Annualmeeting:2017 CSDMS meeting-113: Difference between revisions

From CSDMS
No edit summary
No edit summary
 
Line 57: Line 57:


In addition to the fact that measurements were not performed simultaneously at the same location, the discrepancy in dζ/dt could be attributed to the underestimation of bed changes due to the exclusion of bed-load fluxes. Despite several uncertainties, these findings provide preliminary evidence regarding the role of seasonal and storm-driven subtidal flows in particulate transport at cape-associated shoals. Our methodology can be used to inform numerical models of sediment transport and morphological evolution along inner continental shelves.
In addition to the fact that measurements were not performed simultaneously at the same location, the discrepancy in dζ/dt could be attributed to the underestimation of bed changes due to the exclusion of bed-load fluxes. Despite several uncertainties, these findings provide preliminary evidence regarding the role of seasonal and storm-driven subtidal flows in particulate transport at cape-associated shoals. Our methodology can be used to inform numerical models of sediment transport and morphological evolution along inner continental shelves.
|CSDMS meeting posterPDF=Paniagua-Arroyave_CSDMS-SEN_20170521.pdf
|CSDMS meeting posterPNG=Paniagua-Arroyave_CSDMS-SEN_20170521.png
}}
}}
{{CSDMS meeting abstract figures
{{CSDMS meeting abstract figures

Latest revision as of 15:22, 1 June 2017






Browse  abstracts



Temporal variability in bed elevation near Shoal E, Cape Canaveral shoals

Juan Felipe Paniagua-Arroyave, University of Florida Gainesville Florida, United States. jf.paniagua
Peter Adams, University of Florida Gainesville Florida, United States. adamsp@ufl.edu
Arnoldo Valle-Levinson, University of Florida Gainesville Florida, United States. arnoldo@ufl.edu


Paniagua-Arroyave CSDMS-SEN 20170521.png

The increasing demand for sediments as source material for beach nourishment projects highlights the need to understand inner-shelf transport dynamics. At cape-related shoals, from where sedimentary materials are customarily extracted, the variability in particulate transport and related bedform evolution are not well understood.

To analyze bed elevation variability at a shoal adjacent to Cape Canaveral, Florida, an acoustic Doppler current profiler (ADCP) was deployed in spring 2014 at the outer swale of Shoal E, ~20 km south east of the cape tip at a depth of ~13 m. ADCP-derived velocity profiles and suspended particle concentrations were used to quantify instantaneous temporal changes in bed elevation (dζ/dt) using a simplified version of the Exner equation. Using mass conservation, temporal (deposition and entrainment) and spatial gradients in suspended sediment concentrations were calculated, although neither bed-load fluxes nor spatial gradients in velocities were considered.

Calculated values for instantaneous dζ/dt ranged from erosion at ~1e-3 m/s to accretion at 0.5e-3 m/s. Most of the variability was found at subtidal (<1 cycle/day) and tidal (~2 cycles/day) periodicities. Bed changes were small (<0.005 m/s) when tidal motions were important, e.g. from May 6 to 16, whereas subtidal motions at periods of 1 and 8 days dominated erosion/accretion events between May 16 and 31. Values suggest a bed erosion of 3.1e-3 m during ~30 days of the experiment, which was 2 orders of magnitude less, and had a contrary tendency to the average accretion of ~150e-3 m in 37 days measured between July 28 and September 3 at the edge of Southeast Shoal, i.e. ~5 km to the northwest.

In addition to the fact that measurements were not performed simultaneously at the same location, the discrepancy in dζ/dt could be attributed to the underestimation of bed changes due to the exclusion of bed-load fluxes. Despite several uncertainties, these findings provide preliminary evidence regarding the role of seasonal and storm-driven subtidal flows in particulate transport at cape-associated shoals. Our methodology can be used to inform numerical models of sediment transport and morphological evolution along inner continental shelves.


Spring14 ShoalEOuterSwale dzdt sm.png
Upper left: time series of bed elevation changes, dζ/dt, derived from ADCP measurements of suspended particles concentrations; upper right: power spectrum of dζ/dt with 12 dofs at 95% of statistical confidence (interval given by the vertical line); bottom: continuous wavelet transform of dζ/dt using a Morlet wavelet (Gaussian-modulated wave with a normalized frequency of 6) with black lines surrounding confidence levels (95%). See text for details.


Spring14 ShoalEOuterSwale Vel sm2.png
Upper panel: contours of time series of profiles of the east-west velocity component; middle panel: contours of the north-south velocity component; bottom panel: time series of vertically-averaged values for each velocity component.