to complete in the classroom.
If you have never used the Web Modeling Tool, learn how to use it here. The WMT allows you to set up simulations, but once you are ready to run them, you will need an account on the CSDMS supercomputer to submit your job. More information on getting an account can be found here HPCC Access. Note that getting permission for access takes a few days after your application.

Learning objectives

Skills

  • familiarize with a basic configuration of the Regional Ocean Modeling System
  • hands-on experience with visualizing NetCDF output with Matlab or Panoply.
  • learn about significant wave height and wave direction
  • learn about waves and sediment transport



Lab Notes

>> Open a new browser window and open the Web Modeling Tool here and select the ROMS project
>> This WMT project is unique in that there is only a single driver, ROMS-Lite. It is a pre-compiled instance of the larger ROMS system specially configured for teaching use.

the definition of 'significant wave height' is as follows: the significant wave height (often annotated as Hs) is defined as the mean wave height (the distance from wave trough to wave crest) of the highest third of the waves.


References